|
1.Stormvinter, A., Low Temperature Austenite Decomposition in Carbon Steels, in Department of Materials Science and Engineering Division of Physical Metallurgy. 2012, KTH Royal Institute of Technology: Stockholm. 2.Stormvinter, A., et al., Effect of carbon content on variant pairing of martensite in Fe–C alloys. Acta Materialia, 2012. 60(20): p. 7265-7274. 3.Totten, G.E., Steel Heat Treatment: Metallurgy and Technologies. 2006: Taylor &; Francis. 4.Thomas, G., Retained austenite and tempered martensite embrittlement. Metallurgical Transactions A, 1978. 9(3): p. 439-450. 5.Wells, M.G.H., An electron transmission study of the tempering of martensite in an Fe-Ni-C alloy. Acta Metallurgica, 1964. 12(4): p. 389-399. 6.Speich, G., Tempering of low-carbon martensite. Trans Met Soc AIME, 1969. 245(12): p. 2553-2564. 7.Dippenaar, R. and R. Honeycombe, The crystallography and nucleation of pearlite. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1973. 333(1595): p. 455-467. 8.Sarikaya, M., A.K. Jhingan, and G. Thomas, Retained austenite and tempered martensite embrittlement in medium carbon steels. Metallurgical Transactions A, 1983. 14(6): p. 1121-1133. 9.Rickett, R. and J. Hodge. Notch-toughness of fully hardened and tempered low-alloy steels. in Proceedings-american society for testing and materials. 1951. Amer Soc Testing Materials 100 Barr Harbor Dr, W Conshohocken, Pa 19428-2959. 10.Birkle, A., et al., A metallographic investigation of the factors affecting the notch toughness of maraging steels. 1964, DTIC Document. 11.Quench hardening of steel. n. d.; Available from: http://www.keytometals.com/Articles/Art12.htm. 12.Mohrbacher, H. Metallurgical optimization of martensitic steel sheet for automotive applications. in Proceedings of international conference on advanced steels, Guilin, China. 2010. 13.Melloy, G.F., P.R. Summon, and P.P. Podgursky, Optimizing the boron effect. Metallurgical Transactions, 1973. 4(10): p. 2279-2289. 14.Tungtrongpairoj, J., V. Uthaisangsuk, and W. Bleck, Determination of Yield Behaviour of Boron Alloy Steel at High Temperature. Journal of Metals, Materials and Minerals, 2009. 19(1): p. 29-38. 15.Hannerz, N., Critical hot plasticity and transverse cracking in continuous slab casting with particular reference to composition. Transactions of the Iron and Steel Institute of Japan, 1985. 25(2): p. 149-158. 16.成田貴一, et al., 高&;#28809;&;#28809;床部&;#12395;&;#12362;&;#12369;&;#12427;&;#12481;&;#12479;&;#12531;化合物&;#12398;生成. 鐵&;#12392;鋼: 日本&;#37921;鋼協會&;#12293;誌, 1976. 62(5): p. 525-534. 17.Zou, H. and J.S. Kirkaldy, Carbonitride precipitate growth in titanium/niobium microalloyed steels. Metallurgical Transactions A, 1991. 22(7): p. 1511-1524. 18.Nagata, M., J. Speer, and D. Matlock, Titanium nitride precipitation behavior in thin-slab cast high-strength low-alloy steels. Metallurgical and Materials Transactions A, 2002. 33(10): p. 3099-3110. 19.DeArdo, A., J. Gray, and L. Meyer, Fundamental metallurgy of niobium in steel. Niobium, 1981: p. 685-759. 20.Deardo, A.J., Niobium in modern steels. International Materials Reviews, 2003. 48(6): p. 371-402. 21.MI Yong-feng1, C.J.-c., ZHANG Zheng-yan1,QI Hai-quan1,ZHOU Xiao-long1,YONG Qi-long2, Effect of Carbon Content on the Solubility of Niobium Carbide in Austenite. Iron and Steel, 2012. 47(3): p. 84-88. 22.Porter, D.A. and K.E. Easterling, Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint). 1992: Taylor &; Francis. 23.Lupis, C.H.P., Chemical Thermodynamics of Materials. 1993: Prentice Hall. 24.Le Bon, A., J. Rofes-Vernis, and C. Rossard, Recrystallization and precipitation during hot working of a Nb-bearing HSLA steel. Metal Science, 1975. 9(1): p. 36-40. 25.Coladas, R., et al., Austenite grain growth in medium and high-carbon steels microalloyed with niobium. Metal science, 1977. 11(11): p. 509-516. 26.Weiss, I. and J. Jonas, Interaction between recrystallization and precipitation during the high temperature deformation of HSLA steels. Metallurgical Transactions A, 1979. 10(7): p. 831-840. 27.Wadsworth, J., J. Woodhead, and S. Keown, The influence of stoichiometry upon carbide precipitation. Metal science, 1976. 10(10): p. 342-348. 28.Gray, J.M. Niobium bearing steels in pipeline projects. in Niobium science and technology: Proc. Int. Symposium on Niobium, Orlando, Florida. 2001. 