跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/03/01 16:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林詩翔
研究生(外文):Shih-Hsiang Lin
論文名稱:含聚3-烷基吩之硬桿-柔曲和硬桿-硬桿團聯共聚高分子的合成與自組裝行為的研究
論文名稱(外文):Synthesis and Self-Assembly of Poly(3-alkylthiophene)-containing Rod-Coil and Rod-Rod Block Copolymers
指導教授:林唯芳林唯芳引用關係
指導教授(外文):Wei-Fang Su
口試委員:陳錦地戴子安王立義趙基揚
口試委員(外文):Chin-Ti ChenChi-An DaiLee-Yih WangChi-Yang Chao
口試日期:2013-12-10
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:182
中文關鍵詞:團聯共聚高分子硬桿-硬桿分子間的交互作用力硬桿-柔曲分子間的交互作用力構型的不對稱性予體-受體自組裝
外文關鍵詞:block copolymerrod-rod interactionrod-coil interactionconformational asymmetrydonor-acceptorself-assembly
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
近年來,因為有機光電元件(organic optoelectronics)的輕、薄、可撓曲、低成本且可大面積製備等優點,已引起研究人員的廣泛注意。控制有機光電元件材料的形態具有規整的結構,並將其予體(donor)和受體(acceptor)材料所形成的區域尺寸控制在10奈米左右,將是達到高效率有機光電元件的關鍵因素之一。利用團聯共聚高分子(block copolymer)獨特的自組裝行為來達到這個目的,是非常有潛力的一種方法。對於典型柔曲-柔曲(coil-coil)團聯共聚高分子而言,藉由改變某一鏈段高分子的體積分率,而得到非層狀且具有連續相的結構,已是很成熟的技術,但這方法對於硬桿-柔曲(rod-coil)團聯共聚高分子而言,卻不總是有效。此外,若使用柔曲-柔曲團聯共聚高分子來當作元件中光反應層的材料,受限於其絕緣的性質,將無法有效地提升元件的表現。所以,在本研究中,已成功地利用速配接合化學(click chemistry)來製備poly(3-alkylthiophene)-b-poly(methyl methacrylate) (P3AT-b- PMMA) 之硬桿-柔曲團聯共聚高分子,並藉由分子的設計,探討聚&;#22139;吩的不同側鏈結構對其自組裝行為的影響。此外,我們同時也利用速配接合化學反應,合成出poly(3-(2-ethylhexyl)thiophene)-b-poly(ethylene oxide) (P3EHT-b-PEO)雙性硬桿-柔曲團聯共聚高分子,具有n-type性質的ID4雙性小分子,以及製備P3EHT-b-PEO和ID4混合形成的錯合物,探討其自組裝行為與其光電性質。最後,為了更進一步有效地提升有機光電元件的表現,本研究也合成出新穎且不同組成的予體-受體硬桿-硬桿團聯共聚高分子poly(3-alkylthiophene)-b-poly(thiophene-alt-isoindigo) (P3AT-b-PTID),並探討其自組裝行為與其光電性質。
一系列含不同PMMA的體積分率之P3AT-b-PMMA硬桿-柔曲團聯共聚高分子已被合成出來,其合成路徑為先分別利用Grignard metathesis (GRIM)和陰離子聚合方法聚合出P3AT和PMMA,再利用速配接合化學反應將兩段高分子P3AT和PMMA接在一起,其中P3AT為含有三種不同側鏈結構的聚&;#22139;吩,分別是含有6個碳且直鏈的poly(3-hexythiophene) (P3HT)、含有12個碳且直鏈的poly(3-dodecylthiophene) (P3DDT)、以及含有8個碳具支鏈的poly(3-(2-ethylhexyl)thiophene) (P3EHT)。將此P3AT-b-PMMA當作是一模型硬桿-柔曲團聯共聚高分子,本研究可藉由同時調控硬桿-硬桿分子間的交互作用力(rod-rod interaction)、硬桿-柔曲分子間的交互作用力(rod-coil interaction)、及兩鏈段高分子之構型的不對稱性(conformational asymmetry),得到多樣化的結構。當聚&;#22139;吩的側鏈結構由6個碳直鏈變成12個碳直鏈,再變成8個碳支鏈,硬桿-硬桿和硬桿-柔曲彼此分子間的交互作用力隨著側鏈所佔據的空間增大而減小。因改變側鏈的結構,可調控的構型的不對稱性、硬桿-硬桿和硬桿-柔曲兩交互作用力的競爭、以及結晶的驅動力,將導致當PMMA體積分率在0.5左右時,會有多樣化的結構出現,如層狀結構(lamellae)、六方最密堆積結構(hexagonal phase)、六方堆積到gyroid結構的相變化(cylinder-to-gyroid phase transition)、以及不規則結構的相(disordered phase)。
我們同時也利用速配接合反應合成出雙性硬桿-柔曲團聯共聚高分子poly(3-(2-ethylhexyl)thiophene)-b-poly(ethylene oxide) (P3EHT-b-PEO)。為了將來在光電元件的應用,降低柔曲鏈段在導電-絕緣(硬桿-柔曲)團聯共聚高分子中的含量,我們聚焦在PEO體積分率(fPEO)較小時,其自組裝的行為。當fPEO為0.18與0.30時,共聚高分子會自我組裝形成六方最密堆積及層狀結構。隨著溫度的上升,兩者都可以觀察到規則結構到另一個規則結構的相變化,分別是六方最密堆積到gyroid和層狀到gyroid等相變化。此外,我們也成功合成出具有n-type性質的ID4雙性小分子。接著,我們利用ID4小分子中的羧基和PEO中的醚基之間的氫鍵的作用力,成功地製備了P3EHT-b-PEO(ID4)x的錯合物,其中x為ID4對PEO單體的莫爾分率。隨著ID4莫爾分率的增加,這些錯合物不僅逐漸改變其形態,從層狀到gyroid,也比起原本團聯共聚高分子降低了錯合物的segregation strength。
我們成功利用Stille偶合反應(Stille coupling reaction),合成出新穎且不同組成的予體-受體硬桿-硬桿團聯共聚高分子poly(3-alkylthiophene)-b-poly(thiophene-alt- isoindigo) (P3AT-b-PTID),其中P3HT和P3EHT是予體鏈段,而PTID為受體鏈段。這全共軛團聯共聚高分子會自我組裝形成獨特的予體-受體結構,且具有不同的結晶結構。當P3AT-b-PTID被用在光反應層並製備成全高分子太陽能電池,則此兩團聯共聚高分子皆具有高的開路電壓(Voc),其值皆高於0.9伏特。在效率方面,以P3HT-b-PTID製備成的元件具有最佳的表現,其PCE為0.79%,不僅高於以P3EHT-b-PTID製備成的元件,也高於以P3HT/PTID混摻所製備成的元件。
綜合上述的結果,我們可以透過改變聚&;#22139;吩的側鏈結構,增加硬桿-柔曲團聯共聚高分子之構型的不對稱性,降低聚&;#22139;吩的硬桿-硬桿分子間的交互作用力,可以得到gyroid結構。對於有機光電元件來說,此gyroid結構是理想的形態之一。此外,我們更進一步可以添加具有n-type性質的小分子於硬桿-柔曲團聯共聚高分子中,在此情形下也能得到gyroid結構,如此更有潛力應用在有機太陽能電池上。在這個研究基礎上,我們合成出新穎的予體-受體硬桿-硬桿團聯共聚高分子,透過聚&;#22139;吩側鏈結構的改變,將有機會得到gyroid結構,能更加提升有機太陽能電池的效率。

Abstract
Optoelectronic devices fabricated from organic or polymeric materials have received a great deal of attention due to their significant potential as low cost, flexible and lightweight large-area devices. Controlling ordered morphology of material in 10-nm length scale is expected as one of important issues for optimizing the performance of organic devices. Using intriguing self-assembled behaviors of block copolymers (BCPs) is an emerging and promising strategy for achieving such nanomorphology. Manipulating the non-lamellar and bicontinuous nanostructures through changing volume fraction is well-developed technique for conventional coil-coil block copolymers, but it is not always effective for π-conjugated polymer-based rod-coil block copolymers. In addition, using coil-coil BCPs as photoactive layer cannot improve the performance of devices efficiently due to their insulating properties. In this dissertation, the synthesis of poly(3-alkylthiophene)-b-poly(methyl methacrylate) (P3AT-b-PMMA) rod-coil block copolymers via click chemistry are explored. The fundamental self-assembly of P3AT-b-PMMA is studied and their versatile nanostructures are observed under rational molecular design. Besides, we also synthesize amphiphilic rod-coil block copolymer via click reaction, poly(3-(2-ethyl- hexyl)thiophene)-b-poly(ethylene oxide) (P3EHT-b-PEO), n-type ID4 amphiphile, and prepared the P3EHT-b-PEO(ID4)x complexes. The self-assembly and optoelectronic properties of complexes are explored. Finally, in order to further enhance the performance of devices, the novel all-conjugated donor-acceptor rod-rod block copolymers, poly(3-alkylthiophene)-b-poly(thiophene-alt-isoindigo) (P3AT-b-PTID), are designed, synthesized and characterized.
