(3.237.97.64) 您好!臺灣時間:2021/03/04 14:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳牧民
研究生(外文):Mu-Min Chen
論文名稱:使用生質燃料的固態燃料電池組之開發及測試
論文名稱(外文):Development and testing of Solid Oxide Fuel Cells (SOFCs) operated with bio-fuel
指導教授:韋文誠韋文誠引用關係
口試委員:楊永欽郭俞麟洪逸明
口試日期:2014-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:97
中文關鍵詞:中溫固態氧化物燃料電池(IT-SOFC)陽極澆注材熱絕緣可攜式加熱器生質燃料
外文關鍵詞:IT-SOFCanodecastable materialsthermal insulationportableheaterbiofuel
相關次數:
  • 被引用被引用:3
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以四層結構Ni-YSZ/8YSZ/SDC/LSCF組成之固態氧化物燃料電池(SOFC),在一個小型、可攜帶式加熱器中進行性能輸出。經由粉體分散實驗以及鍍膜漿料的研究,製備出分散均勻之Ni和8YSZ陽極,也可控制電解質的厚度變化。另外,在強度,孔隙率,以及Ni/ YSZ陽極的收縮率之間的關係進行了探討,揭示陽極的孔隙率的重要性。通過AC阻抗儀測量,針對SOFC全電池的電阻進行了全面性的研究。最後,在提供H2做為燃料的情況下,單電池功率輸出可達172 mW cm-2;另一方面,通過使用柳杉渣(CW)的生質燃料,電功率輸出約為62 mW cm-2。本實驗藉由結合固態燃料電池與具有高氧化鋁基澆注料和陶瓷耐火綿之微型加熱器,示範出可攜式型燃料電池的在未來的可行性以及潛力。

Solid Oxide Fuel Cell (SOFC) consisted of four layer structure of Ni-YSZ/ 8YSZ/ SDC/ LSCF was fabricated and sufficiently heated by a portable heater sufficient to an operation temperature of <800 oC. The detail investigation of powder dispersion in slurry, the thickness variation of electrolyte, assembly of half and single cells was conducted. By using AC impedance measuring, the resistances of the SOFC were also investigated. The relationship between strength, porosity, and shrinkage of the Ni/YSZ anode was also discussed to reveal the importance of anode porosity. The power output of single SOFC is 172 mW cm-2 by providing H2 and 62 mW cm-2 by using Cryptomeria waste (CW) bio-fuels. On the other hand, portable heater with high alumina-based castables and ceramic blanket were assembled that can be a prototype of the portable SOFC in future.

摘要 Ⅰ
Abstract Ⅱ
List of Figures Ⅶ
List of Tables XI
Chapter 1 Introduction 1
Chapter 2 literature review 3
2.1 Advantages of Solid Oxide Fuel Cell (SOFC) 3
2.1.1 Anode Materials for SOFC 4
2.1.2 Properties of Ni-Based Anodes 5
2.1.3 Triple-phase Boundary in Anode 6
2.2 Cell Stacks and Operation Behavior 6
2.2.1 Tubular or Planar design of SOFC 7
2.2.2 Gas and Fuel Passageways 8
2.3 Heaters for SOFC 9
2.3.1 Resistive Heaters 10
2.3.2 Combustion Heaters 11
Chapter 3 Experimental Procedure 22
3.1 Materials 22
3.2 Fabrication of Powder Mixtures 22
3.2.1 Colloidal Process 23
3.3 Anode Preparation 24
3.4 Electrolyte Preparation 24
3.4.1 Spin-Coating Method 24
3.4.2 Dip-Coating Method 25
3.5 Preparation of Barrier Layer 25
3.6 Cathode Preparation 26
3.7 Characterization 26
3.7.1 Sedimentation Test 26
3.7.2 Particle Size Measurement 27
3.7.3 SEM Analysis 28
3.7.4 Density Measurement 28
3.7.5 EIS Analysis (AC-impedance) 29
3.7.6 Thermal Analysis 29
3.7.7 Measurement of Poisson’s Ratio 30
3.7.8 Measurement of Strength 31
3.7.9 Hot-wire method 32
3.7.10 SOFC Assembly and Test 33
3.8 Cell Test 35
3.9 Castable Powder Preparation 35
3.10 Assembly of Heater 36
Chapter 4 Results 40
4.1 Properties of Synthesized Powders 40
4.1.1 Particle Size and Dispersion Properties 40
4.1.2 Porosity and Shrinkage Behavior 41
4.1.3 Thermal Analysis of Pore Former 43
4.1.4 Compression Behavior of Anode Powders 44
4.1.5 Strength of Anode Disk 44
4.2 Fabrication and Properties of Half Cell 56
4.2.1 Properties of 8YSZ Coating Slurry 56
4.2.2 Electrolyte Film by Spin-Coating and Dip-coating Methods 57
4.2.3 Sintering Behavior 59
4.3 Cell Test 63
4.3.1 EIS spectrum Analysis of Full Cells 63
4.3.2 I-V test 64
4.3.3 Bio-fuel Testing 66
4.4 Assembly of Performance of Portable Cell 71
4.4.1 Thermal Properties of Castables 71
4.4.2 Heating Properties 73
4.4.3 Self-sustainable SOFC 74
Chapter 5 Discussion 82
5.1 Conductivity in Ni-Based Anode 82
5.2 Shrinkage Behavior 83
5.3 Properties of Heater 84
Chapter 6 Conclusions 87
Reference 89


[1] Forschungszentrum Julich, “Development of high power density solid oxide fuel cells (SOFCs) for long-term operation,” Mater. Sci. Forum, 654-656 (2010) 2875-2878.
