(44.192.10.166) 您好!臺灣時間:2021/03/06 03:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳皓郁
研究生(外文):Hao-Yu Wu
論文名稱:溶液製程法氧化鋅於氮化鎵磊晶製程的應用
論文名稱(外文):Application of Solution-Processed Zinc Oxide on Gallium Nitride Epitaxy
指導教授:林清富林清富引用關係
指導教授(外文):Ching-Fuh Lin
口試委員:黃鼎偉吳肇欣蘇國棟
口試委員(外文):Ding-Wei HuangChao-Hsin WuGuo-Dung Su
口試日期:2014-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:89
中文關鍵詞:溶液製程氧化鋅氮化鎵脈衝雷射沉積非極性溶液剝離
外文關鍵詞:Solution processZnOGaNPulsed laser depositionNon-polarSolution lift-off
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在研究利用溶液製程-水熱法氧化鋅作為脈衝雷射沉積氮鎵的緩衝層,並利用溶液法蝕刻氧化鋅層並轉移氮化鎵薄膜至金屬基板上。
首先介紹在100mM的生長液下成長10小時可以在藍寶石基板上成長出一層結晶品質良好且C軸取向強烈的氧化鋅薄膜。
在測試脈衝雷射沉積的通入氮氣壓力與磊晶出的氮化鎵品質部分,發現在10-2 torr氮氣環境下磊晶有著最接近1:1的氮鎵元素比。然而在拍攝XRD與拉曼頻譜後發現,氮化鎵薄膜除了纖鋅礦結構外,同時還有介穩態的岩鹽結構。在提高長晶溫度至1100oC後,可以使拉曼頻譜中的纖鋅礦結構訊號出現。但是,薄膜會出現破損的情況。為了避免,我們改採以較低溫(800oC)成長氮化鎵並在以900oC退火30分鐘後,岩鹽結構轉為纖鋅礦結構。
另一部分,我們以0.25M的硫酸銅水溶液電鍍2小時得一100um厚的銅於氮化鎵/氧化鋅/藍寶石基板結構上,並以0.01M的稀鹽酸蝕刻掉氧化鋅後,將氮化鎵薄膜轉移至銅基板上。而從側面的SEM圖與EDS皆可證實氮化鎵薄膜已被成功轉移。
為了改善LED的QCSE現象,我們嘗試以水熱法製作非極性氧化鋅。在矽基板上以曝光顯影加上乾蝕刻製作出溝槽結構後,先以E-GUN鍍上金層,在旋塗氧化鋅種子層,並以水熱法成長氧化鋅奈米柱最後再以氧化還原方式除金。可在溝槽中成長出非極性面朝上的氧化鋅奈米柱。


The study of this thesis is to investigate the growth of gallium nitride (GaN) via pulsed laser deposition (PLD) on the solution processed zinc oxide (ZnO) buffer layer via hydrothermal method. After GaN growth on ZnO, we investigate the solution lift-off and transferring GaN thin film to metal substrate with ZnO layer etched by HCl solution.
In the first part of the thesis, we present the highly c-oriented and crystallinity ZnO film via hydrothermal method in the condition of 100mM solution; 90oC environment and 10 hours growth.
Next, we discover the best N2 environment of PLD-GaN growth with Ga/N ratio almost equal to 1 measured by energy dispersive spectrum (EDS). However, the Raman spectrum and the X-ray diffraction spectrum(XRD) of GaN thin film shows that the structure of GaN includes both wurzite and rock-salt structure. The rock-salt structure can be reduced by adding up the growing temperature of PLD to 1100oC. Unfortunately, crack appears on the GaN/ZnO film with over 1000oC growth.
In order to avoid cracks, GaN film is grown in a lower temperature 800oC then anneal instead. The wurzite structure signal of GaN appears in the Raman spectrum after the 900oC annealing for 30 mins.