A series of well-defined P3AT-b-PMMA rod-coil block copolymers with different PMMA volume fractions (fPMMA) have been successfully synthesized via Grignard metathesis (GRIM) polymerization of P3AT and anionic polymerization of PMMA followed by click chemistry, where poly(3-hexythiophene) (P3HT), poly(3-dodecylthiophene) (P3DDT), and poly(3-(2-ethylhexyl)thiophene) (P3EHT) are used as P3AT blocks. While using P3AT-b-PMMA as a model, versatile self-assembly morphology of rod-coil copolymer can be achieved by simultaneously adjusting the rod-rod interaction, rod-coil interaction and conformational asymmetry. By altering the alkyl side chain of polythiophene from linear hexyl to longer dodecyl and to branch 2-ethyl hexyl, both rod-coil and rod-rod interaction are decreased with increasing spatial occupation of alkyl side chain which have been quantitatively determined for this type of rod-coil copolymer. With tunable conformational asymmetry, competition between rod-rod and rod-coil interactions, and crystallization-driven force, the presence of versatile morphology, i.e. lamellar, hexagonal structures, cylinder-to-gyroid phase transition and disordered phase, can be observed for long sought composition at approximately fPMMA = 0.5.
We also successfully use click chemistry to synthesize amphiphilic rod-coil block copolymer, P3EHT-b-PEO. For optoelectronics applications, lowering insulating coil segments in rod-coil block copolymers is crucial. We thus focus on the self-assembled behaviors at low PEO volume (fPEO) fractions. After thermal annealing, P3EHT-b-PEO block copolymers would self-assemble into hexagonal and lamellar structures at room temperature at fPEO = 0.18 and 0.30, respectively, and they both show gyroid morphology through order-order transition at elevated temperature. Besides, a new amphiphilic n-type acceptor, ID4, is successfully synthesized. After ID4 is blended with P3EHT-b-PEO with fPEO = 0.30, a series of P3EHT-b-PEO(ID4)x complexes have been successfully prepared through hydrogen bonding, where x is ID4 per repeating unit of PEO in molar ratio. As increasing binding fractions, the complexes not only change their morphology from lamelle to gyroid, but also shows reduced segregation strength compared to neat P3EHT-b-PEO block copolymer.
A series of fully conjugated donor-acceptor rod-rod block copolymers, P3AT-b-PTID, have been synthesized using Stille coupling reaction under microwave irradiation. While P3HT and P3EHT are used as donor block, PTID is used as acceptor block. These novel block copolymers can self-assemble into unique donor-acceptor morphology with different crystalline structures in bulk state. When P3AT-b-PTID block copolymers are used as photoactive layer to fabricate all-polymer solar cells, their Voc values are both higher than 0.9 volt. The P3HT-b-PTID device has the highest efficiency with a value of 0.79, which is better than devices fabricated with P3EHT-b-PTID and P3HT/PTID blend.
In summary, we can increase the conformational asymmetry of rod-coil block copolymer, and reduce its rod-rod interaction through introducing bulky side chain on the thiophene ring. Thus we can obtain the bicontinuous and interpenetrating gyroidal structure, which is one of ideal morphology for organic devices. We can also obtain gyroid morphology, as we further add n-type amphiphilic acceptor into rod-coil block copolymer. Based on the study of self-assembly of rod-coil block copolymer, we can synthesize novel all conjugated donor-acceptor P3AT-containing block copolymer with different side chain structure on the thiophene ring. Using this strategy, gyroid of donor-acceptor block copolymer might be achieved in the future, which could enhance the performance of organic photovoltaics more efficiency.

Table of Contents
摘要………………………………………………………………………i
Abstract…………………………………………………………………iv
Table of Contents……………………………………………………vii
List of Figures…………………………………………………………x
List of Tables………………………………………………………xvi
List of Schemes……………………………………………………xvii
Chapter 1. Introduction……………………………………………1
1.1 Coil-Coil Block Copolymers……………………………………2
1.1.1 Conformational Asymmetry……………………………………4
1.1.2 Evaluation of Flory-Huggins Interaction Parameter……6
1.2 Rod-Coil Block Copolymers……………………………………9
1.2.1 Self-Assembly of DEH-PPV-containing Rod-Coil Block Copolymers………………………………………………………………10
1.2.2 Evaluation of Maier-Saup&;eacute; Interaction Parameter……13
1.2.3 Dimensionless Phase Diagram of Rod-Coil Block Copolymer………………………………………………………………15
1.3 Rod-Rod Block Copolymers………………………………………17
1.3.1 Helix-Containing Rod-Rod Block Copolymers……………17
1.3.2 All-Conjugated Rod-Rod Block Copolymers………………18
1.4 Self-Assembly of Block Copolymers in Organic Optoelectronics………………………………………………………25
1.4.1 Block Copolymers as Structure-Directing Materials…26
1.4.2 Block Copolymers as Photoactive Materials……………29
1.5 Motivation…………………………………………………………43
1.6 Research Objective………………………………………………47
Chapter 2. Experimental Section…………………………………50
2.1 Materials…………………………………………………………50
2.2 Synthetic Methods………………………………………………52
2.2.1 Synthesis of P3AT-b-PMMA Rod-Coil Block Copolymers…52
2.2.2 Synthesis of P3EHT-b-PEO Rod-Coil Block Copolymers…55
2.2.3 Synthesis of n-Type Amphiphiles…………………………58
2.2.4 Synthesis of P3AT-containing Donor-Acceptor Block Copolymers………………………………………………………………61
2.3 Characterization…………………………………………………63
2.3.1 Molecular Characteristics of Monomers and Polymers…63
2.3.2 Thermal, Optical and Electrochemical Properties of Polymers………………………………………………………………64
2.3.3 Morphology of Block Copolymers…………………………66
2.3.4 Fabrication of All-Polymer Photovoltaics……………69
Chapter 3. Results and Discussion……………………………70
3.1 Synthesis of P3AT-b-PMMA Rod-Coil Block Copolymers…70
3.2 Self-assembly of P3AT-b-PMMA Rod-Coil Block Copolymers……………………………………………………………76
3.3 Synthesis and Self-assembly of P3EHT-b-PEO Rod-Coil Amphiphilic Block Copolymers……………………………………108
3.4 Synthesis, Characterization and Physical Properties of n-Type Amphiphile…………………………………………………120
3.5 Self-assembled Structure of Rod-Coil P3EHT-b-PEO with Hydrogen-bonded Amphiphilic Acceptor…………………………125
3.6 Synthesis and Characterization of P3AT-containing Donor-Acceptor Block Copolymers………………………………………138
Chapter 4. Conclusions……………………………………………154
Chapter 5. Recommendations………………………………………157
References……………………………………………………………158
Appendix………………………………………………………………180

References
1.Bates, F. S. “Polymer-polymer phase behavior”, Science 1991, 251, 898-905.