[2] Fundaments and Technology of Solid Oxide Fuel Cells, by W. C. J. Wei, Kao-Li Publisher, (2013).
[3] US patent 7,517,603 (Sep. 23, 2004 filed), US patent 7858261 (May 2, 2006 filed), US patent 7,897292 (Apr. 10, 2006 filed), US patent 7947407 (Apr. 27th, 2005 filed), US patent 8,092,944 (Mar. 4, 2009 filed), and US patent 8,273,485(May 18, 2006 filed).
[4] Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, S. A. Barnett, “A thermally self-sustained micro SOFC stack with high power density,” Nature let., Vol. 435, June (2005) 795-798.
[5] B. K. Lai, K. Kerman, S. Ramanathan, “Methane-fueled thin SOFCs with nanoporous Pd anodes,” J. Power Sources 196 (2011) 6299-6304 and C. Ko, K. Kerman, S. Ramanathan, “Ultrathin film SOFCs utilizing un-doped nanostructured zirconia electrolytes,” J. Power Source, 213 (2012) 343-349.
[6] P. C. Su, C. C. Chao, J. H. Shim, R. Fasching, and F. B. Prinz, “SOFC with corrugated thin film electrolyte,” Nano-let. Vol. 8[8] (2008) 2289-2292.
[7] A. Evans, A. Bieberle-Hutter, H. Galinski, J. L. M. Rupp, T. Ryll, B. Scherrer, R. Tolke, L. J. Gauckler, “Micro-SOFCs: status, challenges and chances,” Monatsh Chem., 140 (2009) 975-983.
[8] C. D. Baertsch, K. F. Jensen, J. L. Hertz, H. L. Tuller, S. T. Vengallatore, S. Mark Spearing, M. A. Schmidt, “Fabrication and structural characterization of self supporting electrolyte membranes for a micro SOFC,” J. Mat. Res., 19[9] (2004) 2604-14.
[9] A. Bieberle-Hutter, D. Beckel, U. P. Muecke, J. L. M. Rupp, A. Infortuna, and L. J. Gaukler, “Micro-solid oxide fuel cells as battery replacement,” MST News, 4 [05] 12-15, Energy for Autonomous Microsystems, (2004).
[10] Forschungszentrum Julich, Germany, 2005.
[11]http://renewables.seenews.com/news/bloom-energy-to-install-500-kw-of-fuel -cell- systems -for-centurylink-381934, Bloom energy (2013).
[12] Toho Gas, Japan, 2008.
[13] 韋文誠, “固態燃料電池技術”,高立圖書,(2013)
[14] R. Rostrup-Nielsen, J-H. Bak Hansen, “CO2-reforming of methane over transition metals,” J. Catalysis, 144 (1993) 38-49.
[15] M. Radovic, E. Lara-Curzio, “Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen,” Acta Mater. 52 (2004) 5747–5756.
[16] D. Simwonis, H. ThuElen, F.J. Dias, A. Naoumidis, D. StoEver, “Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix1 process, “J. Mater. Process. Technol., 92-93 (1999) 107-111.
[17] H. Koide, Y. Someya, T. Yoshida, T. Maruyama,” Properties of Ni/YSZ cermet as anode for SOFC,” Solid State Ionics, 132 (2000) 253–260.
[18] D. W. Dees, T. D. Claar, T. E. Easler, D. C. Fee, and F. C. Mrazek, “Conductivity of porous Ni/Zr2O-Y2O3 cermets,” J. Electrochem. Soc., 134 (1987) 2142-46.
[19] L. Blum, R. Steinberger-Wilckens, W.A. Meulenberg, H. Nabielek, “SOFC Worldwide — Technology Development Status and Early Applications,” Fuel Cell Technologies: State and Perspectives, 202 (2005) 107-122.
