跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/03/01 23:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭宗諺
研究生(外文):Tsung-Yen Kuo
論文名稱:高性能氧化鎳薄膜製程開發
論文名稱(外文):Manufacturing process development of high performance NiO films
指導教授:林新智林新智引用關係
指導教授(外文):Hsin-Chih Lin
口試委員:郭博成陳敏璋葉凌彥
口試委員(外文):Po-Cheng KuoMiin-Jang ChenLing-Yen Yeh
口試日期:2014-07-25
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:134
中文關鍵詞:傳統磁控濺鍍NiO薄膜NiO-Ag薄膜NiO-Cu薄膜NiO-In薄膜Ar離子轟擊新穎高功率脈衝磁控濺鍍光電性質
外文關鍵詞:Conventional magnetron sputteringNiO filmsNiO–Ag filmsNiO–Cu filmsNiO–In filmsAr ion bombardmentNovel high power impulse magnetron sputteringOptoelectronic properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大部分的透明導電膜,如氧化銦錫和氧化鋅皆為n型傳導方式,因此若要製備p-n接面的光電元件,開發p型半導體氧化物薄膜之鍍製技術即是一個重要的課題。通常化學計量比氧化鎳的電阻率極高,約為1013 Ω‧cm。而氧化鎳薄膜的電洞主要來自Ni空位,可藉助製程參數調控或摻雜一價元素來提升薄膜的p型導電性,因此氧化鎳極具製備成p型導電膜的潛力。
本研究第一部分採用傳統磁控濺鍍技術鍍製氧化鎳薄膜於康寧1737 F玻璃基板上。並藉由金屬元素(Ag、Cu及In)添加來促進p型氧化鎳薄膜的光電性質。實驗結果顯示,當NiO-Ag複合膜中之Ag含量低於4.2 at.%時,薄膜會呈現p型傳導;然而Ag含量超過9.3 at.%後,薄膜中過量的Ag原子會析出於晶界,致NiO-Ag複合薄膜轉變成n型傳導。再者,當薄膜中之Cu含量達9.18 at.%以上時,NiO-Cu複合薄膜皆呈現p型傳導方式,這可歸因於大量的Ni2+晶格位置被Cu+離子所取代,因此高含量Cu摻雜會導致NiO薄膜之結晶性顯著下降。此外,透過添加15.6 at.%以上之In可製備出n型導電NiO薄膜,且In摻雜有助於提高NiO薄膜的熱穩定性。緊接著,我們發現在純氧的氛圍下藉助Ar離子轟擊可進一步改善p型NiO-Ag複合薄膜的導電性。
本研究第二部分採用新穎高功率脈衝磁控濺鍍(HIPIMS)系統在氬、氧各為50 %的氛圍下,調變工作週期以反應性濺鍍方式沈積p型NiO薄膜於康寧1737 F玻璃基板上。XRD分析顯示,在較低工作週期(即較高的靶尖峰功率密度)下鍍製之NiO薄膜傾向(200)織構,且其晶粒也較微細。我們也發現降低工作週期有助於提升濺鍍Ni原子離化率,致使NiO薄膜中產生較多的Ni2+空位,因而可提升電洞載子濃度,然而載子遷移率及薄膜穿透率會降低。


Most oxide semiconductors such as indium tin oxide, zinc oxide, etc. show n-type conduction. Hence, in p–n junction devices, synthesizing a p-type oxide-based semiconductor is an important issue. Nickel oxide (NiO) is a candidate for p-type transparent conducting oxide (TCO) materials because hole transport originates from nickel vacancies. Generally, the stoichiometric NiO is an insulator with a high electrical resistivity of 1013 Ω‧cm. However, its conductivity can be enhanced significantly by adjusting certain process parameters and adding monovalent atoms.