2.Bates, F. S.; Fredrickson, G. H. “Block copolymers-designer soft materials”, Phys. Today 1999, 52, 32-38.
3.Bates, F. S. “Network phases in block copolymer melts”, MRS Bulletin 2005, 30, 525-532.
4.Ruzette, A. V.; Leibler, L. “Block copolymers in tomorrow''s plastics”, Nat. Mater. 2005, 4, 19-31.
5.Meuler, A. J.; Hillmyer, M. A.; Bates, F. S. “Ordered network mesostructures in block polymer materials”, Macromolecules 2009, 42, 7221-7250.
6.Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. “Multiblock polymers: panacea or pandora''s box?”, Science 2012, 336, 434-440.
7.Leibler, L. “Theory of microphase separation in block copolymers”, Macromolecules 1980, 13, 1602-1617.
8.Fredrickson, G. H.; Helfand, E. “Fluctuation effects in the theory of microphase separation in block copolymers”, J. Chem. Phys. 1987, 87, 697-705.
9.Matsen, M. W.; Schick, M. “Stable and unstable phases of a diblock copolymer melt”, Phys. Rev. Lett. 1994, 72, 2660-2663.
10.Bates, F. S.; Schulz, M. F.; Rosedale, J. H.; Almdal, K. “Correlation of binary polyolefin phase behavior with statistical segment length asymmetry”, Macromolecules 1992, 25, 5547-5550.
11.Vavasour, J. D.; Whitmore, M. D. “Self-consistent field theory of block copolymers with conformational asymmetry”, Macromolecules 1993, 26, 7070-7075.
12.Bates, F. S.; Fredrickson, G. H. “Conformational asymmetry and polymer-polymer thermodynamics”, Macromolecules 1994, 27, 1065-1067.
13.Matsen, M. W.; Schick, M. “Microphases of a diblock copolymer with conformational asymmetry”, Macromolecules 1994, 27, 4014-4015.
14.Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; F&;ouml;rster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K. “Fluctuations, conformational asymmetry and block copolymer phase behavior”, Faraday Discuss. Chem. Soc. 1994, 98, 7-18.
15.Matsen, M. W.; Bates, F. S. “Conformationally asymmetric block copolymers”, J. Polym. Sci. B: Polym. Phys. 1997, 35, 945-952.
16.Almdal, K.; Hillmyer, M. A.; Bates, F. S. “Influence of conformational asymmetry on polymer-polymer interactions: an entropic or enthalpic effect?”, Macromolecules 2002, 35, 7685-7691.
17.Hamley, I. W.; O’Driscoll, B. M. D.; Lotze, G.; Moulton, C.; Allgaier, J.; Frielinghaus, H. “Highly asymmetric phase diagram of a poly(1,2-octylene oxide)-poly(ethylene oxide) diblock copolymer system comprising a brush-like poly(1,2-octylene oxide) block”, Macromol. Rapid Commun. 2009, 30, 2141-2146.
18.Sakurai, S.; Mori, K.; Okawara, A.; Kimishims, K.; Hashimoto, T. “Evaluation of segmental interaction by small-angle X-ray scattering based on the random phase approximation for asymmetric, polydisperse triblock copolymers”, Macromolecules 1992, 25, 2679-2691.
19.Sakamoto, N.; Hashimoto, T. “Order-disorder transition of low molecular weight polystyrene-block-polyisoprene.1. SAXS analysis of two characteristic temperatures”, Macromolecules 1995, 28, 6825-6834.
20.Zhao, Y.; Sivaniah, E.; Hashimoto, T. “SAXS analysis of the order-disorder transition and the interaction parameter of polystyrene-block-poly(methyl methacrylate)”, Macromolecules 2008, 41, 9948-9951.
21.Nedoma, A. J.; Robertson, M. L.; Wanakule, N. S.; Balsara, N. P. “Measurements of the composition and molecular weight dependence of the Flory-Huggins interaction parameter”, Macromolecules 2008, 41, 5773-5779.
22.Feldman, K. E.; Kade, M. J.; Meijer, E. W.; Hawker, C. J.; Kramer, E. J. “Phase behavior of complementary multiply hydrogen bonded end-functional polymer blends”, Macromolecules 2010, 43, 5121-5127.
23.Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. “Ordered nanoporous polymers from polystyrene-polylactide block copolymers”, J. Am. Chem. Soc. 2002, 124, 12761-12773.
24.Lynd, N. A.; Hillmyer, M. A. “Influence of polydispersity on the self-assembly of diblock copolymers”, Macromolecules 2005, 38, 8803-8810.
25.Shull, K. R.; Kramer, E. J. “Mean-field theory of polymer interfaces in the presence of block copolymers”, Macromolecules 1990, 23, 4769-4779.
26.Shull, K. R.; Kramer, E. J.; Hadziioannou, G.; Tang, W. “Segregation of block copolymers to interfaces between immiscible homopolymers”, Macromolecules 1990, 23, 4780-4787.
27.Dai, K. H.; Kramer, E. J. “Determining the temperature-dependent Flory interaction parameter for strongly immiscible polymers from block copolymer segregation measurements”, Polymer 1994, 35, 157-161.
28.Anastasiadis, S, H.; Gancarz, I.; Koberstein, J. T. “Compatibilizing effect of block copolymers added to the polymer/polymer interface”, Macromolecules 1989, 22, 1449-1453.
29.Semenov, A. N. “Contribution to the theory of microphase layering in block copolymer melts”, Sov. Phys. JETP 1985, 61, 733-742.
30.Liu, J.; Haynes, D.; Balliet, C.; Zhang, R.; Kowalewski, T.; McCullough, R. D. “Self encapsulated poly(3-hexylthiophene)-poly(fluorinated alkyl methacrylate) rod-coil block copolymers with high field effect mobilities on bare SiO2”, Adv. Funct. Mater. 2012, 22, 1024-1032.
31.Lin, S. T.; Tung, Y. C.; Chen, W. C. “Synthesis, structures and multifunctional sensory properties of poly[2,7-(9,9-dihexylfluorene)]-block-poly[2-(dimethylamino) ethyl methacrylate] rod-coil diblock copolymers”, J. Mater. Chem. 2008, 18, 3985-3992.
32.Tao, Y. F.; Zohar, H.; Olsen, B. D.; Segalman, R. A. “Hierarchical nanostructure control in rod-coil block copolymers with magnetic fields”, Nano Lett. 2007, 7, 2742-2746.
