(3.235.108.188) 您好!臺灣時間:2021/03/03 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李柏廷
研究生(外文):Po-Ting Lee
論文名稱:電漿輔助型原子層沉積之發光二極體特性研究
論文名稱(外文):Characterization of Light-Emitting Diodes Fabricated by Plasma Enhanced Atomic Layer Deposition
指導教授:彭隆瀚
口試委員:胡振國賴志明陳敬育
口試日期:2014-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:電漿輔助型原子層沉積系統發光二極體
外文關鍵詞:Plasma Enhanced Atomic Layer DepositionLight-Emitting Diodes
相關次數:
  • 被引用被引用:5
  • 點閱點閱:85
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
  本論文主要探討原子層沉積系統以及其發光二極體元件應用分析。內容分為兩部分,第一部分為電漿輔助型原子層沉積系統之機台校正及材料分析,第二部分為分別利用熱輔助型原子層沉積系統及電漿輔助型原子層沉積系統進行發光二極體之製作及量測。
  首先,本文針對電漿輔助型原子層沉積系統做機台操作之校正,並對其沉積材料利用橢圓偏振技術和表面輪廓儀進行成長速率之校正以及透過PL、XPS等量測技術做材料特性分析。實驗結果顯示,吾人成功利用電漿輔助型原子層沉積系統沉積出氧化鋅、氧化鉿、氧化鋁、氧化鎵四種氧化物,以及氮化鋁、氮化鎵兩種氮化物。
  吾人分別以熱輔助型原子層沉積系統及電漿輔助型原子層沉積系統進行發光二極體之製作,並量測其電壓-電流特性、電激發光頻譜。首先利用熱輔助型原子層沉積系統製作三種不同堆疊結構之發光二極體,並分析及比較其特性;再利用電漿輔助型原子層沉積系統進行發光二極體之製作,並與熱輔助型原子層沉積系統製作之元件做比較,結果顯示,在20mA之操作電壓由7.2V降為5.3V;而20mA時之微分電阻由96.7&;#8486;降為71.6&;#8486;。且輻射光譜中心波長與人眼視覺之敏感度光譜範圍幾乎吻合。


Abstract
  In this thesis, we present the operational procedure of plasma enhanced atomic layer deposition (PE-ALD) system and the growth, analysis, fabrication, characterization of Si-based oxide light emitting devices. The following instrument of photoluminescence (PL), X-ray photoelectron spectroscope (XPS), ellipsometry, surface profiler were used to characterize the thickness, growth rate, composition, and crystalline properties of the materials grown by the PE-ALD system.
  From the data analysis made on the ellipsometry and surface profiler measurement, we identified the materials growth rate under ALD mode correctly. From the XPS data analysis, we identify the material’s binding energy position. From above analysis, we have shown four oxide material including ZnO, HfO2, Al2O3, Ga2O3 and two nitride material including AlN, GaN from our PE-ALD system.
  Si-based Light-emitting devices base upon the Thermal ALD-grown oxide and PE ALD-grown oxide were further fabricated and characterized. Three different multilayer oxide light-emitting devices were fabricated by Thermal ALD. From the current-voltage, electroluminescence (EL), we prove that double layer oxide light-emitting devices had higher light-emitting intensity. Oxide light-emitting devices were also fabricated by PE ALD system. Compare to devices fabricated by Thermal ALD system, the PE ALD-grown devices had better electrical characteristics and the light-emitting spectrum can be matched to human vision sensitivity.


目錄
致謝 I
摘要 III
Abstract IV
第一章 緒論 1
1.1 簡介 1
1.2 研究動機與目的 4
1.3 論文內容概述 6
第二章 原子層沉積系統 Atomic Layer Deposition 7
2.1 ALD技術發展沿革 8
2.2 ALD成長機制簡介 10
2.3 ALD成長模式概述 13
2.3.1 Thermal ALD 14
2.3.2 Radical enhanced ALD 15
2.3.3 Direct plasma ALD 16
2.3.4 Remote plasma ALD 17
第三章 原子層沉積系統之材料測試及分析 18
3.1 Thermal ALD之材料參數設定 19
3.2 PE-ALD之機台測試及材料參數設定 21
3.3 PE-ALD之材料測試及分析 26
3.3.1 氧化物材料測試與分析 27
3.3.2 氮化物材料測試與分析 38
第四章 原子層沉積系統之發光二極體 43
4.1 原子層沉積系統之發光二極體設計概念 44
4.2 原子層沉積系統之發光二極體元件製作 46
4.3 原子層沉積系統之發光二極體量測架構 53
4.3.1 奈秒級脈衝光譜量測系統 54
4.3.2 電流電壓量測系統 56
4.4 Thermal ALD之多重結構發光二極體特性分析 57
4.4.1 Thermal ALD之多重結構發光二極體電性分析 58
4.4.2 Thermal ALD之多重結構發光二極體光性分析 61
4.4.3 Thermal ALD之多重結構發光二極體特性討論 66
4.5 PE-ALD之發光二極體特性分析 68
4.5.1 PE-ALD之發光二極體電性分析 69
4.5.2 PE-ALD之發光二極體光性分析 71
4.5.3 Thermal ALD與PE-ALD之發光二極體特性比較 74
第五章 結論與展望 78
參考文獻 80