In the first part, the conventional magnetron sputtering technique was employed to deposit the NiO thin films onto Corning 1737F glass substrates. The optoelectronic properties of NiO films can be enhanced by doping metal elements such as Ag, Cu and In in the films. The results show that the NiO–Ag composite film with Ag content of 4.2 at.% shows p-type conduction. However, it becomes n-type when the Ag content increases to 9.3 at.%, which results from the Ag atoms segregating at grain boundaries in the presence of excess Ag atoms in NiO films. Furthermore, all NiO–Cu films show p-type conduction when the Cu content increases to above 9.18 at.%. Large amounts of Ni2+ ions in a NiO crystallite are replaced by the Cu+ ions, leading to p-type conduction and the degradation of crystallinity in NiO–Cu composite films that have a higher Cu content. On the other hand, semi-transparent conductive NiO-In films with n-type conduction can be achieved by the addition of indium of more than 15.6 at.%. The thermal stability of NiO films can be improved by adding higher indium content in the films. Finally, it is found that the electrical properties of p-type NiO-Ag films are further improved by Ar ion bombardment in an oxygen atmosphere.
In the second part, the NiO films were deposited onto Corning 1737F glass substrates using high power impulse magnetron sputtering (HIPIMS) in 50 % Ar + 50 % O2 atmospheres with various duty cycles. The XRD patterns show that the NiO films with fine grains and (200) texture are obtained when the films are deposited at lower duty cycles (higher peak power densities). In addition, the ionization rate of Ni atoms in the sputtering process increases upon decreasing the duty cycle, resulting in the formation of more vacancies at Ni2+ sites and an increase of hole concentrations in the NiO films. However, both the carrier mobility and transmittance of the films drop.


誌謝................................................ii
摘要................................................iii
Abstract...........................................iv
目錄................................................vi
圖目錄..............................................ix
表目錄..............................................xiii
第一章 簡介與研究動機..................................1
1.1 前言............................................1
1.2 研究動機.........................................2
第二章 理論與文獻回顧..................................8
2.1理論基礎..........................................8
2.1.1透明導電氧化物的電性質.............................8
2.1.2透明導電氧化物的光性質.............................10
2.2 氧化鎳特性介紹.....................................12
2.3文獻回顧...........................................13
2.3.1 傳統磁控濺鍍之製程參數對氧化鎳薄膜性質之影響...........13
2.3.2 摻雜元素對氧化鎳薄膜性質影響........................19
2.3.3 高功率脈衝磁控濺鍍(HIPIMS)系統之相關研究.............21
第三章 實驗方法與步驟....................................32
3.1基板製備............................................32
3.1.1 基板選取.........................................32
3.1.1基板清洗..........................................32
3.2 靶材選取...........................................33
3.2.1 NiO陶瓷靶材......................................33
3.2.2 NiO-Ag、NiO-Cu和NiO-In複合靶材製備................33
3.3實驗裝置及薄膜製備....................................34
3.3.1摻雜金屬元素於NiO薄膜之實驗裝置.......................34
3.3.2離子輔助濺鍍鍍製NiO薄膜和離子轟擊之實驗裝置.............35
3.3.3 HIPIMS製備NiO薄膜實驗裝置.........................35
3.4薄膜性質分析.........................................37
3.4.1 膜厚分析.........................................37
3.4.2 XRD結構分析......................................38
3.4.3四點探針..........................................38
