Aki, K., and K. Kaminuma (1963), Phase velocity of Love waves in Japan (part 1): Love waves from the Aleutian Shock of March 1957. Bull. Earthq. Res. Inst., 41, 243-259.
Allegre, C., and D. L. Turcotte (1986), Implications of a two-component marble-cake mantle. Nature, 323, 123-127.
Ammon, C. J. (1991), The isolation of receiver effects from teleseismic P waveforms. Bull. Seism. Soc. Am., 81, 2504-2510.
Anderson, D. L. (1961), Elastic wave propagation in layered anisotropic media. J. Geophys. Res., 66, 2953-2963
Ando, M. (1984), ScS polarization anisotropy around the Pacific Ocean. Jour. Physics Earth, 32, 179-196.
Burdick, L. J., Helmberger, D. V. (1974), Time function appropriate for deep earthquakes. Bull. Seism. Soc. Am. 64, 1419-1428
Cassidy, J. F. (1992), Numerical experiments in broadband receiver function analysis. Bull. Seism. Soc. Am., 82,1453-1474.
Cassidy, J. F., M. G. Bostock (1996), Shear-wave splitting above the subducting Juan de Fuca plate. Geophys. Res. Lett., 23, 941-944.
Chen, W. P., Martin M., Tseng, T. T., Nowack R.. L., Hung, S. H., Huang, B. S. (2010), Shear-wave birefringence and current con&;#64257;guration of converging lithosphere under Tibet. Earth planet. Sci. Lett., 295(1–2), 297-304.
Chen, W. P., and S. Ozalaybey (1998), Correlation between seismic anisotropy and Bouguer gravity anomalies in Tibet and its implications for lithospheric structures. Geophys. J. Int., 135, 93-101.
Clark, M.K., and Royden, L.H., 2000, Topographic ooze: Building the eastern margin of Tibet by lower crustal &;#64258;ow: Geology, 28, 703–706.
Crampin, S. (1984), An introduction to wave propagation in anisotropic media. Geophys. J. R. Astron. Soc., 76, 17-28.
Crampin, S., and D. C. Booth (1985), Shear-wave polarizations near the North Anatolian Fault, Ⅱ, Interpretation in terms of crack-induced anisotropy. Geophys. J. R. Astron. Soc., 83, 75-92.
Crampin, S.(1987), Geological and industrial implications of extensive-dilatancy anisotropy. Nature, 328, 491-496.
Crampin, S. (1994), The fracture criticality of crustal rocks. Geophys. J. Int., 118, 428-438.
Daines M. J., Kohlstedt D. L. (1997), Influence of deformation on melt topology in peridotites. J. Geophys Res, 102 , 10257-10271.
Eckhardt, C. and Rabbel, W. (2011), P-receiver functions of anisotropic continental crust: a hierarchic catalogue of crustal models and azimuthal waveforms patterns. Geophys J. Int, 187, 439-479.
Frederiksen, A. W. and Bostock, M. G. (2000), Modelling teleseismic waves in dipping anisotropy structure. Geophys. J. Int, 141 , 401-412.
Frederiksen, A. W., Folsom, H., Zandt, G.(2003), Neighbourhood inversion of teleseismic Ps conversions for anisotropy and layer dip. Geophys. J. Int, 155, 200-212.
Hacker, B., Gnos, E., et al. (2000), Hot and dry deep crustal xenoliths from Tibet. Science, 287, 2463–2466.
Hess, H. (1964), Seismic anisotropy of the uppermost mantle under the oceans. Nature, 203, 629-631.
Huang, B. S., Huang, W. G., Liang, W. T., Rau, R. J. and N. Hirata. (2006), Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations. Geophys. Res. Lett., 33, L24302, doi:10.1029/2006GL027844.
Huang, W., et al. (2000), Seismic polarization anisotropy beneath the central Tibetan Plateau. J. Geophys. Res., 105, 27,979-27,989.
Kaneshima, S. (1990), Origin of crustal anisotropy: shear wave splitting studies in Japan. J. Geophys. Res., 95, 11,121-11,133.