In the other part of the thesis, we demonstrate the solution lift-off and transfer the GaN thin film to electroplating copper substrate from sapphire and confirmed it with scanning electron microscopy(SEM) and EDS.
The last part of the thesis, we propose the idea of growing non-polar ZnO on Si substrate with groove structure in order to reduce the quantum confined Stark effect (QCSE) of LED. The good step coverage of spin-coating ZnO seed layer allows us to grow ZnO nano-rods with non-polar faces on the top on the side wall of Si grooves. After removing the gold layer and the polar ZnO in the same time, we present the ZnO with non-polar face on the top.


口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
Chapter 1 緒論 1
1.1 LED 產業現況與困境 1
1.2 垂直結構LED 7
1.3 溶液法剝離製作垂直結構LED元件 9
Chapter 2 實驗儀器與方法 12
2.1 材料簡介 12
2.1.1 氧化鋅 12
2.1.2 氮化鎵 14
2.2 水熱法簡介 14
2.3 脈衝雷射沉積 17
2.3.1 薄膜沉積原理 17
2.3.2 腔體設計 18
2.4 儀器介紹 21
2.4.1 掃描式電子顯微鏡(Scanning Electron Microscopy) 21
2.4.2 能量散射光譜儀(Energy Dispersive Spectrometer, EDS) 22
2.4.3 X光繞射儀 23
Chapter 3 以脈衝雷射沉積氮化鎵於水熱法氧化鋅 25
3.1 水熱法成長氧化鋅薄膜 26
3.1.1 實驗動機 26
3.1.2 實驗流程 27
3.1.3 量測結果與討論 29
3.2 氮化鎵薄膜成長於水熱法氧化鋅緩衝層 32
3.2.1 實驗動機 32
3.2.2 實驗設計與流程 32
3.2.3 脈衝雷射沉積磊晶氮化鎵與氮氣環境之影響 34
3.2.4 脈衝雷射沉積磊晶氮化鎵磊晶於藍寶石基板比較 36
3.2.5 脈衝雷射沉積於不同溫度磊晶氮化鎵 39
3.3 氮化鎵薄膜成長於水熱法氧化鋅與熱退火 44
3.3.1 實驗動機與設計 44
3.3.2 實驗結果 45
3.3.3 退火影響與討論 47
3.4 溶液法剝離氮化鎵薄膜 49
3.4.1 實驗動機與設計 49
3.4.2 電鍍銅基板與溶液剝離 51
3.4.3 氮化鎵薄膜轉移 52
Chapter 4 水熱法成長之非極性氧化鋅 54
4.1 研究動機 54
4.1.1 Quantum Confined Stark Effect 54
4.1.2 非極性氮化鎵 56
4.1.3 非極性氧化鋅構想 57
4.2 實驗流程 59
4.3 實驗結果與討論 61
4.3.1 氧化鋅種子層塗佈 61
4.3.2 反應性離子乾蝕刻去除極性氧化鋅 63
4.3.3 金屬剝離法移除極性氧化鋅 65
4.4 非極性氧化鋅成長於加寬溝槽 71
4.4.1 實驗動機 71
4.4.2 實驗流程 72
4.4.3 實驗結果與討論 73
4.4.4 以二階段水熱法成長氧化鋅 76
Chapter 5 結論 80
5.1 論文總結 80
5.2 未來與展望 82
Chapter 6 References 83


[1]Nakamura, S., T. Mukai, and M. Senoh,”Candela&;#8208;class high&;#8208;brightness InGaN/AlGaN double&;#8208;heterostructure blue&;#8208;light&;#8208;emitting diodes,” Applied Physics Letters, vol. 64, pp. 1687, 1994
[2]U.S. Depatment of Energy, Considerations when comparing LED and conventional lighting, Available at:http://www1.eere.energy.gov/buildings/ssl/comparing_lighting.html, Accessed 1 July, 2014.
[3]Technologies, A., Data Sheet — HLMP-1301, T-1 (3 mm) Diffused LED Lamps 2010.