3.4.4紫外光-可見光光學儀 (UV-VIS)........................38
3.4.5霍爾效應量測 (Hall effect measurement).............39
3.4.6電子微探儀 (EPMA)..................................39
3.4.7化學分析電子儀分析(ESCA)...........................40
3.4.8原子力顯微鏡 (AFM).................................41
3.4.9TEM微結構觀察......................................41
第四章 結果與討論-傳統濺鍍系統製備NiO複合薄膜.................52
4.1添加銀對氧化鎳薄膜光電性質和顯微結構的影響..................52
4.1.1添加Ag對NiO薄膜成分的影響............................52
4.1.1添加Ag對NiO薄膜濺鍍速率的影響.........................53
4.1.3添加Ag對NiO結構和結晶性的影響.........................53
4.1.4添加Ag對氧化鎳薄膜電性質的影響.........................53
4.1.4.a 四點探針量測.....................................53
4.1.4.b霍爾效應量測......................................54
4.1.5 Ag粒子於氧化鎳薄膜中分佈情形..........................55
4.1.6 NiO-Ag複合薄膜之化學組成.............................56
4.1.7添加Ag對氧化鎳薄膜光性質的影響..........................56
4.1.8 Energy gap (Eg)計算...............................57
4.2 添加銅對氧化鎳薄膜光電性質和顯微結構的影響.................65
4.2.1添加Cu對NiO薄膜濺鍍速率的影響..........................65
4.2.2添加Cu對NiO薄膜成分的影響.............................65
4.2.3添加Cu對NiO結構和結晶性的影響..........................66
4.2.4添加Cu對氧化鎳薄膜電性質的影響..........................66
4.2.4.a四點探針量測.......................................66
4.2.4.b霍爾效應量測.......................................67
4.2.5 Cu粒子於氧化鎳薄膜中分佈情形...........................67
4.2.6 NiO-Cu複合薄膜之化學組成.............................68
4.2.7添加Cu對氧化鎳薄膜微結構的影響..........................69
4.2.7.a AFM表面粗糙度分析.................................69
4.2.7.b FE-SEM表面形貌分析................................69
4.2.7.c HR-TEM分析......................................69
4.2.8添加Cu對氧化鎳薄膜光性質的影響..........................70
4.3添加銦對氧化鎳薄膜光電性質和顯微結構的影響...................81
4.3.1添加In對NiO薄膜成分的影響..............................81
4.3.2添加In對NiO結構和結晶性的影響...........................82
4.3.3添加Cu對氧化鎳薄膜電性質的影響...........................82
4.3.3.a 四點探針量測.......................................82
4.3.3.b霍爾效應量測........................................82
4.3.4添加In對氧化鎳薄膜光性質的影響...........................83
4.3.5In粒子於氧化鎳薄膜中分佈情形.............................83
4.3.6添加In對氧化鎳薄膜熱穩定性質的影響........................84
4.4氬離子轟擊對NiO-Ag複合薄膜的影響...........................90
4.4.1氬離子轟擊對NiO-Ag複合薄膜成分的影響......................90
4.4.2氬離子轟擊對NiO-Ag複合薄膜結構和結晶性的影響...............91
4.4.3氬離子轟擊對NiO-Ag複合薄膜電性質的影響....................91
4.4.3.a 四點探針量測.......................................91
4.4.3.b霍爾效應量測........................................92
4.4.4. AFM表面粗糙度和FE-SEM表面形貌分析.....................92
4.4.5氬離子轟擊對NiO-Ag複合薄膜性質的影響.....................93
第五章 結果與討論-HIPIMS濺鍍系統製備NiO薄膜之研究...............99
5.1高功率脈衝磁控濺鍍之工作週期對氧化鎳薄膜性質之影響.............107
5.1.1不同脈衝參數對HIPIMS靶尖峰功率、電流及離化率影響...........107
5.1.2不同脈衝參數對NiO薄膜沉積速率影響........................108
5.1.3晶相分析.............................................108
5.1.4薄膜電性質分析........................................109
5.1.5薄膜化學成分分析分析...................................111
5.1.6微結構分析...........................................111
5.1.7薄膜光學性質分析......................................113
第六章 結論...............................................125
參考文獻..................................................126


1.楊明輝,“透明導電膜,”藝軒圖書出版社, 台北, 2006。
2.K. Baedeker, Ann. Phys. (Leipzig) 22 (1907) 749.
3.H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, letters to nature 389 (1997) 939.
4.H. Kawazoe, H. Yanagi, K. Ueda, H. Hosono, MRS Bulletin, 25 (2000) 28.
5.R. Long, N. J. English, D. A. Mooney, Physics Letters A 374 (2010) 1184.
6.S.C. Chen, T.Y. Kuo, T.H. Sun, Surface &; Coatings Technology 205 (2010) S236.
7.I. Popescu, E. Heracleous, Z. Skoufa, A. Lemonidoubc, I.-C. Marcu, Physical Chemistry Chemical Physics 16 (2014) 4962.