Kendall, J. M. (1994), Teleseismic arrivals at a mid-ocean ridge: effects of mantle and anisotropy. Geophys. Res. Lett., 21, 301-304.
Kern, H. (1990), Laboratory seismic measurement: An aid in the interpretation of seismic field data. Terra Nova, 2, 617-628.
Kind, R. et al. (2002) Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science , 298, 1219-1221.
Kumazawa, M. and Anderson, o, L.(1969), Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. J. Geophys. Res. 74, 5961-5972.
Liu, H., Niu, F. (2012), Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data. Geophys. J. Int. 188, 144–164, http://dx.doi.org/10.1111/j.1365-246X.2011.05249.x.
Levin, V. and J. Park(1997), P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation. Geophys. J. Int. 131, 253-266.
Ligorria, J. P. and C. J. Ammon (1999), Iterative deconvolution and receiver-function estimation. Bull. Seism. Soc. Am., 89, 1395-1400
McNamara, D. E., and T. J. Owens (1993), Azimuthal shear wave velocity anisotropy in the Basin and Range Province using Moho Ps converted phases. J. Geophys. Res., 98, 12,003-12,017.
McNamara, D., T. Owens, P. Silver, and F. Wu. (1994), Shear wave anisotropy beneath the Tibetan Plateau. J. Geophys. Res., 99, 13655-13665.
McNamara, D., T. Owens, and W. Walter (1995), Observations of regional phase propagation across the Tibetan Plateau. J. Geophys. Res., 100, 22,215-22,229.
McNamara, D., W. Walter, T. Owens, and C. Ammon (1997), Upper mantle structure beneath the Tibetan Plateau from Pn travel time tomography. J. Geophys. Res., 102, 493-505.
Nabelek, J., Hetenyi, G., et al.(2009), Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325, 1371-1374.
Nelson, K. D. et al.(1996), Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results, Science, 274, 1684-1688.
Ni, J., and M. Barazangi (1983), High-frequency seismic wave propagation beneath the Indian Shield, Himalayan Arc, Tibetan Plateau and surrounding regions: High uppermost mantle velocities and efficient Sn propagation beneath Tibet. Geophys, J. R. Astron. Soc., 72, 665-689.
Ozacar, A. A. and G. Zandt. (2004), Crustal seismic anisotropy in central Tibet: Implication for deformational style and flow in the crust. Geophysical Res. Lett., 31
Owens, T. J., and G. Zandt. (1997), Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387, 37-43.
Rapine, R., F. Tilmann, M. West, J. Ni, and A, Rodgers (2003), Crustal structure of northern and southern Tibet from surface wave dispersion analysis. J. Geophys. Res., 108, 2020, doi:10.1029/2001JB000445.
Ree, J. H. (1994), Gain boundary sliding and development of grain boundary openings in experimentally deformed octachloropropane. J. structural Geol., 16 : 403-418.
Sambridge, M. (1999a), Geophysical inversion with a neighbourhood algorithm—i. Searching a parameter space. Geophys. J. Int., 138, 479–494.
Sambridge, M. (1999b). Geophysical inversion with a neighbourhood algorithm—ii. Appraising the ensemble. Geophys. J. Int., 138, 727–746.
Sambridge, M. (2001), Finding acceptable models in nonlinear inverse problems using a neigbourhood algorithm. Inverse Problems, 17, 387– 403.
Savage, M. K. (1999), Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev. Geophys., 37, 65-106.
Schulte-Pelkum, V., G. Monsalve, A. Sheehan, M.R. Pandey, S. Sapkota, and R. Billham. (2005), Imaging the Indian subcontinent beneath the Himalaya. Nature, 435, 1222-1225.
Schulte-Pelkum, V., and Mahan, K. H.(2014), A method for mapping crustal deformation and anisotropy with receiver functions and &;#64257;rst results from USArray, Earth planet. Sci. Lett., dx.doi.org/10.1016/j.epsl.2014.01.050
Searle, M. P., Elliott, J. R., Phillips, R. J., and Chung, S. L. (2011), Crustal–lithospheric structure and continental extrusion of Tibet, Journal of the Geological Society, 168(3), 633-672.
