跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾羽龍
研究生(外文):Yu-Lung Tseng
論文名稱:利用琉球隱沒帶導波求取隱沒板塊非均向性
論文名稱(外文):Subducting slab anisotropy inferred from guided wave events in Ryukyu subduction zone
指導教授:胡植慶胡植慶引用關係陳卉瑄陳卉瑄引用關係
指導教授(外文):Jyr-Ching HuHui-Hsuan Chen
口試委員:洪淑蕙郭本垣梁文宗
口試委員(外文):Shu-Huei HungBan-Yuan KuoWen-Tzong Liang
口試日期:2014-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:186
中文關鍵詞:隱沒帶導波高頻地震波剪力波分離板塊非均向性
外文關鍵詞:Subduction zoneGuided waveHigh frequency seismic waveShear wave splittingSubducting slab anisotropy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:488
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在隱沒帶系統中,隱沒板塊本身的非均向性構造特性一直受到爭論。過去利用剪力波分離現象來測量隱沒帶非均向性的研究中,皆難以有效分離出板塊本身非均向性的大小及方向,而近年來發展的技術,例如P波層析成像技術及接收函數分析法,則進一步指出板塊本身存在一定程度之非均向性,然而確切大小卻不易解析。
本研究欲尋找沿板塊內部傳播的隱沒帶導波事件,利用剪力波分離特徵來有效測量隱沒板塊本身之非均向性。當地震波傳遞經過隱沒帶時,會產生複雜的波傳特性。震波沿著隱沒板塊傳遞一段長距離後,其波形具有短暫低頻P波初達訊號,且其後緊隨持續時間長的高頻訊號。此種具有高頻振幅放大的隱沒帶導波可用來解釋地表異常強地動行為,並且是理解隱沒板塊物理特性的重要依據。本研究嘗試利用隱沒帶導波之特性來約制地震事件到達測站的路徑關係,並進一步利用具有導波效應之測站及地震事件進行剪力波分離之觀測。我們搜尋台灣兩隱沒帶之地震事件,經由分析其波形特徵(頻譜及時頻分析)以及異常之地表強地動分布,系統性探討台灣兩隱沒帶(琉球隱沒帶及馬尼拉隱沒帶)之導波效應。本研究發現台灣東北的琉球隱沒帶系統,其導波特性(造成高頻振幅放大的程度)較為明顯,故使用琉球隱沒帶導波事件求取隱沒板塊非均向性。
利用ML>5的30個有明顯導波效應的琉球隱沒帶導波事件,我們進一步利用質點運動分析法及波形交對比法來進行剪力波分離參數(有明顯導波之測量。有效之剪力波分離測量結果顯示,整體分離時間差約在0.06-0.68 s,其方向性特徵可分為三群,最北部為琉球地幔楔之非均向性,以東-西向及西北-東南向為主,而往南靠近具有導波測站則呈現兩種型態之方向性,除了與前人研究(平行台灣造山帶方向,為南-北向與北偏東向)一致的S波極化方向外,亦有異常的S波極化方向為北北西向,其分離時間差為0.2-0.46 s,本研究推測其可能受到板塊本身之非均向性之影響,初估其大小略大於台灣北部地殼之非均向性(<1s),但小於台灣上部地幔之非均向性大小(0.3-1.3 s)。


Frozen-in anisotropic structure in the oceanic lithosphere and faulting/hydration in the upper layer of the slab are expected to play an important role in anisotropic signature of the subducted slab. Over the past several decades, despite the advances in the knowledge of crustal and upper mantle anisotropy, the character of the subducting slab anisotropy remain poorly understood. In this study, we investigate the slab anisotropy using subduction zone guided waves characterized by long path length in the slab. In the southernmost Ryukyu subduction zone, seismic waves from events deeper than 100 km offshore northern Taiwan reveal wave guide behaviors: (1) low-frequency (<1 Hz) first arrival recognized on vertical and radial components but not transverse component, and (2) large, sustained high-frequency (3-10 Hz) signal in P and S wave trains. The depth dependent high-frequency content (3-10Hz) confirms the association with a waveguide effect in the subducting slab rather than localized site amplification effects. Using the selected subduction zone guided wave events, we further analyzed the shear wave splitting for intermediate-depth earthquakes in different frequency bands, to provide the statistically meaningful shear wave splitting parameters. We determine shear wave splitting parameters from the 30 PSP guided events that are deeper than 100 km with ray path traveling along the subducted slab. From shear wave splitting analysis, our results show the total range of delay time of 0.06–0.68 sec. From the difference of polarization patterns of fast direction, we find out three groups which included the northern Taiwan mantle wedge effect and the parallel Taiwan orogeny anisotropy and the possible slab anisotropy. The slab and crust effects reveal consistent polarization pattern of fast directions of North North-West and delay time of 0.2-0.46 sec. This implies that slab anisotropy is stronger than the crust effect (<0.1 s) but weaker than the upper mantle effect (0.3-1.3 s) in Taiwan.

