(34.237.124.210) 您好!臺灣時間:2021/03/02 06:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃奕翔
研究生(外文):Yi-Xiang Huang
論文名稱:利用接收函數模擬分析西藏中部地殼非均向性構造
論文名稱(外文):Crustal anisotropy beneath the Hi-CLIMB array in Tibet from modeling receiver functions
指導教授:洪淑蕙
指導教授(外文):Shu-Huei Hung
口試委員:喬凌雲曾泰琳龔源成梁文宗
口試委員(外文):Ling-Yun ChiaoTai-Lin TsengYuan-Cheng GungWen-Tzong Liang
口試日期:2014-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:153
中文關鍵詞:西藏高原接收函數地殼非均向性正演方法
外文關鍵詞:Tibetan Plateaureceiver functioncrustal anisotropyforward modelingneighborhood algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
西藏地區具有世界上最厚的地殼,並記錄下所經歷過的造山運動資訊,一直以來都是科學家關注的區域,藉由分析與討論西藏地區的非均向性構造,以了解地下地層在造山運動過程中受到的應變與應力情形。西藏高原由數個地塊所組成,其中主要的構造包括南邊的拉薩地塊和北邊的羌塘地塊,並以班公怒江縫合帶為界。南北兩地塊在地球物理性質和地質條件上有很大的差異,暗示各自經歷了不同的地質事件。本研究使用在2004年到2005年間架設於西藏中部的Hi-CLIMB (Himalayan-Tibetan Continental Lithosphere During Mountain Building)寬頻地震陣列進行資料處理,分析接收函數隨後方位角的變化,並以此大量地建構非均向性速度模型,透過最佳化隨機搜尋法進行理論合成接收函數和觀測資料的波形擬合,找出西藏中部底下的地殼非均向性分布以及特性。除了波形的擬合之外,我們還加入了簡諧函數與非均向性造成波形變化特徵,試著共同分析西藏中部地區的地殼非均向性。 本研究利用正演接收函數模擬方法解出較可信的非均向速度模型,發現中部地殼出現較強的非均向性地層通常和低速構造是並存的,然而該地層中的非均向性強度無法單純以礦物晶格優選排列來解釋,可能該地層中的非均向性和低速構造是由部分熔融的地殼塑性流所造成。而淺部地殼和中部地殼明顯不同的非均向性質亦暗示成因的差異,淺部地殼的非均向性可能主要與近地表地層中未癒合且高角度的裂隙有關。

It is well known that the India-Eurasia collision beginning at about 55 Ma ago results in the world’s highest Himalayan mountain and largest Tibetan Plateau with an average elevation of 5 km and crustal thickness of 70 km. Strain-induced seismic anisotropy is commonly used as a proxy to map the distribution and characteristics of lithospheric deformation. In this study, we focus on investigation of the crustal anisotropy beneath central Tibet by means of modeling radial and transverse receiver functions (RFs) observed along a N-S striking, 800-km long linear array from the passive seismic experiment of Project Hi-CLIMB.
To quantitatively characterize the depth-varying anisotropic structure in the crust under the plateau, we combine azimuth-dependent RFs in both radial and transverse components to invert for 1-D layered anisotropic velocity models under individual stations. As the inverse problem is highly non-linear with numerous unknown model parameters, we choose a neighborhood algorithm to search for the solution with the global minimum of the optimized function, defined as the decorrelation coefficient between observed and synthetic RFs.
The resulting models show that the uppermost crust at depths less than 10 km beneath most stations reveals >10% strong anisotropy and a nearly vertical fast symmetric axis with plunge greater than 70o. For the stations near the E-W trending suture zones between terranes, the azimuth of the obtained fast axis is approximately aligned E-W, while those within the Lhasa and Qiantang terrane the fast axis is oriented more irregularly. These characteristic features suggest that the sutures and E-W striking strike-slip and N-S striking normal faults randomly distributed within the terranes may be attributed to the observed pattern of upper crust anisotropy. A strong anisotropic layer with the subhorizontal symmetric fast axis is observed in the middle crust at the depths of 20-35 km, collocated with the low shear velocity zone. The presence of a low-viscosity, ductile channel with preferred alignments of partial melt inclusions and/or anisotropic mica minerals may be attributed to the observed anisotropy in the middle crust. The anisotropy in the lower crust is generally less well constrained due to the low signal-to-noise ratios of traverse-component RFs as well as the P-to-s conversions at the velocity discontinuities in the lower crust strongly influenced by complex shallow structures.


