(54.236.58.220) 您好!臺灣時間:2021/03/08 08:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾衡之
研究生(外文):Heng-Chih Tseng
論文名稱:大屯火山群之地下三維模型及地熱發電潛能
論文名稱(外文):3D Geological Structure and Potentials of Geothermal Power in the Tatun Volcano Group
指導教授:宋聖榮宋聖榮引用關係
口試委員:楊燦堯胡興台顏維謀張竝瑜
口試日期:2014-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:103
中文關鍵詞:大屯火山群地熱能體積法熱流加強型地熱系統地下三維模型
外文關鍵詞:Tatun Volcano GroupGeothermal PotentialVolume MethodHeat FlowEnhanced Geothermal System3D Subsurface Model
相關次數:
  • 被引用被引用:1
  • 點閱點閱:618
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究蒐集大屯火山群 40 餘年來的地熱探勘資料,包含電阻探勘、磁力探勘、重力資料、地化資料及鑽井等,作為評估地熱發電潛能的基礎。首先利用鑽井建構出新北投至金山沖積平原一帶之地下地質和溫度3D模型,觀察136 ℃ 等溫面顯示熱液以七星山–大油坑間為中心呈雙峰型態,推測該位置為熱源所在,其與高磁基盤、大地電磁等地球物理研究結果一致。地下溫度的分布除受熱源位置影響外,亦與本區儲集層–五指山層的基盤深度、局部裂隙發育密切相關。根據所建構地下地質3D模型中可以發現熱源中心的基盤下陷過深,且上覆安山岩層裂隙發育不發達,使得熱液傾向於往東西兩側傳輸,與地球化學分析研究指出大油坑有較高氦同位素值相符。等溫面在四磺坪東側一帶遽降,根據地電阻與空中磁測結果,研判該處存在一低滲透性的障蔽,後續鑽探應避開此障蔽所在處。
單井情境分析選擇靠近熱源所在的E208號井及遠離熱源的E103號井,前者適用閃發式機組、後者適用閃發式或雙循環式機組。結果顯示E208號井利用單閃發式、雙閃發式發電容量可高達1,200 kW、1,400 kW;E103號井因熱液溫度較低,僅為270 kW、440 kW。不過運用雙循環式機組不僅效率更佳,配合井下幫浦亦能大幅提升流量,使得發電容量可大幅提升至3,400 kW。由於E103所在位置儲集層深度甚淺即可鑽達,未來開發應審慎考慮硫磺谷、金山沖積平原等類似地點。
整體區域潛能評估分為傳統熱液型發電、加強型地熱系統兩個類別。前者定義為利用3 km深以內的高滲透性、具足夠流體的岩層發電,利用美國地質調查所及GeothermEX Inc.等地熱公司採用的體積法做估計,並配合蒙地卡羅模擬去計算發電潛能的機率分布。如以30年為營運期,結果顯示大屯火山群之平均發電潛能為425 MW;而應用地表熱散失值與發電潛能的對比關係計算保守下限則為329 MW。最後EGS(加強型地熱系統)的部分,開採深度限制為6 km,利用麻省理工學院的建議參數值及溫度推算模型,並考量EGS技術仍在發展階段,熱攫取比例設5%,則可再額外提供1.2 GW的裝置容量。


誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
第一節 動機與目的 1
第二節 前人相關研究 1
1.2.1 地下地質與構造模式 1
1.2.2 地熱潛能 2
第三節 內容簡介 4
第二章 區域概況 5
第一節 大地構造及地質概況 5
2.1.1 台灣北部構造框架 5
2.1.2 台灣北部區域地質 6
第二節 大屯火山群的演變 12
2.2.1 噴發歷史與機制 12
2.2.2 火山地質 13
第三節 其他相關文獻 17
2.3.1 地球物理探勘 17
2.3.2 地球化學探勘 18
第三章 研究原理與方法 23
第一節 體積法 23
3.1.1 孔隙率與體積比熱 24
3.1.2 儲集層面積與厚度 25
3.1.3 平均溫度 26
3.1.4 熱攫取因子(Recovery factor) 27
