跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳上慈
研究生(外文):Shang-Tzu Chen
論文名稱:摻鈦藍寶石晶體光纖之平行式光學同調斷層掃描術研究
論文名稱(外文):Ti:Al2O3 Crystal-Fiber-Based Parallel Optical Coherence Tomography
指導教授:黃升龍
口試委員:葉秉慧楊長豪
口試日期:2014-08-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:112
中文關鍵詞:同調斷層掃描
外文關鍵詞:Optical Coherence Tomography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光學同調斷層掃描術為目前最主要的非侵入式光學診斷技術之一。利用光源的低同調性,可達到微米等級的縱向解析度。此掃描技術是利用光子在組織內散射特性的變化,以提供組織內部的結構性資訊,此資訊會被顯現在重建的影像中。光學同調斷層掃描術能提供活體掃描的二維的斷層影像與三維立體資訊。因此,對於在一些在傳統上無法做生物切片或明顯危害到組織的觀察上,更為重要,例如眼睛的研究。
在此論文中,我們實驗室自製了單纖衣結構的摻鈦藍寶石晶體光纖,並以此建立了二套光學影像系統,包含非接觸式眼底鏡與平行式光學同調斷層掃描儀。當此光纖透過波長為532 nm的綠光連續固態雷射作為幫浦光時,可產生中心波長780 nm、頻寬180 nm之放大自發輻射,我們將其作為光學同調斷層掃描術的光源。透過其極寬與高斯狀分布的頻譜,我們可得到1.5 μm 的理論縱向解析度。
為了進行此系統對眼睛掃描的研究,我們以掃描活體大鼠眼睛的實驗來驗證我們的系統。利用設計的非接觸式眼底鏡,我們成功的將大鼠眼底的區域成像,其中包含了視神經血管與眼睛視盤。我們並利用全域式光學同調斷層掃描儀進行對大鼠角膜與網膜的掃瞄。藉由重建的二維斷層影像我們可以看出組織內結構層與層之間的差異與區隔。藉由與傳統生物切片的比較,可以得知,與我們的實驗結果吻合。此研究成果展現了此系統對於眼睛臨床上與醫學的研究上極具應用潛力。此外,我們以初期模型展現了平行式頻域同調斷層掃描術應用於手指皮膚的掃描。此系統的線照明方式可提供及時的二維斷層掃描影像,並具有提供三維立體資訊的潛力。

Optical coherence tomography (OCT) is one of the most rapidly advancing noninvasive medical imaging modalities that uses coherence gating to obtain tomographic images with micrometer-scale axial resolutions. By detecting the variation of scattering property of biological sample, structural information can be reconstructed. OCT is promising in providing cross-sectional images and 3-D volumetric images of biological tissues in vivo, especially in area where conventional excision examination is impossible or hazardous, such as ophthalmology.
In this study, a non-contact ophthalmoscope and parallel-OCT scanning technique, i.e., full-field OCT (FF-OCT), based on the broadband amplified spontaneous emission of our home-made Ti:Al2O3 single-clad crystal fiber are built and analyzed. With the advantage of the wide bandwidth of the light source and its Gaussian-shape spectrum, a theoretical axial resolution of 1.5 μm is achieved.
In order to demonstrate the feasibility of the developed system in ophthalmology applications, rodent eye scanning is performed in vivo. We have successfully obtained the fundus region imaging, including the optic nerve fibers and optic disk for non-contact ophthalmoscope. The scanning of rat cornea and retina using our FF-OCT system is also demonstrated. The revealed internal layers can be differentiated from the reconstructed cross-sectional images. By comparing our result to that of the histology biopsy, we concur the accordance in the OCT images, showing the potential of this imaging modality in clinical ophthalmology study and applications. We also demonstrate a parallel spectral-domain OCT scanning in its prototype in fingerpad scanning. The line-illumination technique used in this imaging modality provides real-time cross-sectional image that is promising for 3-D volume rendering.


Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Applications of OCT 3
1.3 Contribution of this work 5
Chapter 2 Background of OCT 9
2.1 Interferometry 9
2.2 Low coherence interferometry 12
2.3 Time-domain optical coherence tomography 15
2.4 Fourier-domain optical coherence tomography 17
2.4.1 Axial resolution 21
2.4.2 Lateral resolution 22
2.4.3 Imaging depth 24
2.5 Optical frequency window 25
2.6 System light source 26
2.6.1 Ti:Al2O3 crystal 27
2.6.2 Ti:Al2O3 crystal fiber 31
Chapter 3 Paralle Optical Coherence Tomography (P-OCT) 33
3.1 Overview 33
3.2 Parallel optical coherence tomography (P-OCT) 35
3.3 System light source 39
3.3.1 Laser-heated pedestal growth (LHPG) 40
3.3.2 Single-clad crystal fiber growth process 41
3.4 Optical system setup 44
3.4.1 Light source pumping system 45
3.4.2 Non-contact ophthalmoscope 47
3.4.3 Full-field OCT 50
3.4.4 Parallel spectral-domain OCT (P-SD-OCT) 53
3.5 Animal procedures 57
Chapter 4 P-OCT on Rodent Eye 59
4.1 Overview 59
4.2 Eye structures 60
4.2.1 Retinal layers 62
4.3 Optical properties of rodent eye and human eye 64
4.4 Rodent eye detailed parameters 68
4.5 Non-contact ophthalmoscope imaging 71
4.5.1 Imaging results 72
4.5.2 Discussion 75
4.6 FF-OCT imaging 76
4.6.1 Optic disk imaging 76
4.6.2 In vivo rodent ocular tissue imaging 76
4.6.3 Discussion 81
Chapter 5 Conlusions and Future Work 85
5.1 Summary 85
5.2 Future work 86
5.2.1 P-SD-OCT skin scanning 87
Bibliography 91


[1]J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, "Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy," Neoplasia, vol. 2, pp. 9-25, 2000.
[2]D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, et al., "Optical coherence tomography," Science, vol. 254, pp. 1178-1181, 1991.
[3]Available: http://users.atw.hu/blp6/BLP6/HTML/C0089780323045827.htm
[4]K. Y. Hsu, "Glass-clad crystal fibers based broadband light sources," Ph. D. Dissertion, National Taiwan University, 2011.
[5]J. G. Fujimoto and P. D. W. Drexler, Optical Coherence Tomography: Springer Berlin Heidelberg, 2008.
[6]M. Wojtkowski, "High-speed optical coherence tomography: basics and applications," Appl. Opt., vol. 49, pp. D30-D61, 2010.
[7]W. J. Choi, "Measurement of retinal vascular permeability in a rat model using spectroscopic optical coherence tomography," Master, Massachusetts Institute of Technology, 2011.
[8]A. Chaudhuri and J. A. Parker, "Aspheric curvatures, refractive indicies and chromatic aberration for the rat eye," Vision Res., vol. 23, 1983.
[9]A. E. Frecher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Rep. Prog. Phys., vol. 66, pp. 239-303, 2003.
[10]Y. Coello, T. L. Miller, V. V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan," Applied Optics, vol. 46, pp. 8394-8401, 2007.
[11]J. Schmitt, "Optical coherence tomography (OCT): a review," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, pp. 1205-1215, 1999.
[12]Y. Geng, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra1a, J. G. Flannery, et al., "In vivo imaging of microscopic structures in the rat retina," Invest Ophthalmol Vis Sci., vol. 50, pp. 5872-5879, 2009.
[13]L. Vabre, A. Duboisn, and A. C. Boccara, "Thermal-light full-field optical coherence tomography," Opt. Lett., vol. 27, pp. 530-532, 2002.
[14]W. Drexler, U. Morgner, F. X. K&;auml;rtner, C. Pitris, S. A. Boppart, X. D. Li, et al., "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett., vol. 24, pp. 1221–1223, 1999.