口試委員會審定書 #
摘要 1
Abstract 2
目錄 4
表目錄 10
第1章 緒論 11
1.1 引言 11
1.2 非均向性 13
1.2.1 震波非均向性研究 13
1.3 研究區域背景 19
1.4 前人研究 20
1.5 研究動機及目標 26
第2章 地震資料 28
2.1 研究區域和測站分布 28
2.2 地震和波形資料篩選 29
第3章 研究方法與原理 32
3.1 Ps 轉換波相 33
3.2 接收函數( Receiver function ) 35
3.3 接收函數之計算 37
3.4 地震資料的疊加 40
3.4.1 波線參數修正 ( Moveout correction ) 41
3.4.2 疊加區域的選取 41
3.5 接收函數正演模擬 43
3.5.1 鄰近演算法 44
3.5.2 誤差函數 45
3.5.3 定義變數空間 46
3.6 速度構造對接收函數的影響 48
3.6.1 側向均質且水平地層構造的接收函數 48
3.6.2 非均向性對稱軸呈水平向地層構造的接收函數 49
3.6.3 非均向性對稱軸呈垂直向地層構造的接收函數 50
3.6.4 非均向性對稱軸傾斜之地層構造的接收函數 51
3.6.5 傾斜速度不連續面構造的接收函數 51
3.7 初步辨識非均向性與傾斜速度不連續面構造 58
3.7.1 單一非均向性水平地層或均向傾斜的不連續面構造 58
3.7.2 複合構造 61
3.8 初始速度模型 68
3.8.1 初始速度模型測試 68
3.8.2 建構初始速度模型 70
第4章 研究結果 75
4.1 拉薩地塊南段(H1010-H1200) 78
4.2 拉薩地塊北段(H1210-H1400) 79
4.3 羌塘地塊(H1410-H1630) 79
4.4 非均向性速度模型沿南北側向的變化 88
第5章 討論 93
5.1 簡諧函數模擬Pms波到時變化 93
5.2 正演接收函數模擬方法對速度模型的約束能力 103
5.2.1 鄰近地層非均向對稱快軸方向trend相差180o 104
5.2.2 非均向性對稱軸的傾角接近垂直 106
5.3 模型回復能力 107
5.3.1 單層非均向性介質回復 107
5.3.2 多層非均向性介質回復 110
5.4 地殼非均向性特徵 118
第6章 結論 124

Aki, K., and K. Kaminuma (1963), Phase velocity of Love waves in Japan (part 1): Love waves from the Aleutian Shock of March 1957. Bull. Earthq. Res. Inst., 41, 243-259.
Allegre, C., and D. L. Turcotte (1986), Implications of a two-component marble-cake mantle. Nature, 323, 123-127.
Ammon, C. J. (1991), The isolation of receiver effects from teleseismic P waveforms. Bull. Seism. Soc. Am., 81, 2504-2510.
Anderson, D. L. (1961), Elastic wave propagation in layered anisotropic media. J. Geophys. Res., 66, 2953-2963
Ando, M. (1984), ScS polarization anisotropy around the Pacific Ocean. Jour. Physics Earth, 32, 179-196.
Burdick, L. J., Helmberger, D. V. (1974), Time function appropriate for deep earthquakes. Bull. Seism. Soc. Am. 64, 1419-1428
Cassidy, J. F. (1992), Numerical experiments in broadband receiver function analysis. Bull. Seism. Soc. Am., 82,1453-1474.
Cassidy, J. F., M. G. Bostock (1996), Shear-wave splitting above the subducting Juan de Fuca plate. Geophys. Res. Lett., 23, 941-944.
Chen, W. P., Martin M., Tseng, T. T., Nowack R.. L., Hung, S. H., Huang, B. S. (2010), Shear-wave birefringence and current con&;#64257;guration of converging lithosphere under Tibet. Earth planet. Sci. Lett., 295(1–2), 297-304.
Chen, W. P., and S. Ozalaybey (1998), Correlation between seismic anisotropy and Bouguer gravity anomalies in Tibet and its implications for lithospheric structures. Geophys. J. Int., 135, 93-101.
Clark, M.K., and Royden, L.H., 2000, Topographic ooze: Building the eastern margin of Tibet by lower crustal &;#64258;ow: Geology, 28, 703–706.
Crampin, S. (1984), An introduction to wave propagation in anisotropic media. Geophys. J. R. Astron. Soc., 76, 17-28.
Crampin, S., and D. C. Booth (1985), Shear-wave polarizations near the North Anatolian Fault, Ⅱ, Interpretation in terms of crack-induced anisotropy. Geophys. J. R. Astron. Soc., 83, 75-92.
Crampin, S.(1987), Geological and industrial implications of extensive-dilatancy anisotropy. Nature, 328, 491-496.
Crampin, S. (1994), The fracture criticality of crustal rocks. Geophys. J. Int., 118, 428-438.