29.Ishizaki, K., et al., Manufacturing method of high tension, high toughness steel. 1974, US Patent 3,849,209. 30.Le Houillier, R., G. Begin, and A. Dube, A study of the peculiarities of austenite during the formation of bainite. Metallurgical Transactions, 1971. 2(9): p. 2645-2653. 31.Matsumoto, K., T. Okita, and C. Ouchi, Method of manufacturing high strength low alloys steel plates with superior low temperature toughness. 1980, Google Patents. 32.Silcock, J.M. and W. Tunstall, Partial dislocations associated with NbC precipitation in austenitic stainless steels. Philosophical Magazine, 1964. 10(105): p. 361-389. 33.Van Aswegen, J., R. Honeycombe, and D. Warrington, Precipitation on stacking faults in Cr-Ni austenitic steels. Acta metallurgica, 1964. 12(1): p. 1-13. 34.Kurdjumov, G. and A. Khachaturyan, Nature of axial ratio anomalies of the martensite lattice and mechanism of diffusionless γ→ α transformation. Acta Metallurgica, 1975. 23(9): p. 1077-1088. 35.Takechi, H., Metallurgical Aspects on Interstitial Free Sheet Steel From Industrial Viewpoints. ISIJ International, 1994. 34(1): p. 1-8. 36.Uemori, R. and M. Tanino, Study of ultra-fine precipitates in low alloy steels. Le Journal de Physique Colloques, 1987. 48(C6): p. C6-399-C6-404. 37.Hong, S.G., K.B. Kang, and C.G. Park, Strain-induced precipitation of NbC in Nb and Nb–Ti microalloyed HSLA steels. Scripta Materialia, 2002. 46(2): p. 163-168. 38.Iza-Mendia, A., et al., Precipitation of Nb in Ferrite After Austenite Conditioning. Part I: Microstructural Characterization. Metallurgical and Materials Transactions A, 2012. 43(12): p. 4553-4570. 39.Kolgatin, N.N., V.P. Teodorovich, and V.I. Deryabina, Effect of hydrogen on two-layer steel. Chemical and Petroleum Engineering, 1966. 2(5): p. 303-305. 40.Poulter, T.C. and L. Uffelman, The Penetration of Hydrogen Through Steel at Four Thousand Atmospheres. Journal of Applied Physics, 1932. 3(3): p. 147-148. 41.Weigel, J. and E. Fromm, Determination of hydrogen absorption and desorption processes in aluminum melts by continuous hydrogen activity measurements. Metallurgical Transactions B, 1990. 21(5): p. 855-860. 42.Louthan, M.R., Jr., Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst. Journal of Failure Analysis and Prevention, 2008. 8(3): p. 289-307. 43.Bockris, J.O.M., et al., Comprehensive treatise of electrochemistry. Vol. 2. 1981: Springer. 44.Wroblowa, H., B.J. Piersma, and J.O.M. Bockris, Studies of the mechanism of the anodic oxidation of ethylene in acid and alkaline media. Journal of Electroanalytical Chemistry (1959), 1963. 6(5): p. 401-416. 45.Hirth, J.P., Effects of hydrogen on the properties of iron and steel. Metallurgical Transactions A, 1980. 11(6): p. 861-890. 46.Pundt, A. and R. Kirchheim, HYDROGEN IN METALS: Microstructural Aspects. Annual Review of Materials Research, 2006. 36(1): p. 555-608. 47.Pressouyre, G.M., A classification of hydrogen traps in steel. Metallurgical Transactions A, 1979. 10(10): p. 1571-1573. 48.Michler, T. and M.P. Balogh, Hydrogen environment embrittlement of an ODS RAF steel–Role of irreversible hydrogen trap sites. International Journal of Hydrogen Energy, 2010. 35(18): p. 9746-9754. 49.Szost, B.A., R.H. Vegter, and P.J. Rivera-Diaz-del-Castillo, Hydrogen-Trapping Mechanisms in Nanostructured Steels. Metallurgical and Materials Transactions A, 2013. 44(10): p. 4542-4550. 50.Pressouyre, G.M., Trap theory of Hydrogen embrittlement. Acta Metallurgica, 1980. 28(7): p. 895-911. 51.Xu, J., et al., Hydrogen permeation and diffusion in a 0.2 C–13Cr martensitic stainless steel. Scripta metallurgica et materialia, 1993. 29(7): p. 925-930. 52.Frappart, S., et al., Study of the hydrogen diffusion and segregation into Fe–C–Mo martensitic HSLA steel using electrochemical permeation test. Journal of Physics and Chemistry of Solids, 2010. 71(10): p. 1467-1479. 53.Devanathan, M. and Z. Stachurski, The adsorption and diffusion of electrolytic hydrogen in palladium. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1962. 270(1340): p. 90-102. 54.Tsay, L.W., et al., Effect of hydrogen environment on the notched tensile properties of T-250 maraging steel annealed by laser treatment. Corrosion Science, 2002. 44(6): p. 1311-1327. 55.Cheng, Y. and L. Niu, Mechanism for hydrogen evolution reaction on pipeline steel in near-neutral pH solution. Electrochemistry Communications, 2007. 9(4): p. 558-562. 