Shaprio, N. M., Ritzwoller, M. H., Molnar, P. and Levin, V. (2004),Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 305, 233-236.
Sherrington, H. F., G. Zandt., and A. Frederiksen (2004), Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters, J. Geophys. Res., 109, 127B02312, doi:10.1029/2002JB002345.
Silver, P. G., and W. W. Chan (1991), Shear-wave splitting and subcontinental mantle
deformation, J. Geophys. Res. 96, 16,429-16,454.
Sun, Y. Niu, F., Liu, H., Chen, Y., Liu, J.(2012) Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data, Earth planet. Sci. Lett., 349-350,186-197.
Tanimoto, T., and D. L. Anderson (1985), Lateral heterogeneity and azimuthal anisotropy of the upper mantel: Love and Rayleigh waves 100-250s, J. Geophys. Res., 90, 1842-1858.
Tseng, T. L., Chen, W. P., and Nowack, R. L.(2009), Northward thinning of Tibetan crust revealed by virtual seismic profiles. Geophys. Res. Lett., 36, 14.
Wang, W., Gao, X., Li, Y. Y., Zhang, Y. B. (2011), Crustal velocity structure of S-wave beneath Tibetan Plateau with transform function method – Hi-CLIMB profile. Chinese J. Geophys, 54, 2769-2778.
Wei, W., et al.(2001), Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science 292, 716-718.
Weiss, T., S. Siegesmund, W. Rabbel, T. Bohlen, and M. Pohl (1999), Seismic velocities and anisotropy of the lower continental crust: A review, Pure Appl. Geophys., 156, 97-122.
Wittlinger , G., Farra V., Hetenyi, G., Vergne, J.(2009), Seismic velocities in Southern Tibet lower crust: a reciver function approach for eclogite detection. Geophys. J., Int, 177, 1037-1049.
Xu, Z. J., X. Song, L. Zhu (2012), Crustal and uppermost mantle S velocity structure under Hi-CLIMB seismic array in central Tibetan Plateau from joint inversion of surface wave dispersion and receiver function data. Tectonophysics, 584, 209-220, doi : 10.1016/j.tecto.2012.08.024.
Yang, Y. , Chen, J. Y., Yang, X. S., Yan, X. B. and Zhang, G.L. (2010), Does alignment of melt enhance seismic anisotropy beneath Tibet. J. Geophys Res. doi: 1010.3969/j.issn.0253-4967.2010.01.006.
Yang, X. S., Jin, Z. M. Ma, Jin. Huenges E. and Schilling F. (2002), Genesis of SkS splitting in the north-central Qinhai-XiZang plateau: melt alignment enhanced lithosphere anisotropy. Chinese Journal of Geophysics, 45(6): 821-830.
Yin, A., and T. Harrison (2000), Geologic evolution of the Himalayan-Tibetan orogen, Annu. Rev. Earth Planet. Sci., 28, 211-280.
Zhang, S. and S. Karato (1995), Lattice preferred orientation of olivine aggregates deformed in sample shear, Nature, 375, 774-777.
Zhao, W., J. Mechie, L. D. Brown, J. Guo, S. Haines, T. Hearn, S. L. Klemperer, Y. S. Ma, R. Meissner, K. D. Nelson, J. F. Ni, P. Pananont, R. Rapine, A. Ross, and J. Saul. (2001), Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data, Geophys. J. Int., 145, 486-498.
梁軒碩(2012),利用接收函數及表面波頻散之聯合逆推法探討西藏Hi-CLIMB陣列下方之地體構造,國立台灣大學地質研究所碩士論文.賴雅娟(2008),利用表面波探討造山帶地區的非均向應構造:以台灣及西藏高原為例,國立中央大學地球物理研究所博士論文.陳力維(2014),臺灣地區近地表之震波非均向性研究,國立台灣大學地質研究所碩士論文.