[20] T. H. Lim, J. L. Park, S. B. Lee, S. J. Park, R. H. Song, D. R. Shin,” Fabrication and operation of a 1 kW class anode-supported flat tubular SOFC stack,” International J. Hydrogen Energy, 35 (2010) 9687-9692.
[21] H. Y. Jung, S. H. Choi, H. Kim, J. W. Son, J. Kim, H. W. Lee, J. H. Lee,” Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10 cm×10 cm anode-supported cells,” J. Power Sources, 159 (2006) 478–483.
[22] Mo, Y. Okawa, K. Inoue, K. Natukawa,” Low-voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas sensor array,” Sensors and Actuators A, 100 (2002) 94–101.
[23] B. Jiang, P. Muralt, P. Heeb, A. J. Santis-Alvarez, M. Nabavi, D. Poulikakos, P. Niedermann, T. Maeder, “A micro heater platform with fluid channels for testing micro-solid oxide fuel cell components,” Sensors and Actuators B, 175 (2012) 218– 224.
[24] S. E. V. Murrysville, R. A. George, “Anode gas stack start-up heater and pure gas generator,” U.S. Patent 7 951 500, May 31, 2011.
[25] J. D. Morse, A. F. Jankowski, “Method for forming a package for MEMS-based fuel cell,” U.S. Patent 8 445 148, May 21, 2013.
[26] K. Kanawka, M. H. D. Othman, Z. Wu, N. Droushiotis, G. Kelsall, K. Li, “A dual layer Ni/Ni-YSZ hollow &;#64257;bre for micro-tubular SOFC anode support with a current collector,” Electrochemistry Communications, 13 (2011) 93–95.
[27] W. Pan, Z. Lu, K. Chen, X. Huang, B. Wei, Wenyuan Li, Z. Wang, W.Su, “Novel polymer fibers prepared by electrospinning for use as the pore-former for the anode of solid oxide fuel cell,” Electrochimica Acta, 55 (2010) 5538–5544.
[28] H. Moon, S. D. Kim, S. H. Hyun, H. S. Kim, “Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing,” International J. Hydrogen Energy, 33 ( 2008 ) 1758 – 176.
[29] A. F. Zuvich, A. Caneiro, C. Cotaro, A. Serquis,” Preparation and characterization of anodes for intermediate temperature solid oxide fuel cells,” Procedia Materials Science, 1 ( 2012 ) 628 – 635.
[30] P. Holtappels, C. Sorof, M. C. Verbraeken, S. Rambert, U. Vogt,” Preparation of Porosity–Graded SOFC Anode Substrates,” FUEL CELLS 06, 2 (2006) 113–116.
[31] T. Fukui, S. Ohara, M. Naito, K. Nogi, “Performance and stability of SOFC anode fabricated from NiO–YSZ composite particles,” J. Power Sources, 110 (2002) 91–95.
[32] N.M. S ammes, Y. Du, R. Bove, “Design and fabrication of a 100W anode supported micro-tubular SOFC,” J. Power Sources, 145 (2005) 428–434.
[33] Y. Chen, F. Chen, D. Ding, J. Gao, “Development and Fabrication of a New Concept Planar-tubular Solid Oxide Fuel Cell (PT-SOFC),” FUEL CELLS, 11, 3 (2011) 451–458.
[34] T. H. Lim, J. L. Park, S. B. Lee, S. J. Park, R. H. Song, D. R. Shin,” Fabrication and operation of a 1 kW class anode-supported flat tubular SOFC stack,” International J. Hydrogen Energy, 35 (2010) 9687-9692.
[35] H. Y. Jung, S. H. Choi, H. Kim, J. W. Son, J. Kim, H. W. Lee, J. H. Lee,” Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10 cm×10 cm anode-supported cells,” J. Power Sources, 159 (2006) 478–483.
[36] S. B. Lee, T. H. Lim, R. H. Song, D. R. Shin, S. K. Dong, “Development of a 700Wanode-supported micro-tubular SOFC stack for APU applications,” International J. Hydrogen Energy, 33 ( 2008 ) 2330 – 2336.
[37] Y. Funahashi, T. Shimamori, T. Suzuki, Y. Fujishiro, M. Awano, “Fabrication and characterization of components for cube shaped micro tubular SOFC bundle,” J. Power Sources, 163 (2007) 731–736.
[38] Q.L. Liu, S.H. Chan, C.J. Fu, G. Pasciak, “Fabrication and characterization of large-size electrolyte/anode bilayer structures for low-temperature solid oxide fuel cell stack based on gadolinia-doped ceria electrolyte,” Electrochemistry Communications, 11 (2009) 871–874.