口試委員會審定書 I
誌謝 II
中文摘要 IV
ABSTRACT VI
目錄 VIII
圖目錄 XI
表目錄 XIV
附錄目錄 XV
第一章 緒論 1
1.1 研究動機及目的 1
1.2 隱沒帶的非均向性特性 3
1.2.1物理特性 4
1.2.2觀測手段 8
1.2.3觀測結果 9
1.3 隱沒帶板塊非均質特性 12
1.4 台灣隱沒帶系統的隱沒板塊特性 19
1.5.1 琉球-台灣隱沒帶 19
1.5.2 馬尼拉-台灣隱沒帶 23
第二章 台灣隱沒帶導波之判識 25
2.1 波形特徵及頻率特徵 30
2.2 導波特徵之深度分布 30
2.3 異常強地動之分布 35
2.4 量化隱沒帶導波 38
2.4.1 移動時窗頻譜分析法 38
2.4.2 平均頻率放大效應 41
2.5 台灣隱沒帶導波特性歸納 43
第三章 研究方法 45
3.1 研究區域及地震資料 45
3.2 資料篩選準則 46
3.3 資料處理 47
3.4 剪力波分離之測量 48
3.4.1 質點運動分析 49
3.4.2 波形交相關對比法 50
3.4.3 信心區間之估計 52
第四章 研究結果 53
4.1 剪力波分離結果之判識準則 53
4.2 剪力波分離的觀測結果 53
4.3 快波方向之特性 58
4.4 快慢波分離時間差之特性 60
第五章 結果分析與討論 62
5.1 剪力波分離解之非均向性探討 62
5.2 隱沒帶板塊非均向性探討 64
5.3 隱沒帶導波與資料篩選探討 64
5.4 隱沒板塊之非均向性探討 65
5.5 隱沒帶導波與板塊非均向性之機制探討 67
第六章 結論 68
參考文獻 70
附錄一 琉球隱沒帶之導波事件 82
附錄二 琉球隱沒帶ML>5導波事件之剪力波分離結果 91
附錄三 琉球隱沒帶4<ML<5導波事件之剪力波分離結果 123



Abers, G. A. (2000), Hydrated subducted crust at 100-250 km depth, Earth Planet Sc Lett, 176(3-4), 323-330.
Abers, G. A., and G. Sarker (1996), Dispersion of regional body waves at 100-150 km depth beneath Alaska: In situ constraints on metamorphism of subducted crust, Geophys Res Lett, 23(10), 1171-1174.
Abers, G. A., T. Plank, and B. R. Hacker (2003), The wet Nicaraguan slab, Geophys Res Lett, 30(2).
Abt, D. L., K. M. Fischer, G. A. Abers, W. Strauch, J. M. Protti, and V. Gonzalez (2009), Shear wave anisotropy beneath Nicaragua and Costa Rica Implications for flow in the mantle wedge, Geochemistry, Geophysics, Geosystems Volume 10, Issue 5, Geochemistry, Geophysics, Geosystems, 10(5), n/a.
Abt, D. L., K. M. Fischer, G. A. Abers, M. Protti, V. Gonzalez, and W. Strauch (2010), Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting, J Geophys Res-Sol Ea, 115.
Anderson, D. L., B. Minster, and D. Cole (1974), The effect of oriented cracks on seismic velocities Journal of Geophysical Research Volume 79, Issue 26, J Geophys Res, 79(26), 4011-4015.