[4]http://www1.eere.energy.gov/buildings/ssl/comparing_lighting.html.
[5]Navigant Consulting, Inc – Updated Lumileds’ chart with data from product catalogues and press releases
[6]Status of the LED industry report, August 2012, Yole Development
[7]Lux Research, 2011
[8]A.F. Wright, J. Appl. Phys., volume 82 , 2833, 1997
[9]X. Guo and E. F. Schubert “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Applied Physics Letters, Volume 78, 3337, 2001
[10]X. Guo and E. F. Schubert “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” Applied Physics Letters, Volume 90, 4191, 2001
[11]J. W. Nah, J. O. Suh and K. N. Tu, “Effect of current crowding and Joule heating on electromigration-induced failure in flip chip composite solder joints tested at room temperature,” Applied Physics Letters, Volume 98, 013715, 2005
[12]Min-Ho Kim, Martin F. Schubert, Qi Dai, Jong Kyu Kim, E. Fred Schubert, Joachim Piprek and Yongjo Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Applied Physics Letters, Volume 91, 183507, 2007
[13]Martin F. Schubert, Sameer Chhajed, Jong Kyu Kim, E. Fred Schubert, Daniel D. Koleske, Mary H. Crawford, Stephen R. Lee, Arthur J. Fischer, Gerald Thaler and Michael A. Banas, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes,” Applied Physics Letters, Volume 91, 231114, 2007
[14] Compound Semiconductor, Any color, as long as it''s white, Available at:http://home.educities.edu.tw/jmhwang/newsfile/article040216.htm, Accessed 1 July, 2014.
[15]W. S. Wong, T. Sands1, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Applied Physics Letters, Volume 75, 1360, 1999
[16]M. H. Doan, S. Kim, J. J. Lee, H. Lim, F. Rotermund, and Kihong Kim, “Influence of laser lift-off on optical and structural properties of InGaN/GaN vertical blue light emitting diodes,” AIP Advances, Volume 2, 022122, 2012
[17]陳錫銘,LED技術發展與趨勢,Availible at: cets.ncku.edu.tw/ezfiles/273/1273/attach/40/pta_4118_3571870_89252.pdf , Accessed 1 July, 2014
[18]Farn-Shiun Hwu, Jyh-Chen Chen, Sheng-Han Tuc, Gwo-Jiun Sheu, Hsueh-I Chen and Jinn-Kong Sheu, “A Numerical Study of Thermal and Electrical Effects in a Vertical LED Chip,” J. Electrochem. Soc., volume 157, H31-H37, 2010
[19]Wong, W., et al.,” Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Applied physics letters, vol. 75(10), pp. 1360-1362 , 1999
[20]Anderson Janotti and Chris G Van de Walle, “Fundamentals of zinc oxide as a semiconductor, ” Rep. Prog. Phys., volume 72, 126501, 2009
[21]Johnson, M., et al., “MBE growth and properties of ZnO on sapphire and SiC substrates,” Journal of electronic materials, vol. 25(5, pp. 855-862), 1996
[22]Jiandong Ye, Shulin Gu, Shunmin Zhu, Tong Chen, Liqun Hu, Feng Qin, Rong Zhang, Yi Shi, Youdou Zheng, “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD,” Journal of Crystal Growth, volume 243(1), pp. 151-156, 2002
[23]Elam, J. and S. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chemistry of Materials, vol. 15(4), pp. 1020-1028 , 2003
[24]http://bbs.sciencenet.cn/blog-3777-328239.html
[25]Band structure. jp, Available at: http://www.bandstructure.jp/Table/BAND/ZnO_zb.html, Accessed 1 July, 2014.
[26]Su, W.Y., J.S. Huang, and C.F. Lin, “Improving the property of ZnO nanorods using hydrogen peroxide solution.” Journal of Crystal Growth, volume 310(11),p. 2806-2809,2008..