Daines M. J., Kohlstedt D. L. (1997), Influence of deformation on melt topology in peridotites. J. Geophys Res, 102 , 10257-10271.
Eckhardt, C. and Rabbel, W. (2011), P-receiver functions of anisotropic continental crust: a hierarchic catalogue of crustal models and azimuthal waveforms patterns. Geophys J. Int, 187, 439-479.
Frederiksen, A. W. and Bostock, M. G. (2000), Modelling teleseismic waves in dipping anisotropy structure. Geophys. J. Int, 141 , 401-412.
Frederiksen, A. W., Folsom, H., Zandt, G.(2003), Neighbourhood inversion of teleseismic Ps conversions for anisotropy and layer dip. Geophys. J. Int, 155, 200-212.
Hacker, B., Gnos, E., et al. (2000), Hot and dry deep crustal xenoliths from Tibet. Science, 287, 2463–2466.
Hess, H. (1964), Seismic anisotropy of the uppermost mantle under the oceans. Nature, 203, 629-631.
Huang, B. S., Huang, W. G., Liang, W. T., Rau, R. J. and N. Hirata. (2006), Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations. Geophys. Res. Lett., 33, L24302, doi:10.1029/2006GL027844.
Huang, W., et al. (2000), Seismic polarization anisotropy beneath the central Tibetan Plateau. J. Geophys. Res., 105, 27,979-27,989.
Kaneshima, S. (1990), Origin of crustal anisotropy: shear wave splitting studies in Japan. J. Geophys. Res., 95, 11,121-11,133.
Kendall, J. M. (1994), Teleseismic arrivals at a mid-ocean ridge: effects of mantle and anisotropy. Geophys. Res. Lett., 21, 301-304.
Kern, H. (1990), Laboratory seismic measurement: An aid in the interpretation of seismic field data. Terra Nova, 2, 617-628.
Kind, R. et al. (2002) Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science , 298, 1219-1221.
Kumazawa, M. and Anderson, o, L.(1969), Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. J. Geophys. Res. 74, 5961-5972.
Liu, H., Niu, F. (2012), Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data. Geophys. J. Int. 188, 144–164, http://dx.doi.org/10.1111/j.1365-246X.2011.05249.x.
Levin, V. and J. Park(1997), P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation. Geophys. J. Int. 131, 253-266.
Ligorria, J. P. and C. J. Ammon (1999), Iterative deconvolution and receiver-function estimation. Bull. Seism. Soc. Am., 89, 1395-1400
McNamara, D. E., and T. J. Owens (1993), Azimuthal shear wave velocity anisotropy in the Basin and Range Province using Moho Ps converted phases. J. Geophys. Res., 98, 12,003-12,017.
McNamara, D., T. Owens, P. Silver, and F. Wu. (1994), Shear wave anisotropy beneath the Tibetan Plateau. J. Geophys. Res., 99, 13655-13665.
McNamara, D., T. Owens, and W. Walter (1995), Observations of regional phase propagation across the Tibetan Plateau. J. Geophys. Res., 100, 22,215-22,229.
McNamara, D., W. Walter, T. Owens, and C. Ammon (1997), Upper mantle structure beneath the Tibetan Plateau from Pn travel time tomography. J. Geophys. Res., 102, 493-505.
Nabelek, J., Hetenyi, G., et al.(2009), Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325, 1371-1374.
Nelson, K. D. et al.(1996), Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results, Science, 274, 1684-1688.
Ni, J., and M. Barazangi (1983), High-frequency seismic wave propagation beneath the Indian Shield, Himalayan Arc, Tibetan Plateau and surrounding regions: High uppermost mantle velocities and efficient Sn propagation beneath Tibet. Geophys, J. R. Astron. Soc., 72, 665-689.
Ozacar, A. A. and G. Zandt. (2004), Crustal seismic anisotropy in central Tibet: Implication for deformational style and flow in the crust. Geophysical Res. Lett., 31
Owens, T. J., and G. Zandt. (1997), Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387, 37-43.
Rapine, R., F. Tilmann, M. West, J. Ni, and A, Rodgers (2003), Crustal structure of northern and southern Tibet from surface wave dispersion analysis. J. Geophys. Res., 108, 2020, doi:10.1029/2001JB000445.
Ree, J. H. (1994), Gain boundary sliding and development of grain boundary openings in experimentally deformed octachloropropane. J. structural Geol., 16 : 403-418.
Sambridge, M. (1999a), Geophysical inversion with a neighbourhood algorithm—i. Searching a parameter space. Geophys. J. Int., 138, 479–494.
Sambridge, M. (1999b). Geophysical inversion with a neighbourhood algorithm—ii. Appraising the ensemble. Geophys. J. Int., 138, 727–746.