http://zh.wikiquote.org/wiki/Wikiquote 
http://www.millionbook.net/js/l/liqirong/adsz/005.htm 
工研院 IEK 整理(2013/01)
Electronic Weekly – LED technology – White LED
http://3fire.blogspot.tw/2008/06/led-led.html 
http://www.olympusmicro.com/primer/lightandcolor/ledsintro.html
LEDinside統計 
D. EzgFr, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S.Dog&;#728;an, V. Avrutin, S.-J. Cho, H. MorkoA, J. Appl. Phys. 2005,98, 041301.
A. B. Djurisˇic’, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K.W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, C.Surya, Adv. Funct. Mater. 2004, 14, 856.
R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
Solid State Technology, March 1, 2007
J. Aarik, A. Aidla, K. Kukli, and T. Uustare, J. Cryst. Growth 144, 116 (1994).
H. Kim, A. J. Kellock, and S. M. Rossnagel, J. Appl. Phys. 92, 7080 (2002).
Y. J. Lee and S. W. Kang, J. Vac. Sci. Technol. A 20, 1983 (2002).
S. M. Rossnagel, A. Sherman, and F. Turner, J. Vac. Sci. Technol. B 18, 2016
(2000).
Plasma-assisted atomic layer deposition of metal oxides and nitrides / by Stephan Bastiaan Simon Heil. – Eindhoven : Technische Universiteit Eindhoven, 2007. - Proefschrift.
Cambridge Nanotech, http://www.cambridgenanotech.com/
ASM, http://www.asm.com
http://www.picosun.com/en/products/picobatch8482+ald+system/
Plasma-assisted atomic layer deposition of metal oxides and nitrides / by Stephan
Bastiaan Simon Heil. – Eindhoven : Technische Universiteit Eindhoven, 2007. -
Proefschrift.
Plasma-assisted atomic layer deposition of metal oxides and nitrides / by Stephan
Bastiaan Simon Heil. – Eindhoven : Technische Universiteit Eindhoven, 2007. –
Proefschrift.
Plasma-assisted atomic layer deposition of metal oxides and nitrides / by Stephan
Bastiaan Simon Heil. – Eindhoven : Technische Universiteit Eindhoven, 2007. –
Proefschrift.
Oxford Instruments, http://www.oxford-instruments.com
http://www.picosun.com/en/products/picoplasma8482+source+system/
Plasma-assisted atomic layer deposition of metal oxides and nitrides / by Stephan
Bastiaan Simon Heil. – Eindhoven : Technische Universiteit Eindhoven, 2007. –
Proefschrift.
Journal of Applied Physics 113, 021301 (2013); doi: 10.1063/1.4757907” Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends”
Fiji Thermal and Plasma Atomic Layer Deposition System (ALD) By Ultratech (Cambridge)
“XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods” R. Al-Gaashani, S.Radiman, A.R.Daud, N.Tabet, Y.Al-Douri. Ceramics International 39 (2013) 2283–2292
“Atomic Layer Deposition of HfO2 Thin Films on Ultrathin SiO2 Formed by Remote Plasma Oxidation” Journal of the Korean Physical Society, Vol. 52, No. 4, April 2008, pp. 1103_1108
“Characteristics of Al2O3 Thin Films Deposited Using Dimethylaluminum Isopropoxide and Trimethylaluminum Precursors by the Plasma-Enhanced Atomic-Layer Deposition Method” Journal of the Korean Physical Society, Vol. 48, No. 1, January 2006, pp. 131_136
John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben, "Handbook of X-ray photoelectron spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data", Physical Electronics, 1995.
“Structural and Electrical Characterization of GaN Thin Films on Si(100)”  
American Journal of Analytical Chemistry, 2011, 2, 984-988
“XPS analysis of aluminum nitride films deposited by plasma sourcemolecular beam
epitaxy” (www.interscience.com) DOI 10.1002/sia.2874
Donald A. Neamen, "Semiconductor Physics &; Devices", The McGraw-Hill Companies, Inc. United States of America, 1997.
S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr., M. R. Davolos, Internet Symp. Food Allergens Intern. J. Inorg. Mat. 2001, 3, 749.
P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, H. B. Pan, Nucl. Instrum. Methods Phys. Res. B 2003, 199, 286.
B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 2001, 79, 943.
“Optical Properties of ZnO Nanostructures” Aleksandra B. Djurisˇic’* and Yu Hang Leung. small 2006, 2, No. 8-9, 944 – 961
A. B. Djurisˇic’, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K.W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui, C.Surya, Adv. Funct. Mater. 2004, 14, 856.
X. Liu, X. Wu, H. Cao, R. P. H. Chang, J. Appl. Phys. 2004, 95,3141.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