[27]Ryu, Y., et al., Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied physics letters, volume 88(24), p. 241108-241108-3, 2006.
[28]Park, S.H., S.H. Kim, and S.W. Han, “Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications.” Nanotechnology, volume. 18(5), p. 055608, 2007.
[29]Wei, Z., et al., “Room temperature< equation> pn ZnO blue-violet light-emitting diodes.” Applied physics letters, volume 90(4), p. 042113-042113-3, 2007
[30]Lu, C.Y., et al., “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO: Ga/glass templates.” Applied physics letters, volume 89(15), p. 153101-153101-3, 2006
[31]Cui, J., et al.,” Low-temperature growth and field emission of ZnO nanowire arrays.” Journal of applied physics, volume 97(4):,p. 044315-044315-7, 2005
[32]Cao, B., et al., “Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties.” The Journal of Physical Chemistry C, volume 111(6), p. 2470-2476, 2007.
[33]Wang, W., et al., “Field emission properties of zinc oxide nanowires fabricated by thermal evaporation.” Physica E: Low-dimensional Systems and Nanostructures, volume 36(1), p. 86-91, 2007.
[34]Olson, D.C., et al., “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites.” Thin Solid Films, volume 496(1):,p. 26-29, 2007.
[35]Peiro, A.M., et al.,” Hybrid polymer/metal oxide solar cells based on ZnO columnar structures.” J. Mater. Chem., volume 16(21), p. 2088-2096m,2006.
[36]Ravirajan, P., et al., “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer.” The Journal of Physical Chemistry B, volume 110(15), p. 7635-7639, 2007.
[37]Johnson, M., et al., “MBE growth and properties of ZnO on sapphire and SiC substrates,” Journal of electronic materials, vol. 25(5), pp. 855-862, 1996
[38]Elam, J. and S. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chemistry of Materials, vol. 15(4), pp. 1020-1028, 2003.
[39]Yao, Takafumi, Hong, Soon-Ku,” Basic Properties of ZnO, GaN, and Related Materials”, Oxide and Nitride Semiconductors, 2009
[40]PIDA, Volume 48, pp. 28-30 , 2003
[41]KMLE, Available at: http://www.kmle.co.kr/search.php?Search=sol+gel+transformation, Accessed 1 July, 2014.
[42]Hubler, D.B.C.a.G.K., Pulsed Laser Deposition of Thin Film. John Wiley &; Sons, Inc., 1994.
[43] NAR Labs, Pulsed laser depostion, Available at: http://www.itrc.narl.org.tw/Research/Product/Vacuum/pld.php, Accessed 1 July, 2014.
[44]Singh, R.K. and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model.” Physical Review B, volume 41(13), p. 8843,1990
[45]Huang, T. and J.S. Harris Jr, “Growth of epitaxial AlGaN films by pulsed laser deposition.” Applied physics letters, volume 72, p. 1158, 1998
[46]Mah, K., et al., “Defect luminescence of GaN grown by pulsed laser deposition.” Journal of crystal growth, volume 222(3),p. 497-502,2001
[47]Kawaguchi, Y., et al., “Room-temperature epitaxial growth of GaN on lattice-matched ZrB substrates by pulsed-laser deposition.” Applied Physics Letters, volume 87, p. 221907, 2005
[48]H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Applied Physics Letters, Volume 48, 353, 1986
[49] H Lahreche, P Vennegues, M Vaille, B Beaumont, M Laugt, P Lorenzini and P Gibart, “Comparative study of GaN layers grown on insulating AlN and conductive AlGaN buffer layers,” Semiconductor Science and Technology, Volume 14, L33, 1999
[50]Wei, H., et al., “Hydrothermal synthesis and characterization of ZnO nanorods.” Materials Science and Engineering: A, 2005. 393(1): p. 80-82.