33.Houbenov, N.; Haataja, J. S.; Iatrou, H.; Hadjichristidis, N.; Ruokolainen, J.; Faul, C. F. J.; Ikkala, O. “Self-assembled polymeric supramolecular frameworks”, Angew. Chem. Int. Ed. 2011, 50, 2516-2520.
34.Minich, E. A.; Nowak, A. P.; Deming, T. J.; Pochan, D. J. “Rod-rod and rod-coil self-assembly and phase behavior of polypeptide diblock copolymers”, Polymer 2004, 45, 1951-1957.
35.Olsen, B. D.; Shah, M.; Ganesan, V.; Segalman, R. A. “Universalization of the phase diagram for a model rod-coil diblock copolymer”, Macromolecules 2008, 41, 6809-6817.
36.Maier, W.; Saup&;eacute;, A. Z. “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase.1.”, Naturforschung 1959, 14a, 882-889.
37.Maier, W.; Saup&;eacute;, A. Z. “Eine einfache molekular-statistische theorie der nematischen kristallinflussigen phase.2.”, Naturforschung 1960, 15a, 287-292.
38.Pryamitsyn, V.; Ganesan, V. “Self-assembly of rod-coil block copolymers”, J. Chem. Phys. 2004, 120, 5824-5838.
39.Holyst, R.; Oswald. P. “Liquid-crystalline order in polymer systems: basic models”, Macromol. Theory Simul. 2001, 10, 1-16.
40.Chen, J. T.; Thomas, E. L.; Ober, C. K.; Mao, G. P. “Self-assembled smectic phases in rod-coil block copolymers”, Science 1996, 273, 343-346.
41.Lee, M.; Cho, B. K.; Zin, W. C. “Supramolecular structures from rod-coil block copolymers”, Chem. Rev. 2001, 101, 3869-3892.
42.Sary, N.; Mezzenga, R.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J. “Weakly segregated smectic C lamellar clusters in blends of rods and rod-coil block copolymers”, Macromolecules 2007, 40, 3277-3286.
43.Olsen, B. D.; Segalman, R. A. “Self-assembly of rod-coil block copolymers”, Mater. Sci. Eng. R 2008, 62, 37-66.
44.Chen, X. F.; Shen, Z. H.; Wan, X. H.; Fan, X. H.; Chen, E. Q.; Ma, Y. G.; Zhou, Q. F. “Mesogen-jacketed liquid crystalline polymers”, Chem. Soc. Rev. 2010, 39, 3072-3101.
45.Olsen, B. D.; Segalman, R. A. “Structure and thermodynamics of weakly segregated rod-coil block copolymers”, Macromolecules 2005, 38, 10127-10137.
46.Olsen, B. D.; Segalman, R. A. “Phase transitions in asymmetric rod-coil block copolymers”, Macromolecules 2006, 39, 7078-7083.
47.Sary, N.; Brochon, C.; Hadziioannou, G.; Mezzenga, R. “Self-assembly of rod-coil block copolymers from weakly to moderately segregated regimes”, Eur. Phys. J. E 2007, 24, 379-384.
48.Sary, N.; Rubatat, L.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J.; Mezzenga, R. “Self-assembly of poly(diethylhexyloxy-p-phenylenevinylene)-b-poly(4- vinylpyridine) rod-coil block copolymer systems”, Macromolecules 2007, 40, 6990-6997.
49.Ho, C. C.; Lee, Y. H.; Dai, C. A.; Segalman, R. A.; Su, W. F. “Synthesis and self-assembly of poly(diethylhexyloxy-p-phenylenevinylene)-b-poly(methyl methacrylate) rod-coil block copolymers”, Macromolecules 2009, 42, 4208-4219.
50.Chang, C. J.; Lee, Y. H.; Chen, H. L.; Chiang, C. H.; Hsu, H. F.; Ho, C. C.; Su, W. F.; Dai, C. A. “Effect of rod-rod interaction on self-assembly behavior of ABC π-conjugated rod-coil-coil triblock copolymers”, Soft Matter 2011, 7, 10951-10960.
51.Olsen, B. D.; Segalman, R. A. “Nonlamellar phases in asymmetric rod-coil block copolymers at increased segregation strengths”, Macromolecules 2007, 40, 6922-6929.
52.Olsen, B. D.; Jang, S. Y.; L&;uuml;ning, J. M.; Segalman, R. A. “Higher order liquid crystalline structure in low-polydispersity DEH-PPV”, Macromolecules 2006, 39, 4469-4479.
53.Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J. “Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles”, Nature 2002, 417, 424-428.
54.Zhou, Q. H.; Zheng, J. K.; Shen, Z. H.; Fan, X. H.; Chen, X. F.; Zhou, Q. F. “Synthesis and hierarchical self-assembly of rod-rod block copolymers via click chemistry between mesogen-jacketed liquid crystalline polymers and helical polypeptides”, Macromolecules 2010, 43, 5637-5646.
55.Wu, Z. Q.; Ono, R. J.; Chen, Z.; Li, Z. C.; Bielawski, C. W. “Polythiophene-block-poly(gamma-benzyl L-glutamate): synthesis and study of a new rod-rod block copolymer”, Polym. Chem. 2011, 2, 300-302.
56.Li, G.; Zhu, R.; Yang, Y. “Polymer solar cells”, Nat. Photon. 2012, 6, 153-161.
57.Weickert, J.; Dunbar, R. B.; Hesse, H. C.; Wiedemann, W.; Schmidt-Mende, L. “Nanostructured organic and hybrid solar cells”, Adv. Mater. 2011, 23, 1810-1828.
58.Kim, J. S. ; Lee, J. H. ; Park, J. H. ; Shim, C. ; Sim, M. ; Cho, K. “High-efficiency organic solar cells based on preformed poly(3-hexylthiophene) nanowires”, Adv. Funct. Mater. 2011, 21, 480-486.
59.Mayer, A. C.; Scully, S. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D. “Polymer-based solar cells”, Mater. Today 2007, 10, 28-33.
60.McCullough, R. D. “The chemistry of conducting polythiophenes”, Adv. Mater. 1998, 10, 93-116.
61.Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. “A simple method to prepare head-to-tail coupled, regioregular poly(3-alkylthiophenes) using grignard metathesis”, Adv. Mater. 1999, 11, 250-253.
62.Osaka, I.; McCullough, R. D. “Advances in molecular design and synthesis of regioregular polythiophenes”, Acc. Chem. Res. 2008, 41, 1202-1214.
63.Zhang, Y.; Tajima, K.; Hirota, K.; Hashimoto, K. “Synthesis of all-conjugated diblock copolymers by quasi-living polymerization and observation of their microphase separation”, J. Am. Chem. Soc. 2008, 130, 7812-7813.
64.Zhang, Y.; Tajima, K.; Hashimoto, K. “Nanostructure formation in poly(3-hexylthiophene-block-3-(2-ethylhexyl)thiophene)s”, Macromolecules 2009, 42, 7008-7015.
65.Ohshimizu, K.; Ueda, M. “Well-controlled synthesis of block copolythiophenes”, Macromolecules 2008, 41, 5289-5294.
66.Wu, P. T.; Ren, G. Q.; Li, C. X.; Mezzenga, R.; Jenekhe, S. A. “Crystalline diblock conjugated copolymers: synthesis, self-assembly, and microphase separation of poly(3-butylthiophene)-b-poly(3-octylthiophene)”, Macromolecules 2009, 42, 2317-2320.