[39] W. Wu, W. Guan, G. Wang, W. Liu, Q. Zhang,T. Chen, W. G. Wang,” Evaluation of Ni80Cr20/(La0.75Sr0.25)0.95MnO3 dual layer coating on SUS 430 stainless steel used as metallic interconnect for solid oxide fuel cells,” International J. Hydrogen Energy, 39 (2014) 996-1004.
[40] Y. Mo, Y. Okawa, K. Inoue, K. Natukawa,” Low-voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas sensor array,” Sensors and Actuators A, 100 (2002) 94–101.
[41] B. Jiang, P. Muralt, P. Heeb, A. J. Santis-Alvarez, M. Nabavi, D. Poulikakos, P. Niedermann, T. Maeder, “A micro heater platform with fluid channels for testing micro-solid oxide fuel cell components,” Sensors and Actuators B, 175 (2012) 218– 224.
[42] A. J. S. Alvarez, M. Nabavi, N. Hild, D. Poulikakos, W. J. Stark, “A fast hybrid start-up process for thermally self-sustained catalytic n-butane reforming in micro-SOFC power plants,” Energy Environ. Sci., 4 (2011) 3041-3050.
[43] D. Beckel, D. Briand, A. Bieberle-H‥utter, J. Courbat, N. F. de Rooij, L. J. Gauckler, ”Micro-hotplates—A platform for micro-solid oxide fuel cells,” J. Power Sources, 166 (2007) 143–148.
[44] S. Hamann, M. Ehmann, S. Thienhaus, A. Savan, A. Ludwig,” Micro-hotplates for high-throughput thin film processing and in situ phase transformation characterization.” Sensors and Actuators A, 147 (2008) 576–582.
[45] S. E. V. Murrysville, R. A. George, “Anode gas stack start-up heater and pure gas generator,” U. S. Patent 7 951 500, May 31, 2011.
[46] 林廷諭,國立台灣大學碩士論文,2012
[47] Q. A. Huang, R. Hui, B. Wang, J. Zhanga, “Review of AC impedance modeling and validation in SOFC diagnosis,” Electrochimica Acta, 52 (2007) 8144–8164.
[48] A. A. Porporatia, T. Miyatake, K. Schilcherc, W. Zhua, G. Pezzottia, “Ball-on-ring test in ceramic materials revisited by means of &;#64258;uorescence piezospectroscopy,” J. European Ceram. Soc., 31 (2011) 2031–2036.
[49] ASTM, “Standard Test Method for Thermal Conductivity of Refractories by Hot Wire,” Desingnation, C 1113/C 1113M-09
[50] N. M. Abu-Hamdeh and R. C. Reader, “Soil Thermal Conductivity: Effects of Density, Moisture, Salt Concentration, and Organic Matter,” Soil. Sci. Soc. Am. J., 64 (2000) 1285-129
[51] 蔡居諭,國立台灣大學碩士論文,2010
[52] J. R. Rostrupnielsen, J.H.B. Hansen, “CO2-reforming of methane over transition metals,” J. Power Source,144 (1993) 38–49.
[53] 張源開,國立台灣大學碩士論文,2014
[54] D. Marinha, J. Hayd, L. Dessemond, E. Ivers-Tiffee, E. Djurado, “Performance of (La,Sr)(Co,Fe)O3-x double-layer cathode films for intermediate temperature solid oxide fuel cell,” J. Power Sources, 196 (2011) 5084-5090.
[55] H. Tikkanen, C.Suciu, I. Warnhus, A. C. Hoffmann, “Dip coating of 8YSZ nanopowder for SOFC applications” Ceram. International 37 (2011) 2869-77.
[56] Tosoh, http://www.tosoh.com/our-products/advanced-materials/zirconia-powders, (2013).
[57] China Steel Chemical Corp., http://www.cscc.com.tw/products.htm, (2013).
[58] Wolfram Research, Inc., http://www.periodictable.com/Elements/028/data.html, (2013).
[59] 劉立德、黃德榮、賴佑瑋、陳牧民、韋文誠,”固態燃料電池之薄層電解質與陽極共燒之性質評估”,粉末冶金會刊,38[4] (2013) 226-239.
[60] Q. A. Huang, R. Hui, B. Wang, J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis,” Electrochimica Acta 52 (2007) 8144–8164
[61] 林國郎,福井雅男,”非定常熱線法&;#12395;&;#12424;&;#12427;熱伝導率&;#12398;測定&;#20516;&;#12395;及&;#12412;&;#12377;試料&;#28201;度&;#22793;動&;#12398;影響”,窯業協&;#20250;誌,85 (1977) 605-607.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