3.1.5 效率計算與固定參數 31
3.1.6 蒙地卡羅模擬 32
第二節 熱流法 36
第三節 深層地熱系統 39
第四節 閃發式系統 43
第五節 雙循環系統 49
3.5.1 機組設定與熱力學分析 49
3.5.2 井下幫浦及儲集層模擬 51
第四章 資料來源及處理 58
第一節 鑽井資料 58
4.1.1 岩性與溫度 58
4.1.2 溫泉分布與水化學 60
第二節 其他資料 61
第三節 流體熱力學特性 63
第五章 結果分析與討論 65
第一節 地下三維模型 65
第二節 單井情境分析 75
第三節 區域潛能評估 87
5.3.1 體積法 87
5.3.2 熱流法 88
5.3.3 深層地熱 88
第六章 結論 94
附錄一 最大可用能推導 95
附錄二 其餘等溫面形貌 96
REFERENCE 98


工研院礦研所, 1977, 臺灣地熱資源探勘工作報告之二, 工研院礦業研究所, 報告163號, 共150頁。
何春蓀, 1982, 臺灣地體構造的演變─臺灣地體構造圖說明書, 經濟部中央地質調查所。
何春蓀, 1983, 臺灣基隆沿海區至桃園縣大溪間煤田地質及構造, 經濟部中央地質調查所彙刊, 2: 17-70。
何春蓀, 1986, 臺灣地質概論─臺灣地質圖說明書(增訂第二版), 經濟部中央地質調查所。
朱健仁, 1993, 新莊(金山)斷層沿線的古應力分析, 國立台灣大學地質研究所碩士論文, 共52頁。
李淑芬, 1996, 大屯火山群七星山亞群熔岩層序之研究, 國立台灣大學地質研究所碩士論文, 共136頁。
李京霖, 2006, 陽明山馬槽地區溫泉資源調查分析之研究, 國立成功大學資源工程研究所碩士論文, 共106頁。
李寄嵎、楊燦堯, 2007, 大屯火山群七星山地區的火山氣體連續觀測計畫, 內政部營建署陽明山公園管理處委託研究報告。
林建緯, 2001, 大屯火山群地熱氣與溫泉水之地化特性, 國立中央大學應用地質研究所碩士論文, 共91頁。
林俊全, 2003, 陽明山國家公園火山地形模型之展示研究, 內政部營建署陽明山國家公園管理處委託計畫。
林正洪, 2007, 大屯火山群潛在岩漿庫及微震觀測網長期監測計畫(五), 內政部營建署陽明山公園管理處委託研究報告。
林正洪、楊燦堯、陳洲生、江協堂, 2009, 大屯火山群環境監測計畫, 陽明山國家公園管理處委託調查報告。
林正洪、楊燦堯、陳洲生、江協堂, 2011, 陽明山國家公園大屯火山群監測工作, 陽明山國家公園管理處委託調查報告。
孫若琥, 1985, 臺北市馬槽地熱區馬槽二號地熱井井下地質報告, 中油內部報告。
馬國鳳, 1994, 臺灣地區三維速度與地構造關係, 地質, 14(2): 53-68。
黃鑑水, 1988, 五萬分之一台灣地質圖及說明書-台北幅, 經濟部中央地質調查所, 共46頁。
黃鑑水、李錦發、劉桓吉, 1990, 台灣北部金山斷層之地質調查與探勘研究, 國科會防災科技研究報告, 79-44號,14頁。
陳正宏, 1990, 台灣的火成岩, 經濟部中央地質地質調查所, 共137 頁。
陳洲生, 2008, 大屯火山群地底岩漿庫之調查與監測—大地電磁法之觀測調查, 陽明山國家公園管理處委託調查報告。
陳洲生, 2009,大屯火山群潛在岩漿庫研究—大地電磁法探查之初步結果, 國家公園學報,19(2)。
莊文星、陳汝勤, 1989, 台灣北部火山岩之定年與地球化學研究, 經濟部中央地質調查所彙刊, 5: 125-166。
曹恕中, 1994, 大屯火山群火山岩的鉀氬年代分析, 經濟部中央地質調查所彙刊, 7: 137-154。
張議仁, 2004, 大屯火山區三維Vp、VpVs及Qp構造反演, 國立中正大學地震研究所碩士論文, 共73頁。
葉義雄、陳光榮、顏宏元, 1989, 金山斷層之調查研究—重力與微震觀測, 國科會防災科技研究報告, 77-57號。
葉義雄、陳光榮, 1990, 崁腳斷層之調查研究─微震觀測, 國科會防災科技研究報告, 78-56號。
經濟部聯礦所, 1969, 大屯火山群地熱探勘工作報告之一, 經濟部聯合礦業研究所,報告90號, 共63頁。
經濟部聯礦所, 1970, 大屯火山群地熱探勘工作報告之二, 經濟部聯合礦業研究所,報告102號, 共86頁。