67.Ren, G. Q.; Wu, P. T.; Jenekhe, S. A. “Enhanced performance of bulk heterojunction solar cells using block copoly(3-alkylthiophene)s”, Chem. Mater. 2010, 22, 2020-2026.
68.Ren, G. Q.; Wu, P. T.; Jenekhe, S. A. “Solar cells based on block copolymer semiconductor nanowires: effects of nanowire aspect ratio”, ACS Nano 2011, 5, 376-384.
69.Ge, J.; He, M.; Qiu, F.; Yang, Y. L. “Synthesis, cocrystallization, and microphase separation of all-conjugated diblock copoly(3-alkylthiophene)s”, Macromolecules 2010, 43, 6422-6428.
70.Wu, P. T.; Ren, G. Q.; Kim, F. S.; Li, C. X.; Mezzenga, R.; Jenekhe, S. A. “Poly(3-hexylthiophene)-b-poly(3-cyclohexylthiophene): synthesis, microphase separation, thin film transistors, and photovoltaic applications”, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 614-626.
71.He, M.; Han, W.; Ge, J.; Yang, Y. L.; Qiu, F.; Lin, Z. Q. “All-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells with controlled molecular organization and nanoscale morphology”, Energy Environ. Sci. 2011, 4, 2894-2902.
72.He, M.; Han, W.; Ge, J.; Yu, W. J.; Yang, Y. L.; Qiu, F.; Lin, Z. Q. “Annealing effects on the photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells”, Nanoscale 2011, 3, 3159-3163.
73.Ho, C. C.; Liu, Y. C.; Lin, S. H.; Su, W. F. “Synthesis, morphology, and optical and electrochemical properties of poly(3-hexylthiophene)-b-poly(3-thiophene hexylacetate)”, Macromolecules 2012, 45, 813-820.
74.Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. “Importance of the order of successive catalyst-transfer condensation polymerization in the synthesis of block copolymers of polythiophene and poly(p-phenylene)”, Chem. Lett. 2008, 37, 1022-1023.
75.Wu, S. P.; Bu, L. J.; Huang, L.; Yu, X. H.; Han, Y. C.; Geng, Y. H.; Wang, F. S. “Synthesis and characterization of phenylene-thiophene all-conjugated diblock copolymers”, Polymer 2009, 50, 6245-6251.
76.Javier, A. E.; Varshney, S. R.; McCullough, R. D. “Chain-growth synthesis of polyfluorenes with low polydispersities, block copolymers of fluorene, and end-capped polyfluorenes: toward new optoelectronic materials”, Macromolecules 2010, 43, 3233-3237.
77.Hollinger, J.; Jahnke, A. A.; Coombs, N.; Seferos, D. S. “Controlling phase separation and optical properties in conjugated polymers through selenophene-thiophene copolymerization”, J. Am. Chem. Soc. 2010, 132, 8546-8547.
78.Hollinger, J.; DiCarmine, P. M.; Karl, D.; Seferos, D. S. “Heterocycle-induced phase separation in conjugated polymers”, Macromolecules 2012, 45, 3772-3778.
79.Gao, D.; Hollinger, J.; Seferos, D. S. “Selenophene-thiophene block copolymer solar cells with thermostable nanostructures”, ACS Nano 2012, 6, 7114-7121.
80.Kozycz, L. M.; Gao, D.; Hollinger, J.; Seferos, D. S. “Donor-donor block copolymers for ternary organic solar cells”, Macromolecules 2012, 45, 5823-5832.
81.Segalman, R. A.; McCulloch, B.; Kirmayer, S.; Urban, J. J. “Block copolymers for organic optoelectronics”, Macromolecules 2009, 42, 9205-9216.
82.Botiz, I.; Darling, S. B. “Optoelectronics using block copolymers”, Mater. Today, 2010, 13, 42-51.
83.Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Fr&;eacute;chet, J. M. J.; Alivisatos, A. P.; Xu, T. “Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites”, Nat. Mater. 2009, 8, 979-985.
84.Hardin, B. E.; Snaith, H. J.; McGehee, M. D. “The renaissance of dye-sensitized solar cells”, Nat. Photonics 2012, 6, 162-169.
85.Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U.; Snaith, H. J. “A bicontinuous double gyroid hybrid solar cell”, Nano Lett. 2009, 9, 2807-2812.
86.Crossland, E. J. W.; Nedelcu, M.; Ducati, C.; Ludwigs, S.; Hillmyer, M. A.; Steiner, U.; Snaith, H. J. “Block copolymer morphologies in dye-sensitized solar cells: probing the photovoltaic structure-function relation”, Nano Lett. 2009, 9, 2813-2819.
87.Docampo, P.; Stefik, M.; Guldin, S.; Gunning, R.; Yufa, N. A.; Cai, N.; Wang, P.; Steiner, U.; Wiesner, U.; Snaith, H. J. “Triblock-terpolymer-directed self-assembly of mesoporous TiO2: High-performance photoanodes for solid-state dye-sensitized Solar Cells”, Adv. Energy Mater. 2012, 2, 676-682.
88.Tao, Y. F.; Ma, B. W.; Segalman, R. A. “Self-assembly of rod-coil block copolymers and their application in electroluminescent devices”, Macromolecules 2008, 41, 7152-7159.
89.Chiu, Y. C.; Chen, Y. G.; Kuo, C. C.; Tung, S. H.; Kakuchi, T.; Chen, W. C. “Synthesis, morphology, and sensory applications of multifunctional rod-coil-coil triblock copolymers and their electrospun nanofibers”, ACS Appl. Mater. Inter. 2012, 4, 3387-3395.
90.Darling, S. B. “Block copolymers for photovoltaics”, Energy Environ. Sci. 2009, 2, 1266-1273.
91.Sommer, M.; Huettner, S.; Thelakkat, M. “Donor-acceptor block copolymers for photovoltaic applications”, J. Mater. Chem. 2010, 20, 10788-10797.
92.Venkataraman, D.; Yurt, S.; Venkatraman, B. H.; Gavvalapalli, N. “Role of molecular architecture in organic photovoltaic cells”, J. Phys. Chem. Lett. 2010, 1, 947-958.
93.He, M.; Qiu, F.; Lin, Z. Q. “Conjugated rod-coil and rod-rod block copolymers for photovoltaic applications”, J. Mater. Chem. 2011, 21, 17039-17048.
94.Stalmach, U.; de Boer, B.; Videlot, C.; van Hutten, P. F.; Hadziioannou, G. “Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques”, J. Am. Chem. Soc. 2000, 122, 5464-5472.
95.de Boer, B.; Stalmach, U.; Melzer, C.; Hadziioannou, G. “Synthesis and self-organization of PPV-based block copolymers for photonic applications”, Synthetic Met. 2001, 121, 1541-1542.
96.van der Veen, M. H.; de Boer, B.; Stalmach, U.; van de wetering, K. I.; Hadziioannou, G. “Donor-acceptor diblock copolymers based on PPV and C60: synthesis, thermal properties, and morphology”, Macromolecules 2004, 37, 3673-3684.
97.Lee, J. U.; Cirpan, A.; Emrick, T.; Russell, T. P.; Jo, W. H. “Synthesis and photophysical property of well-defined donor-acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene”, J. Mater. Chem. 2009, 19, 1483-1489.
98.Yang, C.; Lee, J. K.; Heeger, A. J.; Wudl, F. “Well-defined donor-acceptor rod-coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cells”, J. Mater. Chem. 2009, 19, 5416-5423.