Ando, M., Y. Ishikawa, and F. Yamazaki (1983), Shear-Wave Polarization Anisotropy in the Upper Mantle beneath Honshu, Japan, J Geophys Res, 88(Nb7), 5850-5864.
Ansell, J. H., and D. Gubbins (1986), Anomalous High-Frequency Wave-Propagation from the Tonga Kermadec Seismic Zone to New-Zealand, Geophysical Journal of the Royal Astronomical Society, 85(1), 93-106.
Aster, R. C., P. M. Shearer, and J. Berger (1990), Quantitative Measurements of Shear-Wave Polarizations at the Anza Seismic Network, Southern California - Implications for Shear-Wave Splitting and Earthquake Prediction, J Geophys Res-Solid, 95(B8), 12449-12473.
Audet, P. (2013), Seismic anisotropy of subducting oceanic uppermost mantle from fossil spreading, Geophys Res Lett, 40(1), 173-177.
Baccheschi, P., L. Margheriti, and M. S. Steckler (2007), Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy), Geophys Res Lett, 34(5).
Barazang.M, B. Isacks, and J. Oliver (1972), Propagation of Seismic Waves through and beneath Lithosphere That Descends under Tonga-Island Arc, J Geophys Res, 77(5), 952-&;.
Ben Ismail, W., and D. Mainprice (1998), An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy, Tectonophysics, 296(1-2), 145-157.
Billen, M. I. (2008), Modeling the dynamics of subducting slabs, Annu Rev Earth Pl Sc, 36, 325-356.
Booth, D. C., S. Crampin, J. H. Lovell, and J. M. Chiu (1990), Temporal Changes in Shear-Wave Splitting during an Earthquake Swarm in Arkansas, J Geophys Res-Solid, 95(B7), 11151-11164.
Bowin, C., R. S. Lu, L. Chaoshing, and H. Schouten (1978), Plate Convergence and Accretion in Taiwan-Luzon Region, Aapg Bull, 62(9), 1645-1672.
Bowman, J. R., and M. Ando (1987), Shear-Wave Splitting in the Upper-Mantle Wedge above the Tonga Subduction Zone, Geophysical Journal of the Royal Astronomical Society, 88(1), 25-41.
Brocher, T. M., and N. I. Christensen (1990), Seismic Anisotropy Due to Preferred Mineral Orientation Observed in Shallow Crustal Rocks in Southern Alaska, Geology, 18(8), 737-740.
Chen, K. H., B. L. N. Kennett, and T. Furumura (2013), High-frequency waves guided by the subducted plates underneath Taiwan and their association with seismic intensity anomalies, J Geophys Res-Sol Ea, 118(2), 665-680.
Chiu, J. M., B. L. Isacks, and R. K. Cardwell (1985), Propagation of High-Frequency Seismic-Waves inside the Subducted Lithosphere from Intermediate-Depth Earthquakes Recorded in the Vanuatu Arc, J Geophys Res-Solid, 90(B14), 2741-2754.
Christensen, D. H., and G. A. Abers (2010), Seismic anisotropy under central Alaska from SKS splitting observations, J Geophys Res-Sol Ea, 115.
Christensen, N. I. (1984), The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites Geophysical Journal of the Royal Astronomical Society Volume 76, Issue 1, Geophysical Journal of the Royal Astronomical Society, 76(1), 89-111.
Crampin, S. (1977a), Seismic-Wave Propagation in Anisotropic Media - Observations, Geophysical Journal of the Royal Astronomical Society, 49(1), 303-303.
Crampin, S. (1977b), Seismic-Wave Propagation in Anisotropic Media .1. Computations, Geophysical Journal of the Royal Astronomical Society, 49(1), 303-303.
Crampin, S. (1977c), Seismic-Wave Propagation in Anisotropic Media .3. Importance for Lithospheric Studies, Geophysical Journal of the Royal Astronomical Society, 49(1), 293-293.
Crampin, S. (1977d), Seismic Anisotropy - Summary, J Geophys-Z Geophys, 43(1-2), 499-501.
Crampin, S. (1977e), Palaeo-Anisotropy in Upper Mantle, Nature, 270(5633), 162-163.
Crampin, S. (1977f), Review of Effects of Anisotropic Layering on Propagation of Seismic-Waves, Geophysical Journal of the Royal Astronomical Society, 49(1), 9-27.