8.W. L. Jang, Y. M. Lu, W. S. Hwang, W. C. Chen, Journal of the European Ceramic Society, 30 (2010) 503.
9.K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, letters to nature, 432 (2004) 488.
10.O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer, Journal of Physics D: Applied Physics 43 (2010) 055402.
11.N. E. Duygulu, A.O. Kodolbas, A. Ekerim, Journal of Crystal Growth 381 (2013) 51.
12.S. Gupta, B.C. Yadav, P. K. Dwivedi, B. Das, Materials Research Bulletin 48 (2013) 3315.
13.M. Guziewicz, J. Grochowski, M. Borysiewicz, E. Kaminska, J. Z. Domagala, W. Rzodkiewicz, B. S. Witkowski, K. Golaszewska, R. Kruszka, M. Ekielski, A. Piotrowska, Optica Applicata XLI (2011) 431.
14.J. Sohn, S.H. Song, D.W. Nam, I.T. Cho, E.S. Cho, J.H. Lee, H.I. Kwon, Semiconductor Science and Technology 28 (2013) 015005.
15.I. Y.Y. Bu, Superlattices and Microstructures 60 (2013) 160.
16.N. Ohshima, M. Nakada and Y. Tsukamoto, Japanese Journal of Applied Physics 35 (1996) L1585.
17.O. Kohmoto, H. Takahashi and K. Kimoto, Physica status solidi (b) 224 (2007) 4478.
18.B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction”, 3rd edition, Prentice Hall, p.48 (2001).
19.Powder Diffraction File (PCPDFWIN v.2.02), JCPDS-International Centre for Diffraction Data, (1999) 47-1049.
20.D. Adler, Physical review B 2 (1970) 3112.
21.Y. H. You, B. S. So and J. H. Hwang, Applied Physics Letters, 89 (2006) 222105.
22.R. Jung, M. J. Lee, S. Seo, D. C. Kim, G. S. Park, K. Kim, S. Ahn, Y. Park, and I. K. Yoo, Applied Physics Letters 91 (2007) 022112.
23.H. Sato, T. Minami, S. Takata and T. Yamada, Thin Solid Films 236 (1993) 27.
24.A. Qureshia, A. Mergena, and A. Altindalb, Sensors and Actuators B 135 (2009) 537.
25.M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang and T. J. Marks, Pnas 105 (2008) 2783.
26.X. Lou, X. Zhao and X. He, Solar Energy 83 (2009) 2103.
27.X. C. Lou, X. J. Zhao, Y. L. Xiong and X. T. Sui, Journal of Sol-Gel Science and Technology 54 (2010) 43.
28.P. Puspharajah, S. Radhakrishna, A.K. Arof, Journal of materials science 32 (1997) 3001.
29.W.C. Yeh, M. Matsumura, Japanese Journal of Applied Physics 36 (1997) 6884.
30.D.Y. Jiang, J.M. Qin, X. Wang, S. Gao, Q.C. Liang, J.X. Zhao, Vacuum 86 (2012) 1086.
31.I. Fasaki, A. Giannoudakos, M. Stamataki, M. Kompitsas1,E. Gy‥orgy, I.N. Mihailescu, F. Roubani-Kalantzopoulou, A. Lagoyannis, S. Harissopulos, Applied Physics Letters. A 91 (2008) 487.
32.A.A.Al-Ghamdi, W. E. Mahmoud, S.J. Yaghmour, F.M. Al-Marzouki, Journal of Alloys and Compounds 486 (2009) 9.
33.A. Karpinski, A. Ferrec, M. Richard-Plouet, L. Cattin, M.A. Djouadi, L. Brohan, P.-Y. Jouan, Thin Solid Films 520 (2012) 3609.
34.H. Sato, T. Minami, S. Takata and T. Yamada, Thin Solid Films 236 (1993) 27.
35.I. Hotovy and D. Buc, Vacuum, 50 (1998) 41.
36.I. Hotovy, J. Huran, L. Spiess, R. Capkovicy and S. Hascmik, Vacuum 58 (2000) 300.