99.Shin, W. S.; Jeong, H. H.; Kim, M. K.; Jin, S. H.; Kim, M. R.; Lee, J. K.; Lee, J. W.; Gal, Y. S. “Effects of functional groups at perylene diimide derivatives on organic photovoltaic device application”, J. Mater. Chem. 2006, 16, 384-390.
100.Wicklein, A.; Lang, A. S.; Muth, M. A. S.; Thelakkat, M. “Swallow-tail substituted liquid crystalline perylene bisimides: synthesis and thermotropic properties”, J. Am. Chem. Soc. 2009, 131, 14442-14453.
101.Zhang, Q. L.; Cirpan, A.; Russell, T. P.; Emrick, T. “Donor-acceptor poly(thiophene-block-perylene diimide) copolymers: synthesis and solar cell fabrication”, Macromolecules 2009, 42, 1079-1082.
102.Verduzco, R.; Botiz, I.; Pickel, D. L.; Kilbey, S. M.; Hong, K. L.; Dimasi, E.; Darling, S. B. “Polythiophene-block-polyfluorene and polythiophene-block- poly(fluorene-co-benzothiadiazole): insights into the self-assembly of all-conjugated block copolymers”, Macromolecules 2011, 44, 530-539.
103.Darling, S. B.; Botiz, I.; Schaller, R. D.; Verduzco, R. “Optoelectronic properties and charge transfer in donor-acceptor all-conjugated diblock copolymers”, J. Phys. Chem. C 2011, 115, 9260-9266.
104.Lin, Y. H.; Darling, S. B.; Nikiforov, M. P.; Strzalka, J.; Verduzco, R. “Supramolecular conjugated block copolymers”, Macromolecules 2012, 45, 6571-6579.
105.Lin, Y. H.; Smith, K. A.; Kempf, C. N.; Verduzco, R. “Synthesis and crystallinity of all-conjugated poly(3-hexylthiophene) block copolymers”, Polym. Chem. 2013, 4, 229-232.
106.Johnson, K.; Huang, Y. S.; Huettner, S.; Sommer, M.; Brinkmann, M.; Mulherin, R.; Niedzialek, D.; Beljonne, D.; Clark, J.; Huck, W. T. S.; Friend, R. H. “Control of intrachain charge transfer in model systems for block copolymer photovoltaic materials”, J. Am. Chem. Soc. 2013, 135, 5074-5083.
107.Ku, S. Y.; Brady, M. A.; Treat, N. D.; Cochran, J. E.; Robb, M. J.; Kramer, E. J.; Chabinyc, M. L.; Hawker, C. J. “A modular strategy for fully conjugated donor-acceptor block copolymers”, J. Am. Chem. Soc. 2012, 134, 16040-16046.
108.Mulherin, R. C.; Jung, S.; Huettner, S.; Johnson, K.; Kohn, P.; Sommer, M.; Allard, S.; Scherf, U.; Greenham, N. C. “Ternary photovoltaic blends incorporating an all-conjugated donor-acceptor diblock copolymer”, Nano Lett. 2011, 11, 4846-4851.
109.Nakabayashi, K.; Mori, H. “All-polymer solar cells based on fully conjugated block copolymers composed of poly(3-hexylthiophene) and poly(naphthalene bisimide) segments”, Macromolecules 2012, 45, 9618-9625.
110.Guo, C.; Lin, Y.; Witman, M. D.; Smith, K. A.; Wang, C.; Hexemer, A.; Strzalka, J.; Gomez, E. D.; Verduzco, R. “Conjugated block copolymer photovoltaics with near 3% efficiency through microphase separation”, Nano Lett. 2013, 13, 2957-2963.
111.Sommer, M.; Komber, H.; Huettner, S.; Mulherin, R.; Kohn, P.; Greenham, N. C.; Huck, W. T. S. “Synthesis, purification, and characterization of well-defined all-conjugated diblock copolymers PF8TBT-b-P3HT”, Macromolecules 2012, 45, 4142-4151.
112.Dou, L. T.; Gao, J.; Richard, E.; You, J. B.; Chen, C. C.; Cha, K. C; He, Y. J.; Li, G.; Yang, Y. “Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells”, J. Am. Chem. Soc. 2012, 134, 10071-10079.
113.Khlyabich, P. P.; Burkhart, B.; Thompson, B. C. “Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers”, J. Am. Chem. Soc. 2012, 134, 9074-9077.
114.Jung, J. W.; Liu, F.; Russell, T. P.; Jo, W. H. “A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics”, Energy Environ. Sci. 2012, 5, 6857-6861.
115.Liao, H. C.; Ho, C. C.; Chang, C. Y.; Jao, M. H.; Darling, S. B.; Su, W. F. “Additives for morphology control in high-efficiency organic solar cell”, Mater. Today, 2013, 18, 326-336.
116.Chang, S. Y.; Liao, H. C.; Shao, Y. T.; Sung Y. M.; Hsu, S. H.; Ho, C. C.; Su, W. F.; Chen, Y. F. “Enhancing the efficiency of low bandgap conducting polymer bulk heterojunction solar cell using P3HT as a morphology control agent”, J. Mater. Chem. A 2013, 1, 2447-2452.
117.Huang, Y. C.; Welch, G. C.; Bazan, G. C.; Chabinyc, M. L.; Su, W. F. “Self-vertical phase separation study of nanoparticle/polymer solar cells by introducing fluorinated small molecule”, Chem. Comm. 2012, 48, 7250-7252.
118.Liao, H. C.; Tsao, C. S.; Lin, T. H.; Jao, M. H.; Chuang, C. M.; Chang, S. Y.; Huang, Y. C.; Shao, Y. T.; Chen, C. Y.; Su, C. J.; Jeng, U. S.; Chen, Y. F.; Su, W. F. “Nanoparticle tuned self-organization of bulk heterojunction hybrid solar cell with enhanced performance”, ACS Nano 2012, 6, 1657-1666.
119.Lin, J. F.; Yen, W. C.; Chang, C. Y.; Chen, Y. F.; Su, W. F. “Enhancing organic: inorganic hybrid solar cell efficiency using rod-coil diblock polymer additive”, J. Mater. Chem. A 2013, 1, 665-670.
120.Gu, Y.; Wang, C.; Russell, T. P. “Multi-length-scale morphologies in PCPDTBT/PCBM bulk heterojunction solar cells”, Adv. Energy Mater. 2012, 2, 683-690.
121.Lou, S. J.; Szarko, J. M.; Xu, T.; Yu, L. P.; Marks, T. J.; Chen, L. X. “Effects of additives on the morphology of solution phase aggregates formed by active layer components of high efficiency organic solar cells”, J. Am. Chem. Soc. 2011, 133, 20661-20663.
122.Moon, J. S.; Takacs, C. J.; Cho, S.; Coffin, R. C.; Kim, H.; Bazan, G. C.; Heeger, A. J. “Effect of processing additive on the nanomorphology of a bulk heterojunction material”, Nano Lett. 2010, 10, 4005-4008.
123.Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols”, Nat. Mater. 2007, 6, 497-500.
124.Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y. “"Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes”, Adv. Funct. Mater. 2007, 17, 1636-1644.
125.Li, G.; Shrotriya, V.; Yao, Y.; Huang, J. S.; Yang, Y. “Manipulating regioregular poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester blends - route towards high efficiency polymer solar cells”, J. Mater. Chem. 2007, 17, 3126-3140.