Crampin, S. (1978), Seismic-Wave Propagation through a Cracked Solid - Polarization as a Possible Dilatancy Diagnostic, Geophysical Journal of the Royal Astronomical Society, 53(3), 467-496.
Crampin, S. (1985), Evaluation of Anisotropy by Shear-Wave Splitting, Geophysics, 50(1), 142-152.
Crampin, S., and S. Peacock (2005), A review of shear-wave splitting in the compliant crack-critical anisotropic Earth, Wave Motion, 41(1), 59-77.
Essen, K., M. Braatz, L. Ceranna, W. Friederich, and T. Meier (2009), Numerical modelling of seismic wave propagation along the plate contact of the Hellenic Subduction Zone-the influence of a deep subduction channel, Geophys J Int, 179(3), 1737-1756.
Faccenda, M., L. Burlini, T. V. Gerya, and D. Mainprice (2008), Fault-induced seismic anisotropy by hydration in subducting oceanic plates, Nature, 455(7216), 1097-U1098.
Fischer, K. M., and D. A. Wiens (1996), The depth distribution of mantle anisotropy beneath the Tonga subduction zone, Earth Planet Sc Lett, 142(1-2), 253-260.
Forsyth, D. W. (1975), The Early Structural Evolution and Anisotropy of the Oceanic Upper Mantle Geophysical Journal of the Royal Astronomical Society Volume 43, Issue 1, Geophysical Journal of the Royal Astronomical Society, 43(1), 103-162.
Fouch, M. J., and K. M. Fischer (1998), Shear wave anisotropy in the Mariana Subduction Zone Geophysical Research Letters Volume 25, Issue 8, Geophys Res Lett, 25(8), 1221-1224.
Fukao, Y., S. Hori, and M. Ukawa (1983), A Seismological Constraint on the Depth of Basalt Eclogite Transition in a Subducting Oceanic-Crust, Nature, 303(5916), 413-415.
Furumura, T., and B. L. N. Kennett (2005), Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan, J Geophys Res-Sol Ea, 110(B10).
Furumura, T., and B. L. N. Kennett (2008), A Scattering Waveguide in the Heterogeneous Subducting Plate, Adv Geophys, 50, 195-217.
Garnero, E. J., and T. Lay (2003), D '' shear velocity heterogeneity, anisotropy and discontinuity structure beneath the Caribbean and Central America, Physics of the Earth and Planetary Interiors, 140(1-3), 219-242.
Gledhill, K., and G. Stuart (1996), Seismic anisotropy in the fore-arc region of the Hikurangi subduction zone, New Zealand, Physics of the Earth and Planetary Interiors, 95(3-4), 211-225.
Gubbins, D., and R. Snieder (1991), Dispersion of P-Waves in Subducted Lithosphere - Evidence for an Eclogite Layer, J Geophys Res-Solid, 96(B4), 6321-6333.
Gubbins, D., A. Barnicoat, and J. Cann (1994), Seismological Constraints on the Gabbro-Eclogite Transition in Subducted Oceanic-Crust, Earth Planet Sc Lett, 122(1-2), 89-101.
Hanna, J., and M. D. Long (2012), SKS splitting beneath Alaska: Regional variability and implications for subduction processes at a slab edge, Tectonophysics, 530, 272-285.
Hayes, D. E., and S. D. Lewis (1984), A Geophysical-Study of the Manila Trench, Luzon, Philippines .1. Crustal Structure, Gravity, and Regional Tectonic Evolution, J Geophys Res, 89(Nb11), 9171-9195.
Healy, D., S. M. Reddy, N. E. Timms, E. M. Gray, and A. V. Brovarone (2009), Trench-parallel fast axes of seismic anisotropy due to fluid-filled cracks in subducting slabs, Earth Planet Sc Lett, 283(1-4), 75-86.
Hori, S. (1990), Seismic-Waves Guided by Untransformed Oceanic-Crust Subducting into the Mantle - the Case of the Kanto District, Central Japan, Tectonophysics, 176(3-4), 355-376.
Hori, S., H. Inoue, Y. Fukao, and M. Ukawa (1985), Seismic Detection of the Untransformed Basaltic Oceanic-Crust Subducting into the Mantle, Geophysical Journal of the Royal Astronomical Society, 83(1), 169-197.