56.Volkl, J. and G. Alefeld, Diffusion of hydrogen in metals, in Hydrogen in Metals I, G. Alefeld and J. Volkl, Editors. 1978, Springer Berlin Heidelberg. p. 321-348. 57.Bauccio, M. and A.S. Metals, ASM Metals Reference Book. 1993: ASM International. 58.Corrosion Consultancy. 2004, CorCon. 59.Gangloff, R.P., Hydrogen assisted cracking of high strength alloys. 2003, DTIC Document. 60.Gest, R. and A. Troiano, Stress corrosion and hydrogen embrittlement in an aluminum alloy. Corrosion, 1974. 30(8): p. 274-279. 61.Whiteman, M. and A. Troiano, Hydrogen embrittlement of austenitic stainless steel. Corrosion, 1965. 21(2): p. 53-56. 62.Oriani, R.A., The diffusion and trapping of hydrogen in steel. Acta Metallurgica, 1970. 18(1): p. 147-157. 63.Oriani, R., Hydrogen embrittlement of steels. Annual review of materials science, 1978. 8(1): p. 327-357. 64.Goken, M., H. Vehoff, and P. Neumann, Atomic force microscopy investigations of loaded crack tips in NiAl. Journal of Vacuum Science &; Technology B, 1996. 14(2): p. 1157-1161. 65.Lynch, S., Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process. Acta Metallurgica, 1988. 36(10): p. 2639-2661. 66.Beachem, C., A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metallurgical Transactions, 1972. 3(2): p. 441-455. 67.Micromechanical and macroscopic modelling. n. d.; Available from: http://www.icams.de/content/departments/mmm/index.html?view=details&;project=47&;information=projects. 68.Troiano, A.R., The role of hydrogen and other interstitials in the mechanical behavior of metals. trans. ASM, 1960. 52(1): p. 54-80. 69.Pressouyre, G., Current solutions to hydrogen problems in steel. 1982. 70.Figueroa, D. and M. Robinson, The effects of sacrificial coatings on hydrogen embrittlement and re-embrittlement of ultra high strength steels. Corrosion Science, 2008. 50(4): p. 1066-1079. 71.McMahon Jr, C., Hydrogen-induced intergranular fracture of steels. Engineering Fracture Mechanics, 2001. 68(6): p. 773-788. 72.Bernstein, I. and A. Thompson, Hydrogen effects in metals. Warrendale, PA, Metallurgical Society of AIME, 1981, 1071 p, 1981. 73.Moody, N., M. Perra, and S. Robinson, Hydrogen pressure and crack tip stress effects on slow crack growth thresholds in an iron-based superalloy. Scripta Metallurgica, 1988. 22(8): p. 1261-1266. 74.Pao, P. and R. Wei, Hydrogen assisted crack growth in 18Ni (300) maraging steel. Scripta Metallurgica, 1977. 11(6): p. 515-520. 75.Toribio, J., The role of crack tip strain rate in hydrogen assisted cracking. Corrosion science, 1997. 39(9): p. 1687-1697. 76.Bromley, D.M., Hydrogen Embrittlement testing of austenitic stainless steels sus 316 and 316L. 2008. 77.Andreone, C. and A. Murut, Influence of the austenite retained in the hydrogen embrittlement in AISI 4340. Scripta Metallurgica et Materialia, 1990. 24(8): p. 1453-1458. 78.Enomoto, M., D. Hirakami, and T. Tarui, Thermal desorption analysis of hydrogen in high strength martensitic steels. Metallurgical and Materials Transactions A, 2012. 43(2): p. 572-581. 79.Maroef, I., et al., Hydrogen trapping in ferritic steel weld metal. International Materials Reviews, 2002. 47(4): p. 191-223. 80.Park, Y., et al., Retained austenite as a hydrogen trap in steel welds. Welding Journal-New York-, 2002. 81(2): p. 27-S. 81.Perez Escobar, D., et al., Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel. Acta Materialia, 2012. 60(6-7): p. 2593-2605. 82.Michler, T. and J. Naumann, Microstructural aspects upon hydrogen environment embrittlement of various bcc steels. International Journal of Hydrogen Energy, 2010. 35(2): p. 821-832. 83.Lessar, J. and W. Gerberich, Grain size effects in hydrogen-assisted cracking. Metallurgical Transactions A, 1976. 7(7): p. 953-960. 84.Bernstein, I. and A. Thompson, The Effects of Metallurgical Variables on the Environmental Fracture of Steels. 1975, DTIC Document. 85.Kameda, J., Equilibrium and growth characteristics of hydrogen-induced intergranular cracking in phosphorus-doped and high purity steels. Acta Metallurgica, 1986. 34(9): p. 1721-1735. 86.Takasawa, K., et al., Effects of grain size on hydrogen environment embrittlement of high strength low alloy steel in 45 MPa gaseous hydrogen. Strength, Fracture and Complexity, 2011. 7(1): p. 87-98. 87.Gehrmann, F., et al., Hydrogen Transport and Cracking in Metals. Institute of Materials, London, 1995: p. 216.
|