126.Scharber, M. C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. L. “Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency”, Adv. Mater. 2006, 18, 789-794.
127.Iovu, M. C.; Jeffries-El, M.; Sheina, E. E.; Cooper, J. R.; McCullough, R. D. “Regioregular poly(3-alkylthiophene) conducting block copolymers”, Polymer 2005, 46, 8582-8586.
128.Boudouris, B. W.; Frisbie, C. D.; Hillmyer, M. A. “Nanoporous poly(3-alkylthiophene) thin films generated from block copolymer templates”, Macromolecules 2008, 41, 67-75.
129.Urien, M.; Erothu, H.; Cloutet, E.; Hiorns, R. C.; Vignau, L.; Cramail, H. “Poly(3-hexylthiophene) based block copolymers prepared by "click" chemistry”, Macromolecules 2008, 41, 7033-7040.
130.Higashihara, T.; Ueda, M. “Synthesis and characterization of a novel coil-rod-coil triblock copolymers comprised of regioregular poly(3-hexylthiophene) and poly(methyl methacrylate) segments”, React. Funct. Polym. 2009, 69, 457-462.
131.Craley, C. R.; Zhang, R.; Kowalewski, T.; McCullough, R. D.; Stefan, M. C. “Regioregular poly(3-hexylthiophene) in a novel conducting amphiphilic block copolymer”, Macromol. Rapid Comm. 2009, 30, 11-16.
132.Lim, H.; Huang, K. T.; Su, W. F.; Chao, C. Y. “Facile syntheses, morphologies, and optical absorptions of P3HT coil-rod-coil triblock copolymers”, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 3311-3322.
133.Boudouris, B. W.; Frisbie, C. D.; Hillmyer, M. A. “Polylactide-polythiophene- polylactide triblock copolymers”, Macromolecules 2010, 43, 3566-3569.
134.Moon, H. C.; Anthonysamy, A.; Lee, Y.; Kim, J. K. “Facile synthesis of well-defined coil-rod-coil block copolymer composed of regioregular poly(3-hexylthiophene) via anionic coupling reaction”, Macromolecules 2010, 43, 1747-1752.
135.Choi, S. Y.; Lee, J. U.; Lee, J. W.; Lee, S.; Song, Y. J.; Jo, W. H.; Kim, S. H. “Highly ordered poly(3-hexylthiophene) rod polymers via block copolymer self-assembly”, Macromolecules 2011, 44, 1771-1774.
136.Moon, H. C.; Anthonysamy, A.; Kim, J. K.; Hirao, A. “Facile synthetic route for well-defined poly(3-hexylthiophene)-block-poly(methyl methacrylate) copolymer by anionic coupling reaction”, Macromolecules 2011, 44, 1894-1899.
137.Li, Z. C.; Ono, R. J.; Wu, Z. Q.; Bielawski, C. W. “Synthesis and self-assembly of poly(3-hexylthiophene)-block-poly(acrylic acid)”, Chem. Commun. 2011, 47, 197-199.
138.Yui, X.; Xiao, K.; Chen, J. H.; Lavrik, N. V.; Hong, K. L.; Sumpter, B. G.; Geohegan, D. B. “High-performance field-effect transistors based on polystyrene-b-poly(3-hexylthiophene) diblock copolymers”, ACS Nano 2011, 5, 3559-3567.
139.Patel, S. N.; Javier, A. E.; Stone, G. M.; Mullin, S. A.; Balsara, N. P. “Simultaneous conduction of electronic charge and lithium ions in block copolymers”, ACS Nano 2012, 6, 1589-1600.
140.Lim, H.; Ho, C. C.; Wu, S. J.; Tsai, H. C.; Su, W. F.; Chao, C. Y. “A poly(3-hexylthiophene) block copolymer with macroscopically aligned hierarchical nanostructure induced by mechanical rubbing”, Chem. Comm. 2013, 49, 9146-9148.
141.Yen, W. C.; Lee, Y. H.; Lin, J. F.; Dai, C. A.; Jeng, U. S.; Su, W. F. “Effect of TiO2 nanoparticles on self-assembly behaviors and optical and photovoltaic properties of the P3HT-b-P2VP block copolymer”, Langmuir 2011, 27, 109-115.
142.Sary, N.; Richard, F.; Brochon, C.; Leclerc, N.; Leveque, P.; Audinot, J. N.; Berson, S.; Heiser, T.; Hadziioannou, G.; Mezzenga, R. “A new supramolecular route for using rod-coil block copolymers in photovoltaic applications”, Adv. Mater. 2010, 22, 763-768.
143.Botiz, I.; Darling, S. B. “Self-assembly of poly(3-hexylthiophene)-block- polylactide block copolymer and subsequent incorporation of electron acceptor material”, Macromolecules 2009, 42, 8211-8217.
144.Darling, S. B.; Botiz, I.; Martinson, A. B. F. “Minimizing lateral domain collapse in etched poly(3-hexylthiophene)-block-polylactide thin films for improved optoelectronic performance”, Langmuir 2010, 26, 8756-8761.
145.Stalder, R.; Mei, J. G.; Subbiah, J.; Grand, C.; Estrada, L. A.; So, F.; Reynolds, J. R. “n-Type conjugated polyisoindigos”, Macromolecules 2011, 44, 6303-6310.
146.Ho, C. C.; Chang, S. Y.; Huang, T. C.; Chen, C. A.; Liao, H. C.; Chen, Y. F.; Su, W. F. “Synthesis, characterization and photovoltaic properties of poly(cyclopentadi- thiophene-alt-isoindigo)”, Polym. Chem. 2013, 4, 5351-5360.
147.Jeffries-El, M.; Sauve, G.; McCullough, R. D. “In-situ end-group functionalization of regioregular poly(3-alkylthiophene) using the Grignard metathesis polymerization method”, Adv. Mater. 2004, 16, 1017-1019.
148.Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. “Catalyst-transfer polycondensation mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene)”, J. Am. Chem. Soc. 2005, 127, 17542-17547.
149.Ho, C. C.; Dai, C. A.; Su, W. F. “High yield synthesis of diverse well-defined end-functionalized polymers by combination of anionic polymerization and "click" chemistry”, J. Appl. Polym. Sci. 2009, 111, 1571-1580.
150.Kamps, A. C.; Fryd, M.; Park, S. “Hierarchical Self-assembly of amphiphilic semiconducting polymers into isolated, bundled, and branched nanofibers”, ACS Nano 2012, 6, 2844-2852.
151.Shetter, J. A. “Effect of stereoregularity on glass temperatures of a series of polyacrylates and polymethacrylates”, J. Polym. Sci., Part B: Polym. Lett. 1963, 1, 209-213.
152.Tashiro, K.; Ono, K.; Minagawa, Y.; Kobayashi, M.; Kawai T.; Yoshino, K. “Structure and thermochromic solid-state phase transition of poly(3-Alkylthio- phene)”, J. Polym. Sci., Part B: Polym. Phys. 1991, 29, 1223-1233.
153.Zhu, L.; Cheng, S.Z.D.; Calhoun, B.H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. “Phase structures and morphologies determined by self-organization, vitrification, and crystallization: confined crystallization in an ordered lamellar phase of PEO-b-PS diblock copolymer”, Polymer 2001, 42, 5829-5839.
154.Fetters, L. J.; Lohse, D. J.; Richter, D.; Witten, T. A.; Zirkel, A. “Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties”, Macromolecules 1994, 27, 4639-4647.