經濟部聯礦所, 1971, 大屯火山群地熱探勘工作報告之三, 經濟部聯合礦業研究所,報告111號, 共48頁。
經濟部聯礦所, 1973, 大屯火山群地熱探勘工作報告之四, 經濟部聯合礦業研究所,報告126號, 共78頁。
經濟部水利署, 2000, 台灣溫泉水資源之調查與開發利用(1/4), 共152頁。
楊潔豪、呂崇嘉、陳洲生、陳文山、曾鴻文, 1990, 地電法研究金山至迴龍之斷層特性, 國科會防災科技研究報告, 79-30號。
楊潔豪、陳平護、陳洲生, 1989, 併合暫態法與電阻法探查金山斷層之研究, 國科會防災科技研究報告, 77-64號。
楊燦堯, 1999, 陽明山國家公園大屯火山群之氦氣及其同位素地球化學之研究, 內政部營建署陽明山國家公園管理處委託計畫。
楊燦堯, 2001, 陽明山國家公園火山噴氣來源之探討, 內政部營建署陽明山國家公園管理處委託計畫。
楊燦堯, 2002, 大屯山群火山氣體監測調查研究, 內政部營建署陽明山國家公園管理處委託計畫。
楊燦堯、何孝恆、謝佩珊、劉念宗、陳于高、陳正宏, 2003, 大屯火山群火山氣體成份與來源之探討, 國家公園學報, 13(1): 127-156。
楊燦堯, 2008, 大屯火山群地底岩漿庫之調查與監測—土壤氣體之觀測調查, 內政部營建署陽明山國家公園管理處委託研究報告。
楊雅馨, 2002, 大屯火山群之三維速度構造, 國立中央大學地球物理研究所碩士論文, 共127頁。
鄧屬予、李錫堤、劉平妹、宋聖榮、曹恕中、劉桓吉、彭志雄, 2004, 臺北堰塞湖考證, 地理學報, 36: 77-100。
鄧屬予, 2006, 台北盆地之地質研究, 西太平洋地質科學, 6: 1-28。
鄧屬予, 2007, 台灣第四紀大地構造, 經濟部中央地質調查所特刊, 18: 1-24
謝泰祺, 1990, 大屯火山區地球物理與地下地質之探討, 國立中央大學地球物理研究所碩士論文, 共101頁。
魏正岳, 1995 , 大屯火山溫泉地區之土壤地球化學, 國立台灣大學地質研究所碩士論文, 共87頁。
Banwell, C., 1961, Geothermal drillholes-physical investigations: Proc. UN Conf. New Sources of Energy, Rome.
Banwell, C., 1963, Thermal energy from the Earth''s crust: Introduction and part 1: New Zealand Journal of Geology and Geophysics, v. 6, p. 52-69.
Blackwell, D., P. Negraru, and M. Richards, 2006, Assessment of the Enhanced Geothermal System Resource Base of the United States: Natural Resources Research, v. 15, p. 283-308.
Bodvarsson, G. S., and C. F. Tsang, 1982, Injection and thermal breakthrough in fractured geothermal reservoirs: Journal of Geophysical Research: Solid Earth (1978–2012), v. 87, p. 1031-1048.
Brondial, Y. P., 2005, Commercialization of Acidic Geothermal Wells by pH Buffering: As. J. Energy Env., v. 6(03), p. 175-185.
Cataldi, R., A. Lazzarotto, P. Muffler, P. Squarci, and G. Stefani, 1978, Assessment of geothermal potential of central and southern Tuscany: Geothermics, v. 7, p. 91-131.