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., and Hsieh, H. H. (2014), Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny, Earth Planet Sc Lett, 392, 177-191
Hung, S. H., and D. W. Forsyth (1999), Anisotropy in the oceanic lithosphere from the study of local intraplate earthquakes on the west flank of the southern East Pacific Rise: Shear wave splitting and waveform modeling, J Geophys Res-Sol Ea, 104(B5), 10695-10717.
Huppert, L. N., and C. Frohlich (1981), The P-Velocity within the Tonga Benioff Zone Determined from Traced Rays and Observations, J Geophys Res, 86(Nb5), 3771-3782.
Isacks, B. L., and Barazang.M (1973), High-Frequency Shear Waves Guided by a Continuous Lithosphere Descending beneath Western South-America, Geophysical Journal of the Royal Astronomical Society, 33(2), 129-139.
Jung, H., and S. Karato (2001), Water-induced fabric transitions in olivine, Science, 293(5534), 1460-1463.
Kaneshima, S., H. Ito, and M. Sugihara (1989), Shear-Wave Polarization Anisotropy Observed in a Rift-Zone in Japan, Tectonophysics, 157(4), 281-300.
Kao, H., G. C. Huang, and C. S. Liu (2000), Transition from oblique subduction to collision in the northern Luzon arc - Taiwan region: Constraints from bathymetry and seismic observations, J Geophys Res-Sol Ea, 105(B2), 3059-3079.
Kennett, B. L. N., and E. R. Engdahl (1991), Traveltimes for Global Earthquake Location and Phase Identification, Geophys J Int, 105(2), 429-465.
Kennett, B. L. N., and T. Furumura (2008), Stochastic waveguide in the lithosphere: Indonesian subduction zone to Australian craton, Geophys J Int, 172(1), 363-382.
Konstantinou, K. I., and N. S. Melis (2008), High-frequency shear-wave propagation across the Hellenic subduction zone, B Seismol Soc Am, 98(2), 797-803.
Kumazawa, M., and O. L. Anderson (1969), Elastic Moduli, Pressure Derivatives, and Temperature Derivatives of Single-Crystal Olivine and Single-Crystal Forsterite, J Geophys Res, 74(25), 5961-&;.
Kuo-Chen, H., F. T. Wu, D. Okaya, B.-S. Huang, and W.-T. Liang (2009), SKS/SKKS splitting and Taiwan orogeny Geophysical Research Letters Volume 36, Issue 12, Geophys Res Lett, 36(12).
Kuo, B. Y., C. C. Chen, and T. C. Shin (1994), Split-S Wave-Forms Observed in Northern Taiwan - Implications for Crustal Anisotropy, Geophys Res Lett, 21(14), 1491-1494.
Kuo, B. Y., C. C. Wang, S. C. Lin, C. R. Lin, P. C. Chen, J. P. Jang, and H. K. Chang (2012), Shear-wave splitting at the edge of the Ryukyu subduction zone, Earth Planet Sc Lett, 355, 262-270.
Lallemand, S., Y. Font, H. Bijwaard, and H. Kao (2001), New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications, Tectonophysics, 335(3-4), 229-253.
Levin, V., W. Menke, and J. Park (1999), Shear wave splitting in the Appalachians and the Urals: A case for multilayered anisotropy, J Geophys Res-Sol Ea, 104(B8), 17975-17993.
Long, M. D., and R. D. van der Hilst (2005), Estimating shear-wave splitting parameters from broadband recordings in Japan: A comparison of three methods, B Seismol Soc Am, 95(4), 1346-1358.
Long, M. D., and P. G. Silver (2009), Mantle flow in subduction systems: The subslab flow field and implications for mantle dynamics, J Geophys Res-Sol Ea, 114.
Marson-Pidgeon, K., and M. K. Savage (1997), Frequency-dependent anisotropy in Wellington, New Zealand, Geophys Res Lett, 24(24), 3297-3300.
Martin, S., and A. Rietbrock (2006), Guided waves at subduction zones: dependencies on slab geometry, receiver locations and earthquake sources, Geophys J Int, 167(2), 693-704.
Martin, S., A. Rietbrock, C. Haberland, and G. Asch (2003), Guided waves propagating in subducted oceanic crust, J Geophys Res-Sol Ea, 108(B11).