Sambridge, M. (2001), Finding acceptable models in nonlinear inverse problems using a neigbourhood algorithm. Inverse Problems, 17, 387– 403.
Savage, M. K. (1999), Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev. Geophys., 37, 65-106.
Schulte-Pelkum, V., G. Monsalve, A. Sheehan, M.R. Pandey, S. Sapkota, and R. Billham. (2005), Imaging the Indian subcontinent beneath the Himalaya. Nature, 435, 1222-1225.
Schulte-Pelkum, V., and Mahan, K. H.(2014), A method for mapping crustal deformation and anisotropy with receiver functions and &;#64257;rst results from USArray, Earth planet. Sci. Lett., dx.doi.org/10.1016/j.epsl.2014.01.050
Searle, M. P., Elliott, J. R., Phillips, R. J., and Chung, S. L. (2011), Crustal–lithospheric structure and continental extrusion of Tibet, Journal of the Geological Society, 168(3), 633-672.
Shaprio, N. M., Ritzwoller, M. H., Molnar, P. and Levin, V. (2004),Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 305, 233-236.
Sherrington, H. F., G. Zandt., and A. Frederiksen (2004), Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters, J. Geophys. Res., 109, 127B02312, doi:10.1029/2002JB002345.
Silver, P. G., and W. W. Chan (1991), Shear-wave splitting and subcontinental mantle
deformation, J. Geophys. Res. 96, 16,429-16,454.
Sun, Y. Niu, F., Liu, H., Chen, Y., Liu, J.(2012) Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data, Earth planet. Sci. Lett., 349-350,186-197.
Tanimoto, T., and D. L. Anderson (1985), Lateral heterogeneity and azimuthal anisotropy of the upper mantel: Love and Rayleigh waves 100-250s, J. Geophys. Res., 90, 1842-1858.
Tseng, T. L., Chen, W. P., and Nowack, R. L.(2009), Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophys. Res. Lett., 36, 14.
Wang, W., Gao, X., Li, Y. Y., Zhang, Y. B. (2011), Crustal velocity structure of S-wave beneath Tibetan Plateau with transform function method – Hi-CLIMB profile. Chinese J. Geophys, 54, 2769-2778.
Wei, W., et al.(2001), Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 292, 716-718.
Weiss, T., S. Siegesmund, W. Rabbel, T. Bohlen, and M. Pohl (1999), Seismic velocities and anisotropy of the lower continental crust: A review, Pure Appl. Geophys., 156, 97-122.
Wittlinger , G., Farra V., Hetenyi, G., Vergne, J.(2009), Seismic velocities in Southern Tibet lower crust: a reciver function approach for eclogite detection. Geophys. J., Int, 177, 1037-1049.
Xu, Z. J., X. Song, L. Zhu (2012), Crustal and uppermost mantle S velocity structure under Hi-CLIMB seismic array in central Tibetan Plateau from joint inversion of surface wave dispersion and receiver function data. Tectonophysics, 584, 209-220, doi : 10.1016/j.tecto.2012.08.024.
Yang, Y. , Chen, J. Y., Yang, X. S., Yan, X. B. and Zhang, G.L. (2010), Does alignment of melt enhance seismic anisotropy beneath Tibet. J. Geophys Res. doi: 1010.3969/j.issn.0253-4967.2010.01.006.
Yang, X. S., Jin, Z. M. Ma, Jin. Huenges E. and Schilling F. (2002), Genesis of SkS splitting in the north-central Qinhai-XiZang plateau: melt alignment enhanced lithosphere anisotropy. Chinese Journal of Geophysics, 45(6): 821-830.
Yin, A., and T. Harrison (2000), Geologic evolution of the Himalayan-Tibetan orogen, Annu. Rev. Earth Planet. Sci., 28, 211-280.
Zhang, S. and S. Karato (1995), Lattice preferred orientation of olivine aggregates deformed in sample shear, Nature, 375, 774-777.
Zhao, W., J. Mechie, L. D. Brown, J. Guo, S. Haines, T. Hearn, S. L. Klemperer, Y. S. Ma, R. Meissner, K. D. Nelson, J. F. Ni, P. Pananont, R. Rapine, A. Ross, and J. Saul. (2001), Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data, Geophys. J. Int., 145, 486-498.
梁軒碩(2012),利用接收函數及表面波頻散之聯合逆推法探討西藏Hi-CLIMB陣列下方之地體構造,國立台灣大學地質研究所碩士論文.
賴雅娟(2008),利用表面波探討造山帶地區的非均向應構造:以台灣及西藏高原為例,國立中央大學地球物理研究所博士論文.
陳力維(2014),臺灣地區近地表之震波非均向性研究,國立台灣大學地質研究所碩士論文.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