Chang, C., H. Ramey Jr, H. Ramey Jr, and P. Kruger, 1979, Well interference test in the Chingshui geothermal field.
Chen, C.-Y., and S. K. Sanyal, 2006, POWER GENERATION POTENTIAL AT CHINGSHUI GEOTHERMAL FIELD, TAIWAN: Proceedings, 31st Annual Workshop on Geothermal Reservoir Engineering, Stanford University.
Chen, C. H., 1970, Geology and geothermal power potential of the Tatun volcanic region: Geothermics, v. 2, Part 2, p. 1134-1143.
Chen, C. H., and Y. J. Wu, 1971, Volcanic geology of the Tatun geothermal area, northern Taiwan: Proc. Geol. Soc. China, p. 5-20.
Chen, C. H., 1975, Petrological and chemical study of volcanic rocks from Tatun Volcano Group.
Chen, C. H., 1978, Petrochemistry and origin of Pleistocene volcanic rocks from northern Taiwan: Bulletin Volcanologique, v. 41, p. 513-528.
Chen, K.-J., C.-M. Wang, S.-K. Hsu, and W.-T. Liang, 2001, Geomagnetic basement relief of the northern Taiwan area: Terrestrial, Atmospheric and Oceanic Sciences, v. 12, p. 441-460.
Chen, K.-J., and Y.-H. Yeh, 1991, Gravity and microearthquake studies in the Chinshan-Tanshui area, northern Taiwan: Terr. Atmos. Ocean. Sci, v. 2, p. 35-50.
Chen, K.-J., Y. Yeh, H.-Y. Yen, and C.-H. Lin, 1995, Seismological studies in the Chinshan fault area: J. Geol. Soc. China, v. 38, p. 335-352.
Chiang, H.-T., C.-T. Shyu, H.-I. Chang, S.-H. Wu, S.-C. Lin, J.-D. Tsai, H.-H. Lee, S.-J. Tsao, C.-H. Chen, and Y.-C. Hsieh, 2011, The Subsurface Temperature around the Chishinshan Volcano, Northern Taiwan: Western Pacific Earth Sciences, v. 11, p. 83-102.
Chu, C.-J., C. Lee, and L. Teng, 1998, Structural features and Quaternary tectonics of the Chinshan fault, northern Taiwan: J. Geol. Soc. China, v. 41, p. 25-42.
DiPippo, R., 2004, Second Law assessment of binary plants generating power from low-temperature geothermal fluids: Geothermics, v. 33, p. 565-586.
DiPippo, R., 2007, Ideal thermal efficiency for geothermal binary plants: Geothermics, v. 36, p. 276-285.
DiPippo, R., 2012, Geothermal power plants: principles, applications, case studies and environmental impact, Butterworth-Heinemann.
Drader, D., 2011, Improved Power Production Efficiency of Hydrothermal Reservoirs Using Downhole Pumps, University of Iceland.
Einarsson, K., Palsson, B., Gudmundsson, A., Holmgeirsson, S., Ingason, K., Matthiasson, J., Trausti H., and Armannsson, H., 2010, Acid wells in the Krafla geothermal field: Proceedings of the World Geothermal Congress, p. 1-6.
Fan, K. C., T. Kuo, K. F. Liang, C. Shu Lee, and S. C. Chiang, 2005, Interpretation of a well interference test at the Chingshui geothermal field, Taiwan: Geothermics, v. 34, p. 99-118.
Fournier, R., 1979, A revised equation for the Na/K geothermometer: Geothermal Resources Council Transactions, v. 3, p. 221-224.
Fournier, R., and R. Potter, 1978, Magnesium correction for the Na-K-Ca chemical geothermometer, Geological Survey, Menlo Park, CA (USA).
Fournier, R., and R. Potter, 1982, Revised and expanded silica (quartz) geothermometer: Bull., Geotherm. Resour. Counc.(Davis, Calif.);(United States), v. 11.
Fournier, R., and A. Truesdell, 1973, An empirical Na-K-Ca geothermometer for natural wates: Geochim. Cosmochim. Acta, v. 37, p. 1255-1275.