Montagner, J. P., and B. L. N. Kennett (1996), How to reconcile body-wave and normal-mode reference earth models Geophysical Journal International Volume 125, Issue 1, Geophys J Int, 125(1), 229-248.
Nishimura, C. E., and D. W. Forsyth (1989), The Anisotropic Structure of the Upper Mantle in the Pacific, Geophysical Journal-Oxford, 96(2), 203-229.
Oda, H., and H. Shimizu (1997), S wave splitting observed in southwest Japan, Tectonophysics, 270(1-2), 73-82.
Oda, H., T. Tanaka, and K. Seya (1990), Subducting Oceanic-Crust on the Philippine Sea Plate in Southwest Japan, Tectonophysics, 172(1-2), 175-189.
Ohkura, T. (2000), Structure of the upper part of the Philippine Sea plate estimated by later phases of upper mantle earthquakes in and around Shikoku, Japan, Tectonophysics, 321(1), 17-36.
Park, J., and V. Levin (2002), Geophyics - Seismic anisotropy: Tracing plate dynamics in the mantle, Science, 296(5567), 485-489.
Peacock, S., S. Crampin, D. C. Booth, and J. B. Fletcher (1988), Shear-Wave Splitting in the Anza Seismic Gap, Southern-California - Temporal Variations as Possible Precursors, J Geophys Res-Solid, 93(B4), 3339-3356.
Pozgay, S. H., D. A. Wiens, J. A. Conder, H. Shiobara, and H. Sugioka (2007), Complex mantle flow in the Mariana subduction system evidence from shear wave splitting, Geophysical Journal International Volume 170, Issue 1, Geophys J Int, 170(1), 371-386.
Rau, R. J., and F. T. Wu (1995), Tomographic Imaging of Lithospheric Structures under Taiwan, Earth Planet Sc Lett, 133(3-4), 517-532.
Rau, R. J., W. T. Liang, H. Kao, and B. S. Huang (2000), Shear wave anisotropy beneath the Taiwan orogen, Earth Planet Sc Lett, 177(3-4), 177-192.
Savage, M. K. (1999), Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev Geophys, 37(1), 65-106.
Seno, T., S. Stein, and A. E. Gripp (1993), A Model for the Motion of the Philippine Sea Plate Consistent with Nuvel-1 and Geological Data, J Geophys Res-Sol Ea, 98(B10), 17941-17948.
Shih, X. R., R. P. Meyer, and J. F. Schneider (1989), An Automated, Analytical Method to Determine Shear-Wave Splitting, Tectonophysics, 165(1-4), 271-278.
Shito, A., D. Suetsugu, T. Furumura, H. Sugioka, and A. Ito (2013), Small-scale heterogeneities in the oceanic lithosphere inferred from guided waves, Geophys Res Lett, 40(9), 1708-1712.
Silver, P. G., and W. W. Chan (1991), Shear-Wave Splitting and Subcontinental Mantle Deformation, J Geophys Res-Sol Ea, 96(B10), 16429-16454.
Smith, G. P., D. A. Wiens, K. M. Fischer, L. M. Dorman, S. C. Webb, and J. A. Hildebrand (2001), A complex pattern of mantle flow in the Lau backarc, Science, 292(5517), 713-716.
Snoke, J. A., I. S. Sacks, and H. Okada (1974), Empirical Models for Anomalous High-Frequency Arrivals from Deep-Focus Earthquakes in South-America, Geophysical Journal of the Royal Astronomical Society, 37(1), 133-&;.
Song, T. R. A., and Y. Kim (2012a), Anisotropic uppermost mantle in young subducted slab underplating Central Mexico, Nat Geosci, 5(1), 55-59.
Song, T. R. A., and Y. Kim (2012b), Localized seismic anisotropy associated with long-term slow-slip events beneath southern Mexico, Geophys Res Lett, 39.
Soto, G. L., J. F. Ni, S. P. Grand, E. Sandvol, R. W. Valenzuela, M. G. Speziale, J. M. G. Gonzalez, and T. D. Reyes (2009), Mantle flow in the Rivera-Cocos subduction zone, Geophys J Int, 179(2), 1004-1012.
Sugioka, H., Y. Fukao, and S. Sakai (1996), Anomalously early first arrivals to the J-Array from teleseismic events, J Phys Earth, 44(6), 687-699.
