跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃胤傑
研究生(外文):Yin-Jie Huang
論文名稱:發光電晶體小訊號電路模型與共振腔結構之特性研究
論文名稱(外文):Small-Signal Circuit Model Analysis and Characterization of Resonant-Cavity Light-Emitting Transistors
指導教授:吳肇欣
口試委員:林恭如黃建璋林浩雄張書維
口試日期:2014-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:66
中文關鍵詞:小訊號模型轉換函數共振腔發光電晶體垂直共振腔面射型雷射
外文關鍵詞:Small Signal Circuit ModelTransfer FunctionsResonant-Cavity Light Emitting TransistorsVertical Cavity Surface Emitting Lasers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自2004年起,發光電晶體的發明打破了以往對載子復合放光速度的認知,相較於發光二極體(LED)及二極體雷射(DL)其載子復合的生命週期是在奈秒等級(Nano-second level),而發光電晶體已經被實驗證實其自發性復合放光的生命週期可達到皮秒等級(Pico-second level),其快速的載子復合速度,加上本身就是電晶體的許多特性,使得發光電晶體及電晶體雷射成為下一代光通訊系統光源的候選人之一。
為了能夠準確模擬發光電晶體之光訊號的高頻特性,小訊號電路中的電路轉移函數之分析成為一個重要的部分。在本篇論文中我們計算發光電晶體在不同結構下所對應的電路轉移函數,由發光二極體放光的性質推測發光電晶體放光位置也是在順偏壓下的基極-射極接面,從公式計算結果與模擬結果發現是相符合的,我們便可以把光響應表示成數學形式,並從數學式子去解釋什麼才是真正影響光響應的因素。
此外我們還探討了共振腔發光電晶體有無外加高反射鏡的比較,電晶體的基極為元件之主動區,其中包含了兩個In0.2Ga0.8As的量子井用以增強放光效率。元件結構為利用Al0.12Ga0.88As/Al0.9Ga0.1As的布拉格反射鏡當作上下反射層,其中下層為35對,上層為3對,使光能被侷限在共振腔中,進而增加元件的發光強度。因此相較於一般發光電晶體自發性放光的半高寬(&;#8776; 96 nm),布拉格反射鏡結構可以使得半高寬達到 21 nm。透過後段製程的方式對元件鍍上TiO2/SiO2交錯的介電質層,形成高反射率反射鏡的結構,更進一步降低半高寬達到 5 nm。
論文最後一部份,是垂直共振腔面射型雷射(VCSEL)的製程與量測分析,雷射的發光波長為850nm,我們改變氧化深度使得雷射孔徑大小改變,並探討其對調變速度的影響。


The invention of light-emitting transistors (LETs) in 2004 has revolutionized the concept of the carrier radiative recombination rate for the past 50 years. It is recognized that the radiative recombination lifetime of the light-emitting diodes (LEDs) and diode lasers (DLs) are in the nano-second range. However, the pico-second level of recombination lifetime of LETs and transistor lasers (TLs), which can be determined by experiments, provides great potential for next generation optical communication light source.
In order to model the microwave optical response of LETs, to under the small-signal circuit model and their electrical transfer functions are important. In this thesis, we calculate the electrical transfer function in different con&;#64257;gurations, such as common-emitter, common-base, and common-collector. We assume the optical emission in light-emitting transistors is dominated by base-emitter junction as the optical emission in light-emitting diodes under forward bias. We calculate the effect of the input impedance and obtain an electrical transfer function from input terminal to base-emitter junction. The simulation results agree well with our experimental data in different configurations and different microwave inputs.
Moreover, we investigate resonant-cavity light emitting transistors (RCLETs) with additional high reflection mirrors. The base layer, which is the active layer, includes two undoped In0.2Ga0.8As quantum wells to enhance the base radiative recombination. With 35 pairs of bottom Al0.12Ga0.88As/Al0.9Ga0.1As Distributed Bragg Reflector (DBR) and 3 pairs of top DBR sandwiching LET structure, the spontaneous emission can be enhanced by the resonant-cavity. The full width at half maximum (FWHM) of emission peak of a RCLET is 21 nm at 980 nm while that of a conventional LET is about 96 nm. Then the RCLET is deposited by 16 pairs of TiO2/SiO2 external high reflection mirrors on the top. By doing this, the FWHM can be further reduced to 5 nm.
The last part of this thesis, we try to fabricate and characterize vertical cavity surface emitting lasers (VCSELs). The emission wavelength of the VCSEL is 850nm. We investigate the influence of aperture size on the modulation speed of VCSEL.