Fournier, R. O., 1977, Chemical geothermometers and mixing models for geothermal systems: Geothermics, v. 5, p. 41-50.
Fournier, R. O., 1991, Water geothermometers applied to geothermal energy: Application of Geochemistry in Geothermal Reservoir Development, Ed Franco D’Amore. Unitar/UNDP, p. 37-69.
Garg, S. K., and J. Combs, 2010a, Appropriate use of USGS volumetric “heat in place” method and Monte Carlo calculations: Proceedings 34th Workshop on Geothermal Reservoir Engineering, Stanford university, Stanford, California, USA.
Garg, S. K., and J. Combs, 2010b, A reexamination of USGS volumetric “Heat in Place” method: Proceedings, Thirty-Six Workshop on Geothermal Reservoir Engineering.
GeothermEx, I., 1992, Annual Report: Geothermal Resources Assessment: Report for State of Hawaii Department of Business Economic Development and Tourism.
GeothermEx, I., 2005, Assessment of energy reserves and costs of geothermal resources in Hawaii, Richmond (CA).
Giggenbach, W., 1991, Chemical techniques in geothermal exploration: Application of geochemistry in geothermal reservoir development, v. 11, p. 9-144.
Giggenbach, W. F., 1988, Geothermal solute equilibria. derivation of Na-K-Mg-Ca geoindicators: Geochimica et cosmochimica acta, v. 52, p. 2749-2765.
Grant, M. A., and S. K. Garg, 2012, Recovery factor for EGS: Proceedings of the 37th workshop on geothermal reservoir engineering. Stanford: Stanford University.
Juang, W. S., and Bellon, H., 1984, The potassium-argon dating of andesites from Taiwan: Proc. Geol. Soc. China, v. 27, p. 86-100
Juang, W. S., 1993, Diversity and origin of Quaternary basaltic magma series in northern Taiwan: Bull. Natl. Mus. Nat. Sci, v. 4, p. 125-166.
Klein, C., J. Lovekin, and S. Sanyal, 2004, New geothermal site identification and qualification: GeothermEx Inc. report.
Lee, C., and Y. Wang, 1988, Paleostress due to the Pliocene-Quaternary arc-continent collision in Taiwan: Geol. Soc. China, p. 63-86.
Lu, C.-Y., J. Angelier, H.-T. Chu, and J.-C. Lee, 1995, Contractional, transcurrent, rotational and extensional tectonics: Examples from northern Taiwan: Tectonophysics, v. 246, p. 129-146.
Lovekin, J., 2004, Geothermal inventory: Bulletin Geothermal Resources Council, v. 33, p. 242-244.
Moya, P., Nietzen, F., and Sanchez, E., 2005, Development of the neutralization system for production wells at the Miravalles geothermal field: Proceedings of the World Geothermal Congress, p. 24-29.
Muffler, L., 1977, 1978 USGS Geothermal Resource Assessment, US Geological Survey, Menlo Park, CA.
Muffler, L. J. P., and M. Guffanti, 1979, Assessment of geothermal resources of the United States--1978, US Geological Survey.
Muffler, P., and R. Cataldi, 1978, Methods for regional assessment of geothermal resources: Geothermics, v. 7, p. 53-89.
Nathenson, M., 1975, Physical factors determining the fraction of stored energy recoverable from hydrothermal convection systems and conduction-dominated areas, Geological Survey, Menlo Park, Calif.(USA).
Nielson, D. L., 1993, The Temperature-Volume Relationship in Convective Hydrothermal Systems: Geothermal Resources Council Transactions, v. 17, p. 437-442.
Olson, H., 1993a, Geothermal reservoir assessment based on slim hole drilling. Volume 1, Analytical Method: Final report, Electric Power Research Inst., Palo Alto, CA (US); Hawaii Natural Energy Inst., Honolulu, HI (US); GeothermEx, Inc., Richmond, CA (US).
Olson, H., 1993b, Geothermal reservoir assessment based on slim hole drilling. Volume 2: Application in Hawaii: Final report, Electric Power Research Inst., Palo Alto, CA (US); Hawaii Natural Energy Inst., Honolulu, HI (US); GeothermEx, Inc., Richmond, CA (US).