Sun, D., M. S. Miller, N. Piana Agostinetti, P. D. Asimow, and D. Li (2014), High frequency seismic waves and slab structures beneath Italy, Earth Planet Sc Lett, 391, 212-223.
Tian, Y., and D. Zhao (2012), Seismic anisotropy and heterogeneity in the Alaska subduction zone Geophysical Journal International Volume 190, Issue 1, Geophys J Int, 190(1), 629-649.
Tono, Y., Y. Fukao, T. Kunugi, and S. Tsuboi (2009), Seismic anisotropy of the Pacific slab and mantle wedge beneath the Japanese islands Journal of Geophysical Research: Solid Earth (1978?2012) Volume 114, Issue B7, Journal of Geophysical Research: Solid Earth (1978?2012), 114(B7), n/a.
Tsai, Y. B. (1986), Seismotectonics of Taiwan, Tectonophysics, 125(1-3), 17-&;.
vanderHilst, R., and R. Snieder (1996), High-frequency precursors to P wave arrivals in New Zealand: Implications for slab structure, J Geophys Res-Sol Ea, 101(B4), 8473-8488.
Wang, C. Y., and T. C. Shin (1998), Illustrating 100 years of Taiwan seismicity, Terr Atmos Ocean Sci, 9(4), 589-614.
Wang, J., and D. P. Zhao (2008), P-wave anisotropic tomography beneath Northeast Japan, Physics of the Earth and Planetary Interiors, 170(1-2), 115-133.
Wang, J., and D. Zhao (2012), P wave anisotropic tomography of the Nankai subduction zone in Southwest Japan Geochemistry, Geophysics, Geosystems Volume 13, Issue 5, Geochemistry, Geophysics, Geosystems, 13(5), n/a.
Wolfe, C. J., and P. G. Silver (1998), Seismic anisotropy of oceanic upper mantle Shear wave splitting methodologies and observations, Journal of Geophysical Research: Solid Earth (1978?2012) Volume 103, Issue B1, Journal of Geophysical Research: Solid Earth (1978?2012), 103(B1), 749-771.
Wu, Y. M., J. B. H. Shyu, C. H. Chang, L. Zhao, M. Nakamura, and S. K. Hsu (2009), Improved seismic tomography offshore northeastern Taiwan: implications for subduction and collision processes between Taiwan and the southernmost Ryukyu, Geophys J Int, 178(2), 1042-1054.
Yang, X. P., K. M. Fischer, and G. A. Abers (1995), Seismic Anisotropy beneath the Shumagin Islands Segment of the Aleutian-Alaska Subduction Zone, J Geophys Res-Sol Ea, 100(B9), 18165-18177.
Yu, S. B., H. Y. Chen, and L. C. Kuo (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274(1-3), 41-59.
Zhang, S. Q., and S. Karato (1995), Lattice Preferred Orientation of Olivine Aggregates Deformed in Simple Shear, Nature, 375(6534), 774-777.
陳燕玲,1995,台灣地區三維速度構造與隱沒構造之相關探討碩士論文,國立中央大學地球物理研究所,共72頁。
劉乃菁,1995,由三維速度影像討論台灣地區隱沒帶特性,碩士論文,國立中央大學地球物理所,共72頁。
鄧屬予,2002,板塊間看台灣地震。科技發展,頁1-57。中國地質學會,台北。
鄧屬予,2002,台灣新生代大地構造:二十世紀台灣地球科學之回顧,第一冊,
頁1-57。中國地質學會,台北。
蘇進財,2004,琉球隱沒帶西南端的剪力波非均向性,碩士論文,國立台灣大學地質科學研究所,共49頁。
王郁如,2004,台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型,碩士論文,國立中央大學地球物理所,共112頁。
何春蓀,2006,臺灣地質概論:臺灣地質圖說明書,經濟部中央地質調查
所,台北,144-147頁。
徐毅振,2006,台灣北部上地幔非均向性之探討,碩士論文,國立台灣大學海洋研究所,共75頁。
許峻瑋,2011,琉球隱沒帶西南端的剪力波非均向性及對地漫流場特性的意涵,碩士論文,國立台灣大學地質科學研究所,共80頁。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top