37.O. Kohmoto, H. Nakagawa, F. Ono and A. Chayahara, Journal of Magnetism and Magnetic Materials, 1627 (2001) 226.
38.O. Kohmoto, H. Nakagawa, Y. Isagawa and A. Chayahara, Journal of Magnetism and Magnetic Materials, 1629 (2001) 226.
39.Y. M. Lu, W. S. Hwang, J. S. Yang and H. C. Chuang, Thin Solid Films 54 (2002) 420.
40.Y. M. Lu, W. S. Hwang and J. S. Yang, Surface and Coatings Technology, 231 (2002) 155.
41.W. Bru‥ckner, R. Kaltofen, J. Thomas, M. Hecker, M. Uhlemann, S. Oswald, D. Elefant, and C. M. Schneider, Japanese Journal of Applied Physics, 94 (2003) 4853.
42.H. W. Ryu, G. P. Choi, G. J. Hong and J. S. Park, Japanese Journal of Applied Physics 43 (2004) 5524.
43.J. L. Yang, Y. S. Lai and J. S. Chen, Thin Solid Films 488 (2005) 242.
44.H. L. Chen, Y. M. Lu and W. S. Hwang, Surface &; Coatings Technology 198 (2005) 138.
45.S. Nandy, B. Saha, M. K. Mitra, and K. K. Chattopadhyay, Journal of Materials Science 42 (2007) 5766.
46.W. L. Jang, Y. M. Lu, W. S. Hwang, T. L. Hsiung and H. P. Wang, Surface &; Coatings Technology, 202 (2008) 5444.
47.L. Ai, G. Fang, L. Yuan, N. Liu, M. Wang, C. Li, Q. Zhang, J. Li and X. Zhao, Applied Surface Science 254 (2008) 2401.
48.W. L. Jang, Y. M. Lu, W. S. Hwang, Vacuum 83 (2009) 596.
49.A. M. Reddy, A. S. Reddy, K.S. Lee, P. S. Reddy, Solid State Sciences 13 (2011) 314.
50.Y. H. Kwon, S. H. Chun, J. H. Han, H. K. Cho, Metals and Materials International 18 (2012) 1003.
51.Y. Huang, Q. Zhang, J. Xi, Z. Ji, Applied Surface Science 258 (2012) 7435
52.J. H. Oh, S. Y. Hwang, Y. D. Kim, J.H. Song, and T.Y. Seong, Materials Science in Semiconductor Processing 16 (2013) 1346.
53.T. Miyata, H. Tanaka, H. Sato and T. Minami, Journal of Materials Science 41 (2006) 5531.
54.K. Kobayashi, M. Yamaguchi, Y. Tomita, Y. Maeda, Thin Solid Films 516 (2008) 5903.
55.S. Nandy, U. N. Maiti, C. K. Ghosh, K. K. Chattopadhyay, Journal of Physics: Condensed Matter 21 (2009) 115804.
56.M. Yang, H. Pu, Q. Zhou, Q. Zhang, Thin Solid Films 520 (2012) 5884.
57.I. Sta , M. Jlassi , M. Hajji, H. Ezzaoui, Thin Solid Films 555 (2014) 131.
58.K. Matsubara, S. Huang, M. Iwamotob, W. Pan, Nanoscale 6 (2014) 688.
59.F. Ruske, A. Pflug, V. Sittinger, W. Werner, B. Szyszka, and D.J. Christie, Thin Solid Films 516 (2008) 4472.
60.G. T. West, P. J. Kelly, and J. W. Bradley, IEEE Transactions on Plasma Science 38 (2010) 3057.
61.A. P. Ehiasarian, A. Vetushka, Y. Aranda Gonzalvo, G. Sa’fra’n, L. Sze’kely, and P. B. Barna, Journal of Applied Physics 109 (2011) 104314.
62.V. Tiron, L. Sirghi, and G. Popa, Thin Solid Films 520 (2012) 4305.