口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 ii
圖目錄 viiii
表目錄 xi
第1章 簡介 1
1.1 背景介紹 1
1.2 論文概述 4
第2章 三種結構下發光電晶體小訊號之轉移函數 5
2.1 簡介 5
2.1.1 元件介紹與研究動機 5
2.1.2 轉移函數介紹 7
2.2 電訊號轉移函數和本質光頻率響應 7
2.2.1 電訊號轉移函數 9
2.2.2 本質光頻率響應 24
2.3 理論與實驗的比較 26
第3章 外加反射鏡共振腔發光電晶體之量測分析 30
3.1 背景原理簡介、磊晶結構與製作流程 31
3.1.1 布拉格反射鏡(Distributed Bragg reflector)原理 31
3.1.2 磊晶結構 33
3.1.3 製作流程 34
3.2 實驗數據與分析 36
3.2.1 元件直流特性量測分析 36
3.2.2 元件光訊號量測分析 39
第4章 850nm垂直共振腔面射型雷射之製程與量測結果分析 45
4.1 垂直共振腔面射型雷射之製作流程 45
4.1.1 磊晶結構 45
4.1.2 製作流程 46
4.2 實驗數據與分析 51
4.2.1 元件直流特性量測分析 53
4.2.2 元件光訊號量測分析 54
4.2.3 元件高頻特性量測分析 55
第5章 論文總結 63
參考文獻 64


[1]http://newsroom.cisco.com/image/image_gallery?uuid=7305e0da-d11d-4d88-9df6-e863777dd39d&;groupId=10157
[2]http://iq.videonuze.com/article/cisco-vni-mobile-video-to-grow-14-fold-by-2018-account-for-nearly-70-of-all-traffic
[3]International Technology Roadmap for Semiconductors, “Executive Summary,” 2011.
[4]Cisco System, Inc., “Cisco global cloud index: Forecast and methodology, 2011-2016,” 2012,
[5]E. F. Schubert, Y.H. Wang, A. Y. Cho, L.W. Tu, and G. J. Zydzik, “Resonant cavity lightemitting diode,” Appl. Phys. Lett. 60, 921 (1992).
[6]E. F. Schubert, N. E. J. Hunt, R. J. Malik, M. Micovic, and D. L. Miller, “Temperature and modulation characteristics of resonant-cavity light-emitting diodes,” J. Lightwave Technol., vol. 14, pp. 1721–1728 (1996).
[7]M. Guina, S. Orsila, M. Dumitrescu, M. Saarinen, P. Sipila, V. Vilokkinen, B. Roycroft, P. Uusimaa, M. Toivonen, and M. Pessa, “Light-emitting diode emitting at 650 nm with 200-MHz small-signal modulation bandwidth,” IEEE Photon. Technol. Lett., vol. 12, 786 (2000).
[8]W. Shockley, U.S. Patent No. 2 569 347 (1951).
[9]H. Kroemer, Proc. IRE 45, 1535 (1957).
[10]M. Feng, N. Holonyak, Jr. and W. Hafez, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., 84, 151 (2004).
[11]M. Feng, N. Holonyak, Jr. and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84, 1952 (2004).
[12]W. Snodgrass, B.R. Wu, K.Y. Cheng, and M. Feng, IEEE Intl. Electron Devices Meeting (IEDM), pp.663-666 (2007).
[13]N. Holonyak, Jr. and S.F. Bevacqua, “COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1&;#8722;xPx) JUNCTIONS,” Appl. Phys. Lett., 1, 82 (1962).
[14]H. W. Then, M. Feng, N. Holonyak, Jr., and C.H. Wu, “Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping,” Applied Physics Letters, vol. 91, pp. 033505, July 2007.
[15]G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr., “Tilted-charge high speed (7 GHz) light emitting diode,” Applied Physics Letters, vol. 94, pp. 231125, June 2009.
[16]C. H. Wu, F. Tan, M. K. Wu, M. Feng, and N. Holonyak, Jr.”The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity” Japan. J. Appl. Phys., 109, 053112 (2011).
[17]Hsiao-Lun Wang, Peng-Hao Chou, and Chao-Hsin Wu, IEEE Trans.” Microwave Determination of Quantum-Well Capture and Escape Time in Light-Emitting Transistors” IEEE Trans.Electron Devices 60, 1088 (2013).
[18]Hsiao-Lun Wang, Yin-Jie Huang, and Chao-Hsin Wu,” Optical frequency response analysis of light-emitting transistors under different microwave configurations” Appl. Phys. Lett., 103, 051110 (2013).
[19]G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr.”4.3 GHz optical bandwidth light emitting transistor” Appl. Phys. Lett., 94, 241101 (2009)
[20]G. P. Agrawal, N. K. Dutta, Semiconductor Lasers, 2nd ed., Van Nostrand Reinhold, USA, (1993).
[21]W. Liu, Ed., Handbook of III-V heterojunction bipolar transistors. New York: Wiley-Interscience (1998).
[22]L.A. Coldren, and S.W. Corzine, Chapter 3 “Diode Lasers and Photonic Integrated Circuits,” Wiley, New York, (1995).
[23]N. N. Ledentsov, “Long-wavelength quantum-dot lasers on GaAs substrates: From media to device concepts,” IEEE J. Select. Topics Quantum Electron., vol 8, n 5, pp. 1015-1024, Sep-Oct, 2002
[24]H. Saito, K. Nishi, I. Ogura, S. Sugou, and Y. Sugimoto, “Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser,” Appl. Phys. Lett. vol. 69, pp. 3140-3142, Nov, (1996).
[25]C. H. Wu , F. Tan, M. Feng, and N. Holonyak, Jr. “The effect of mode spacing on the speed of quantum-well microcavity lasers” Appl. Phys. Lett., 97, 091103 (2010).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top