[51]Ramon Cusco, Esther Alarcon-Llado, Jordi Ibanez, and Luis Artus, “Temperature dependence of Raman scattering in ZnO,” Physical Review B, Volume 75, 165202, 2007
[52]Marcel Schumm, " ZnO-based semiconductors studied by Raman spectroscopy: semimagnetic alloying, doping, and nanostructures," Ph.D. dissertation, Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius Maximilians–Universit‥ at W‥urzburg, 2008
[53]Ping-Yi Ho, Subramani Thiyagu, Shao-HsuanKao, Chia-Yu Kao and Ching-Fuh Lin., “ZnO nanorod arrays for various low-bandgap polymers in inverted organic solar cells,” Nanoscale, volume 6, pp. 466-471, 2013.
[54]Kyoung-Kook Kim, Sam-dong Lee, Hyunsoo Kim, Jae-Chul Park, Sung-Nam Lee, Youngsoo Park, Seong-Ju Park and Sang-Woo Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution,” Appl. Phys. Lett, volume 94, 071118, 2009.
[55]S. Tripathy, S. J. Chua, M. S. Hao, E. K. Sia, A. Ramam et al. ” Micro-Raman scattering in laterally epitaxial overgrown GaN,” J. Appl. Phys, volume 91, 5840, 2002
[56]M. P. Halsall, P. Harmer, P. J. Parbrook, S. J. Henley, “Raman scattering and absorption study of the high-pressure wurtzite to rocksalt phase transition of GaN,” Physical Review B, volume 69, 235207, 2004
[57]J. H. Partridge ,”Glass-to-metal seals”, Society of Glass Technology, Sheffield, 1949
[58]R. R. Reeber and K. Wang, J. Mater. Res. ,volume 15, 1 40 ,2000
[59]H. Iblach, “Thermal Expansion of Silicon and Zinc Oxide ,” Phys. Stat. Sol, Volume 33, 260, 1969
[60]H. Iwanaga, A. Kunishige, S. Takeuchi, J. Mater. Sci., Volume 35 , 2451, 2000
[61]T.S. Jeong, M.S. Hana, J.H. Kim, C.J. Youn, Y.R. Ryu, H.W. White, “Crystallinity-damage recovery and optical property of As-implanted Zno crystals by post-implantation annealing,” Journal of Crystal Growth, volume 275, pp.541-547, 2005
[62]M. &;#352;&;#263;epanovi&;#263;, M. Gruji&;#263;-Broj&;#269;in, K. Vojisavljevi&;#263;, S. Bernik andT. Sre&;#263;kovi&;#263;, “Raman study of structural disorder in ZnO nanopowders,” Journal of Raman Spectroscopy, volume 41, pp.914-921, 2010
[63]D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood and C.A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett., vol. 53, pp. 2173–2176, 1984.
[64]M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B, vol. 58, pp. R13371–R13374, 1998.
[65]J.Piprek, Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation, San Diego: Academic Press, p.14, 2003
[66]D. Jena, S. P. Alpay, and J. V. Mantese, “Functionally graded polar heterostuctures: New materials for multifunctional devices,” in Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications, C. Wood and D. Jena, New York, pp. 307–372. 2007
[67]H. Masui, S. Nakamura, S.P. DenBaars, and U.K. Mishra, “Nonpolar and semipolar III-nitride light-emitting diodes: Achievements and challenges,” IEEE Trans. Electron Devices, vol. 57, pp. 88–100, 2010
[68]K. Kojima, H. Kamon, M. Funato, and Y. Kawakami, “Theoretical investigations on anisotropic optical properties in semipolar and nonpolar InGaN quantum wells,” Phys. Status Solidi C, vol.5, pp. 3038&;#8722;3041, 2008.
[69]H. Sato, R. B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, and S. Nakamura, “Optical properties of yellow light-emitting diodes grown on semipolar (1122) bulk GaN substrates,” Appl. Phys. Lett., vol.92, pp. 221110-1–221110-3, 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