63.J. G. Partridge, E. L. H. Mayes, N. L. McDougall, M. M. M. Bilek, and D. G. McCulloch, Journal of Physics D: Applied Physics 46 (2013) 165105.
64.S. Kment, Z. Hubicka, J. Krysa, J. Olejnicek, M. Cada, I. Gregora, M. Zlamal,M. Brunclikova, Z. Remes, N. Liu, L. Wang, R. Kirchgeorg, Ch.Y. Lee, P. Schmuki, Catal. Today 230 (2014) 8.
65.van der Pauw LV, Philips Res. Rep. 13 (1958) 1.
66.H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, MRS Bulletin 25(8) (2000) 28.
67.S. Dimitrijev, (2006) “Principles of Semiconductor Devices”, Oxford University Press, pp.116–117.
68.S. Calnan, A.N. Tiwari, Thin Solid Films 518 (2010) 1839.
69.C.D. Wagner, W.M. Riggs, L.E. Davis, J.E. Moulder, G.E. Muilenber, “Handbook of X-ray Photoelectron Spectroscopy”, Perkin Elmer Corporation Physical Electronics Division, USA 1979.
70.M. Fox, “Optical properties of solids”, Oxford, New York, (2001).
71.JCPDS (65-2901) for NiO.
72.Watts, John F, Wolstenholme, John, “An introduction to surface analysis by XPS and AES”, J. Wiley, (2003).
73.S.C. Chen, T.Y. Kuo, Y.C. Lin, H.C. Lin, Thin Solid Films 519 (2011) 4944.
74.T.Y. Kuo, S.C. Chen, W.C. Peng, Y.C. Lin, H.C. Lin, Thin Solid Films 519 (2011) 4940.
75.A. Hakim, J. Hossain, K.A. Khan, Renewable Energy 34 (2009) 2625.
76.G. Gautherin, C. Weissmantel, Thin Solid Films 50 (1978) 135.
77.R. Krishna, V. Baranwal, Y.S. Katharria, D. Kabiraj, A. Tripathi, F. Singh, S.A. Khan, A.C. Pandey, D. Kanjilal, Nuclear Instruments and Methods in Physics Research Section B 244 (2006) 78.
78.H. Akazawa, Applied Physics Express 2 (2009) 081601.
79.F. Y. Xie, L. Gong, X. Liu, J. Chen, W. G. Xie, W. H. Zhang, S. H. Chen, Applied Surface Science 256 (2009) 693.
80.M. Guziewicz, J. Grochowski, M. Borysiewicz, E. Kaminska, J. Z. Domagala, W. Rzodkiewicz, B. S. Witkowski, K. Golaszewska, R. Kruszka, M. Ekielski, and A. Piotrowska, Optica Applicata 41 (2011) 431.
81.L. Chen, H. Liu, X. Wang, D. Wang, X. Li, Journal of the Physical Society of Japan 83 (2014) 034713.
82.I. Hamberg, C. G. Granqvist, Journal of Applied Physics 60 (1986) R123.
83.德國Huettinger公司之電源系統簡介資料。
84.K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Technol. 204 (2010) 1661.
85.D. J. Christie, F. Tomasel, W. D. Sproul, and D. C. Carter, Journal of Vacuum Science &; Technology A 22 (2004) 1415.
86.D. V. Mozgrin, I. K. Fetisov, and G. V. Khodachenko, Plasma Physics Reports 21 (1995) 401.
87.I. K. Fetisov, A. A. Filippov, G. V. Khodachenko, D. V. Mozgrin, and A. A. Pisarev, Vacuum 53 (1999) 133.
88.J. Alamia, S. Bolz, and K. Sarakinos, Journal of Alloys and Compounds 483 (2009) 530.
89.C. Christou, and Z. H. Barber, Journal of Vacuum Science &; Technology A 18 (2000) 2897.
90.B. Chapman, “Glow Discharge Processes”, John Wiley &; Sons, 1981.
91.V. Stranak, M. Cada, Z. Hubicka, M. Tichy, and R. Hippler, Journal of Applied Physics 108 (2010) 043305.