[15]J. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, et al., "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett., vol. 26, pp. 608-610, 2001.
[16]C. F. Lin and B. L. Lee, "Extremely broadband AlGaAs/GaAs superluminescent diodes," Appl. Phys. Lett., vol. 71, pp. 1598-1600, 1997.
[17]C. K. Wang, "Fabrication and Characterization of Ti3+:Al2O3 Crystal Fiber Broadband Light Sources," Mater, National Taiwan University, 2011.
[18]Z. Yaqoob, J. Wu, and C. Yang, "Spectral domain optical coherence tomography: a better OCT imaging strategy," BioTechniques, vol. 39, pp. 6-13, 2005.
[19]C. C. Tsai, Y. S. Lin, Y. T. Wang, W. Chang, P. K. Hsu, K. Y. Hsu, et al., "Ce3+:YAG double-clad crystal fiber based optical coherence tomography on fish cornea," Opt. Lett., vol. 35, pp. 811-813, 2010.
[20]J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, et al., "400-nm-bandwidth emission from a Cr-doped glass fiber," IEEE Photon. Technol. Lett., vol. 19, pp. 595-597, 2007.
[21]K. Y. Hsu, D. Y. Jheng, M. H. Yang, Y. S. Lin, K. Y. Huang, Y. H. Liao, et al., "Bidirectionally pumped Cr4+:YAG crystal fiber light source for optical coherence tomography," J. Opt. Soc. Am. B., vol. 28, pp. 288-292, 2011.
[22]J. A. Izatt and M. A. Choma, Theory of Optical Coherence Tomography: Eds. Springer Berlin Heidelberg, 2008.
[23]R. L. Aggarwal, A. Sanchez, M. M. Stuppi, R. R. Fahey, A. J. Strauss, W. R. Rapoport, et al., "Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3," IEEE J. Quantum Electron, pp. 1003-1008, 1988.
[24]A. J. S. A. Sanchez, R. L. Aggarwal, and R. E. Fahey, "Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3," IEEE J. Quantum Electron, pp. 995-1002, 1988.
[25]Y. Yasuno, T. Endo, S. Makita, G. Aoki, M. Ithoh, and T. Yatagai, "Three-dimentional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation," Journal of Biomedical Optics, vol. 11, pp. 014014-1-014014-7, 2006.
[26]M. Mujat, N. Iftimia, R. D. Ferguson, and D. X. Hammer, "Swept-source parallel OCT," Proc. of SPIE, vol. 7168, pp. 7168E-1-7168E-8, 2009.
[27]A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultra-high resolution full-field optical coherence tomography," Applied Optics, vol. 43, pp. 2874-2883, 2004.
[28]M. Akiba, K. P. Chan, and N. Tanno, "Full-field optical coherence tomography by two-dimentional heterodyne detection with a pair of CCD camera," Opt. Lett., vol. 28, pp. 816-818, 2003.
[29]I. Zeylikovich, A. Gilerson, and R. R. Alfano, "Nonmechanical grating-generated scanning coherence microscopy," Opt. Lett., vol. 23, pp. 1797-1799, 1998.
[30]S. W. Lee and B. M. Kim, "Line-field Optical Coherence Tomography Using Frequency-Sweeping Source," IEEE J. Selec. Topics Quantum Electron., vol. 14, pp. 50-55, 2008.
[31]W. R. Edmonds, "The reflaxicon, a new reflective optical element, and some applications," Appl. Opt., vol. 12, pp. 1940-1945, 1973.
[32]V. J. Srinivasan, T. H. Ko, M. Wojtkowskt, M. Carvalho, A. Clermon, S. E. Bursel, et al., "Noninvasive Volumetric Imaging and Morphometry of the Rodent Retina with High-Speed, Ultrahigh-Resolution Optical Coherence Tomography," Invest Ophthalmol Vis Sci., vol. 47, pp. 5522-5528, 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top