155.Pressly, E. D.; Amir, R. J.; Hawker, C. J. “Rapid synthesis of block and cyclic copolymers via click chemistry in the presence of copper nanoparticles”, J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 814-819.
156.Binder, W. H.; Sachsenhofer, R. “''Click'' chemistry in polymer and materials science”, Macromol. Rapid Comm. 2007, 28, 15-54.
157.Demko, Z.; Sharpless, K. B. “A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides”, Angew. Chem. Int. Ed. 2002, 41, 2113-2116.
158.Lee, Y. H.; Yen, W. C.; Su, W. F.; Dai, C. A. “Self-assembly and phase transformations of π-conjugated block copolymers that bend and twist: from rigid-rod nanowires to highly curvaceous gyroids”, Soft Matter 2011, 7, 10429-10442.
159.Dai, C. A.; Yen, W. C.; Lee, Y. H.; Ho, C. C.; Su, W. F. “Facile synthesis of well-defined block copolymers containing regioregular poly(3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior”, J. Am. Chem. Soc. 2007, 129, 11036-11038.
160.Schmidt, K.; Pester, C. W.; Schoberth, H. G.; Zettl, H.; Schindler, K. A.; Boker, A. “Electric field induced gyroid-to-cylinder transitions in concentrated diblock copolymer solutions”, Macromolecules 2010, 43, 4268-4274.
161.Ho, V.; Boudouris, B. W.; Segalman, R. A. “Tuning polythiophene crystallization through systematic side chain functionalization”, Macromolecules 2010, 43, 7895-7899.
162.Causin, V.; Marega, C.; Marigo, A.; Valentini, L.; Kenny, J. M. “Crystallization and melting behavior of poly(3-butylthiophene), poly(3-octylthiophene), and poly(3-dodecylthiophene)”, Macromolecules 2005, 38, 409-415.
163.Akasaka, S.; Okamoto, T.; Osaka, T.; Matsushita, T.; Hasegawa, H. “3D analysis of the lattice defects in the gyroid network structure of a block copolymer/homopolymer blend - The line-like defects in the gyroid network structure”, Eur. Polym. J. 2011, 47, 651-661.
164.Matsen, M. W.; Bates, F. S. “Unifying weak- and strong-segregation block copolymer theories”, Macromolecules 1996, 29, 1091-1098.
165.Floudas, G.; Ulrich, R.; Wiesner, U. “Microphase separation in poly(isoprene-b-ethylene oxide) diblock copolymer melts. I. Phase state and kinetics of the order-to-order transitions”, J. Chem. Phys. 1999, 110, 652-663.
166.Takagi, H.; Yamamoto, K.; Okamoto, S.; Sakurai, S. “Characteristic phase behavior of polybutadiene-block-poly(epsilon-caploractone)/polybutadiene blend after melting crystalline-amorphous alternating lamellar structure”, Polymer 2010, 51, 4160-4168.
167.Wang, C. Y.; Lodge, T. P. “Kinetics and mechanisms for the cylinder-to-gyroid transition in a block copolymer solution”, Macromolecules 2002, 35, 6997-7006.
168.Hamley, I. W.; Castelletto, V.; Mykhaylyk, O. O.; Yang, Z.; May, R. P.; Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V. “Mechanism of the transition between lamellar and gyroid phases formed by a diblock copolymer in aqueous solution”, Langmuir 2004, 20, 10785-10790.
169.Aryal, M.; Trivedi, K.; Hu, W. H. “Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography”, ACS Nano 2009, 3, 3085-3090.
170.Ho, V.; Boudouris, B. W.; McCulloch, B. L.; Shuttle, C. G.; Burkhardt, M.; Chabinyc, M. L.; Segalman, R. A. “Poly(3-alkylthiophene) diblock copolymers with ordered microstructures and continuous semiconducting pathways”, J. Am. Chem. Soc. 2011, 133, 9270-9273.
171.Darling, S. B. “Isolating the effect of torsional defects on mobility and band gap in conjugated polymers”, J. Phys. Chem. B 2008, 112, 8891-8895.
172.Reenders, M.; ten Brinke, G. “Compositional and orientational ordering in rod-coil diblock copolymer melts”, Macromolecules 2002, 35, 3266-3280.
173.Singh, C.; Goulian, M.; Liu, A. J.; Fredrickson, G. H. “Phase behavior of semiflexible diblock copolymers”, Macromolecules 1994, 27, 2974-2986.
174.Holyst, R.; Schick, M. “Correlations in a rigid-flexible diblock copolymer system”, J. Chem. Phys. 1992, 96, 730-740.
175.Lin, M. C.; Nandan, B.; Chen, H. L. “Mediating polymer crystal orientation using nanotemplates from block copolymer microdomains and anodic aluminium oxide nanochannels”, Soft Matter 2012, 8, 3306-3322.
176.Ho, R. M.; Chiang, Y. W.; Chen, C. K.; Wang, H. W.; Hasegawa, H.; Akasaka, S.; Thomas, E. L.; Burger, C.; Hsiao, B. S. “Block copolymers with a twist”, J. Am. Chem. Soc. 2009, 131, 18533-18542.
177.Loo, Y. L., Register, R. A.; Ryan, A. J. “Modes of crystallization in block copolymer microdomains: breakout, templated, and confined”, Macromolecules 2002, 35, 2365-2374.
178.Patel, S. N.; Javier, A. E.; Beers, K. M.; Pople, J. A.; Ho, V.; Segalman, R. A.; Balsara, N. P. “Morphology and thermodynamic properties of a copolymer with an electronically conducting block: poly(3-ethylhexylthiophene)-block-poly(ethylene oxide)”, Nano Lett. 2012, 12, 4901-4906.
179.Lin, Y.; Wei, Q.; Qian, G.; Yao, L.; Watkins, J. “Morphology control in TiO2 nanorod/polythiophene composites for bulk heterojunction solar cells using hydrogen bonding”, Macromolecules 2012, 45, 8665-8673.
180.Chen, H. L.; Ko, C. C.; Lin, T. L. “Self-assembly in the bulk complexes of poly(ethylene oxide) with amphiphilic dodecylbenzenesulfonic acid”, Langmuir 2002, 18, 5619-5623.
181.Tsao, C. S.; Chen, H. L. “Concurrent transformation of copolymer domain morphology induced by the order-disorder transition of comb block in supramolecular comb-coil block copolymer”, Macromolecules 2004, 37, 8984-8991.
182.Ruokolainen, J.; Saariaho, M.; Ikkala, O.; ten Brinke, G.; Thomas, E. L.; Torkkeli, M.; Serimaa, R. “Supramolecular routes to hierarchical structures:&;#8201; comb-coil diblock copolymers organized with two length scales”, Macromolecules 1999, 32, 1152-1158.
183.Boudouris, B. W.; Ho, V.; Jimison, L. H.; Toney, M. F.; Salleo, A.; Segalman, R. A. “Real-time observation of poly(3-alkylthiophene) crystallization and correlation with transient optoelectronic properties”, Macromolecules 2011, 44, 6653-6658.
184.Liao, H. C.; Tsao, C. S.; Lin, T. H.; Chung, C. M.; Chen, C. Y.; Jeng, U. S.; Su, C. H.; Chen, Y. F.; Su, W. F. “Quantitative nanoorganized structural evolution for a high efficiency bulk heterojunction polymer solar cell”, J. Am. Chem. Soc. 2011, 133, 13064-13073.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