Renner, J., D. White, and D. Williams, 1975, Hydrothermal convection systems: Assessment of geothermal resources of the United States—1975: US Geological Survey Circular, v. 726, p. 5-57.
Robertson, E. C., 1988, Thermal properties of rocks, US Department of the Interior, Geological Survey.
Sanyal, S., K. Kitz, and D. Glaspey, 2005, Optimization of Power Generation from Moderate Temperature Geothermal Systems–A Case History: Proceedings of World Geothermal Congress.
Sanyal, S., C. Klein, J. Lovekin, and R. Henneberger, 2004, National assessment of US geothermal resources-a perspective: Geothermal Resources Council Transactions, v. 28, p. 29.
Sanyal, S. K., 2005, Sustainability and renewability of geothermal power capacity: Proceedings World Geothermal Congress, p. 24-29.
Sanyal, S. K., and S. J. Butler, 2004, National Assessment of US Enhanced Geothermal Resource Base–A Perspective: Geothermal Resources Council Transactions, v. 28.
Sanyal, S. K., and S. J. Butler, 2005, An analysis of power generation prospects from enhanced geothermal systems: Geothermal Resources Council Transactions, v. 29.
Sanyal, S. K., J. W. Morrow, and S. J. Butler, 2007, Geothermal Well Productivity: Why Hotter is Not Always Better: Geothermal Resources Council Transactions, v. 31.
Sanyal, S. K., and Z. Sarmiento, 2005, Booking geothermal energy reserves: Geothermal Resources Council Transactions, v. 29, p. 467-474.
Somerton, W. H., 1992, Thermal properties and temperature-related behavior of rock/fluid systems: Elsevier, v. 37.
Song, S., S. Tsao, and H. Lo, 2000, Characteristics of the Tatun Volcanic Erupptions, North Taiwan: Impplications for a Cauldron Formation and Volcanic Evolution: JOURNAL-GEOLOGICAL SOCIETY OF CHINA-TAIWAN-, v. 43, p. 361-377.
Teng, L. S., C. H. Chen, W. S. Wang, T. K. Liu, W. S. Juang, and J. C. Chen, 1992, Plate kinematic model for late Cenozoic arc magmatism in northern Taiwan, p. 1-18.
Teng, L. S., 1996, Extensional collapse of the northern Taiwan mountain belt: Geology, v. 24, p. 949-952.
Teng, L. S., and Lee, C. T., 1996, Geomechanical appraisal of seismogenic faults in Northeast Taiwan: Journal of the Geological Society of China, v. 39, p. 125-142.
Teng, L.S., Lee, C.T., Peng, C.H., Chan, W.F. and Chu, C.J., 2001, Origin and geological evolution of the Taipei Basin, northern Taiwan: Western Pacific Earth Sci., 1(2), 115-142.
Tester, J. W., B. J. Anderson, A. Batchelor, D. Blackwell, R. DiPippo, E. Drake, J. Garnish, B. Livesay, M. Moore, and K. Nichols, 2006, The future of geothermal energy: Massachusetts Institute of Technology, v. 358.
Towler, B. F., 2002, Fundamental principles of reservoir engineering, Richardson, Tex.: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers.
Truesdell, A., 1976, Summary of section III geochemical techniques in exploration: Proceedings of the 2nd UN Symposium on the Development and Use of Geothermal Resources.
Urban, T., W. Diment, J. Sass, and I. Jamieson, 1975, Heat flow at The Geysers, California, USA: Proc. 2nd United Nations Symposium on the Development and Use of Geothermal Resources, p. 1241-1245.
Wang, W. H., and Chen, C. H., 1990, The volcanology and fission track age dating of pyroclastic deposits in Tatun Volcanico group: Acta Geol. Taiwan, v. 28, p. 1-40.
Wang, K.-L., S.-L. Chung, C.-H. Chen, R. Shinjo, T. F. Yang, and C.-H. Chen, 1999, Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough: Tectonophysics, v. 308, p. 363-376.
White, D. E., and D. L. Williams, 1975, Assessment of geothermal resources of the United States--1975, Geological Survey Circular, Arlington, VA.