92.Y. P. Purandare, A. Ehiasarian, and P. Eh. Hovsepian, Journal of Vacuum Science &; Technology A 26 (2008) 288.
93.J. Paulitsch, M. Schenkel, A. Schintlmeister, H. Hutter, and P.H. Mayrhofer, Thin Solid Films 518 (2010) 5553.
94.E. Broitman, Zs. Czigany, G. Greczynski, J. Bohlmark, R. Cremer, and L. Hultman, Surface &; Coatings Technology 204 (2010) 3349.
95.A. P. Ehiasarian, A. Vetushka, Y. Aranda Gonzalvo, G. Sa’fra’n, L. Sze’kely, and P. B. Barna, Journal of Applied Physics 109 (2011) 104314.
96.S. Konstantinidis, J. P. Dauchot, and M. Hecq, Thin Solid Films 515 (2006) 1182.
97.B. Szyszka, P. Loebmann, A. Georg, C. May, and C. Elsaesser, Thin Solid Films 518 (2010) 3109.
98.V. Sittinger, F. Ruske, W. Werner, C. Jacobs, B. Szyszka, and D.J. Christie, Thin Solid Films 516 (2008) 5847.
99.S. Konstantinidis, A. Hemberg, J. P. Dauchot, and M. Hecq, Journal of Vacuum Science &; Technology B 25 (2007) L19.
100.A. N. Reed, M. A. Lange, C. Muratore, J. E. Bultman, J. G. Jones, and A. A. Voevodin, Surface &; Coatings Technology 206 (2012) 3795.
101.V. Kouznetsov, K. Macak, J.M. Schneider, U. Helmersson, and I. Petrov, Surface &; Coatings Technology 122 (1999) 290.
102.J. Bohlmark, J. Alami, C. Christou, A.P. Ehiasarian, and U. Helmersson, Journal of Vacuum Science &; Technology A 23 (2005) 18.
103.V. Stranak, A. P. Herrendorf, H. Wulff, S. Drache, M. Cada, Z. Hubicka, M. Tichy, and R. Hippler, Surface &; Coatings Technology 222 (2013) 112.
104.J. Alami, P.O.A. Persson, J. Bohlmark, J.T. Gudmundsson, D. Music, and U. Helmersson, Journal of Vacuum Science &; Technology A 23 (2005) 278.
105.J. Alami, P. Eklund, J.M. Andersson, M. Lattemann, E. Wallin, J. Bolhmark, P. Persson, and U. Helmersson, Thin Solid Films 515 (2007) 3434.
106.S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, Applied Physics Letters 85 (2004) 5655.
107.D.J. Yun, S.W. Rhee, P, Journal of The Electrochemical Society 155 (2008) H899.
108.S.H. Lee, C.E. Tracy, J.R. Pitts, Electrochemical and Solid-State Letters 7 (2004) A299.
109.W.L. Jang, Y.M. Lu, W.S. Hwang, T.L. Hsiung, H.P. Wang, Applied Physics Letters 94 (2009) 062103-1.
110.A. Mallikarjuna Reddy, A. Sivasankar Reddy, K.-S. Lee, P. Sreedhara Reddy, Ceramics International 37 (2011) 2837.
111.K. Sago, H. Kuramochi, H. Iigusa, K Utsumi, H. Fujiwara, Journal of Applied Physics 115 (2014) 133505.
112.P.-H. Lei, H.-M. Wu, C.-M. Hsu, Surface &; Coatings Technology 206 (2012) 3258.
113.S. Khamseh, M. Nose, T. Kawabata, T. Nagae, K. Matsuda, and S. Ikeno, Journal of Alloys and Compounds 508 (2010) 191.
114.Y.-C. Hsiao, J.-W. Lee, Y.-C. Yang, B.-S. Lou, Thin Solid Films 549 (2013) 281
115.I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, Journal of Vacuum Science &; Technology A 21 (2003) S117.
116.M. Yang, Z. Shi, J. Feng, H. Pu, G. Li, J. Zhou, Q. Zhang, Thin Solid Films 519 (2011) 3021.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top