Williams, C. F., 2004, Development of revised techniques for assessing geothermal resources: Proceedings, 29th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 7p.
Williams, C. F., 2005, Evaluating heat flow as a tool for assessing geothermal resources: Proceedings, 30th Annual Workshop on Geothermal Reservoir Engineering, Stanford University, p. 6.
Williams, C. F., 2007, Updated methods for estimating recovery factors for geothermal resources: Proceedings, Thirty-Second Workshop on Geothermal Reservoir Engineering. Stanford University.
Williams, C. F., 2010, Thermal energy recovery from enhanced geothermal systems–evaluating the potential from deep, high-temperature resources: Proceedings, 35th Workshop on geothermal reservoir engineering, Stanford University.
Williams, C. F., M. J. Reed, and R. H. Mariner, 2008, A review of methods applied by the US Geological Survey in the assessment of identified geothermal resources: US Geological Survey Open-File Report, v. 1296, p. 27.
Williams, C. F., and M. J. Reed, 2005, Outstanding issues for new geothermal resource assessments: Geothermal Resources Council Transactions, v. 29, p. 315-320.
Williams, C. F., M. J. Reed, S. P. J. Galanis, and J. DeAngelo, 2007, The USGS national resource assessment-An update: Geothermal Resources Council Transactions, v. 31, p. 99-104.
Wisian, K. W., D. D. Blackwell, and M. Richards, 2001, Correlation of surface heat loss and total energy production for geothermal systems: Geothermal Resources Council Transactions, p. 331-336.
Yang, C.-H., T.-C. Shei, and C.-C. Lue, 1994, Gravity and magnetic studies in the Tatun Volcanic region: Terr. Atm. Ocean. Sci, v. 5, p. 499-514.
Yang, T., Y. Sano, and S. Song, 1999, 3He/4He ratios of fumaroles and bubbling gases of hot springs in Tatun Volcano Group, North Taiwan: Nuovo Cimento C Geophysics Space Physics C, v. 22, p. 281.
Yen, T., Y. Tzou, and W. Lin, 1984, Subsurface geology of the region of the Tatun Volcano Group: Petrol. Geol. Taiwan, v. 20, p. 143-154.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 馬國鳳, 1994, 臺灣地區三維速度與地構造關係, 地質, 14(2): 53-68。
2. 馬國鳳, 1994, 臺灣地區三維速度與地構造關係, 地質, 14(2): 53-68。
3. 陳洲生, 2009,大屯火山群潛在岩漿庫研究—大地電磁法探查之初步結果, 國家公園學報,19(2)。
4. 陳洲生, 2009,大屯火山群潛在岩漿庫研究—大地電磁法探查之初步結果, 國家公園學報,19(2)。
5. 莊文星、陳汝勤, 1989, 台灣北部火山岩之定年與地球化學研究, 經濟部中央地質調查所彙刊, 5: 125-166。
6. 莊文星、陳汝勤, 1989, 台灣北部火山岩之定年與地球化學研究, 經濟部中央地質調查所彙刊, 5: 125-166。
7. 曹恕中, 1994, 大屯火山群火山岩的鉀氬年代分析, 經濟部中央地質調查所彙刊, 7: 137-154。
8. 曹恕中, 1994, 大屯火山群火山岩的鉀氬年代分析, 經濟部中央地質調查所彙刊, 7: 137-154。
9. 楊燦堯、何孝恆、謝佩珊、劉念宗、陳于高、陳正宏, 2003, 大屯火山群火山氣體成份與來源之探討, 國家公園學報, 13(1): 127-156。
10. 楊燦堯、何孝恆、謝佩珊、劉念宗、陳于高、陳正宏, 2003, 大屯火山群火山氣體成份與來源之探討, 國家公園學報, 13(1): 127-156。
11. 鄧屬予、李錫堤、劉平妹、宋聖榮、曹恕中、劉桓吉、彭志雄, 2004, 臺北堰塞湖考證, 地理學報, 36: 77-100。
12. 鄧屬予、李錫堤、劉平妹、宋聖榮、曹恕中、劉桓吉、彭志雄, 2004, 臺北堰塞湖考證, 地理學報, 36: 77-100。
 
系統版面圖檔 系統版面圖檔