[1] Forschungszentrum Julich, “Development of high power density solid oxide fuel cells (SOFCs) for long-term operation,” Mater. Sci. Forum, 654-656 (2010) 2875-2878.
[2] Fundaments and Technology of Solid Oxide Fuel Cells, by W. C. J. Wei, Kao-Li Publisher, (2013).
[3] US patent 7,517,603 (Sep. 23, 2004 filed), US patent 7858261 (May 2, 2006 filed), US patent 7,897292 (Apr. 10, 2006 filed), US patent 7947407 (Apr. 27th, 2005 filed), US patent 8,092,944 (Mar. 4, 2009 filed), and US patent 8,273,485(May 18, 2006 filed).
[4] Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, S. A. Barnett, “A thermally self-sustained micro SOFC stack with high power density,” Nature let., Vol. 435, June (2005) 795-798.
[5] B. K. Lai, K. Kerman, S. Ramanathan, “Methane-fueled thin SOFCs with nanoporous Pd anodes,” J. Power Sources 196 (2011) 6299-6304 and C. Ko, K. Kerman, S. Ramanathan, “Ultrathin film SOFCs utilizing un-doped nanostructured zirconia electrolytes,” J. Power Source, 213 (2012) 343-349.
[6] P. C. Su, C. C. Chao, J. H. Shim, R. Fasching, and F. B. Prinz, “SOFC with corrugated thin film electrolyte,” Nano-let. Vol. 8[8] (2008) 2289-2292.
[7] A. Evans, A. Bieberle-Hutter, H. Galinski, J. L. M. Rupp, T. Ryll, B. Scherrer, R. Tolke, L. J. Gauckler, “Micro-SOFCs: status, challenges and chances,” Monatsh Chem., 140 (2009) 975-983.
[8] C. D. Baertsch, K. F. Jensen, J. L. Hertz, H. L. Tuller, S. T. Vengallatore, S. Mark Spearing, M. A. Schmidt, “Fabrication and structural characterization of self supporting electrolyte membranes for a micro SOFC,” J. Mat. Res., 19[9] (2004) 2604-14.
[9] A. Bieberle-Hutter, D. Beckel, U. P. Muecke, J. L. M. Rupp, A. Infortuna, and L. J. Gaukler, “Micro-solid oxide fuel cells as battery replacement,” MST News, 4 [05] 12-15, Energy for Autonomous Microsystems, (2004).
[10] Forschungszentrum Julich, Germany, 2005.
[11]http://renewables.seenews.com/news/bloom-energy-to-install-500-kw-of-fuel -cell- systems -for-centurylink-381934, Bloom energy (2013).
[12] Toho Gas, Japan, 2008.
[13] 韋文誠, “固態燃料電池技術”,高立圖書,(2013)
[14] R. Rostrup-Nielsen, J-H. Bak Hansen, “CO2-reforming of methane over transition metals,” J. Catalysis, 144 (1993) 38-49.
[15] M. Radovic, E. Lara-Curzio, “Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen,” Acta Mater. 52 (2004) 5747–5756.
[16] D. Simwonis, H. ThuElen, F.J. Dias, A. Naoumidis, D. StoEver, “Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix1 process, “J. Mater. Process. Technol., 92-93 (1999) 107-111.
[17] H. Koide, Y. Someya, T. Yoshida, T. Maruyama,” Properties of Ni/YSZ cermet as anode for SOFC,” Solid State Ionics, 132 (2000) 253–260.
[18] D. W. Dees, T. D. Claar, T. E. Easler, D. C. Fee, and F. C. Mrazek, “Conductivity of porous Ni/Zr2O-Y2O3 cermets,” J. Electrochem. Soc., 134 (1987) 2142-46.
[19] L. Blum, R. Steinberger-Wilckens, W.A. Meulenberg, H. Nabielek, “SOFC Worldwide — Technology Development Status and Early Applications,” Fuel Cell Technologies: State and Perspectives, 202 (2005) 107-122.
[20] T. H. Lim, J. L. Park, S. B. Lee, S. J. Park, R. H. Song, D. R. Shin,” Fabrication and operation of a 1 kW class anode-supported flat tubular SOFC stack,” International J. Hydrogen Energy, 35 (2010) 9687-9692.
[21] H. Y. Jung, S. H. Choi, H. Kim, J. W. Son, J. Kim, H. W. Lee, J. H. Lee,” Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10 cm×10 cm anode-supported cells,” J. Power Sources, 159 (2006) 478–483.
[22] Mo, Y. Okawa, K. Inoue, K. Natukawa,” Low-voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas sensor array,” Sensors and Actuators A, 100 (2002) 94–101.
[23] B. Jiang, P. Muralt, P. Heeb, A. J. Santis-Alvarez, M. Nabavi, D. Poulikakos, P. Niedermann, T. Maeder, “A micro heater platform with fluid channels for testing micro-solid oxide fuel cell components,” Sensors and Actuators B, 175 (2012) 218– 224.
[24] S. E. V. Murrysville, R. A. George, “Anode gas stack start-up heater and pure gas generator,” U.S. Patent 7 951 500, May 31, 2011.
[25] J. D. Morse, A. F. Jankowski, “Method for forming a package for MEMS-based fuel cell,” U.S. Patent 8 445 148, May 21, 2013.
[26] K. Kanawka, M. H. D. Othman, Z. Wu, N. Droushiotis, G. Kelsall, K. Li, “A dual layer Ni/Ni-YSZ hollow &;#64257;bre for micro-tubular SOFC anode support with a current collector,” Electrochemistry Communications, 13 (2011) 93–95.
[27] W. Pan, Z. Lu, K. Chen, X. Huang, B. Wei, Wenyuan Li, Z. Wang, W.Su, “Novel polymer fibers prepared by electrospinning for use as the pore-former for the anode of solid oxide fuel cell,” Electrochimica Acta, 55 (2010) 5538–5544.
[28] H. Moon, S. D. Kim, S. H. Hyun, H. S. Kim, “Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing,” International J. Hydrogen Energy, 33 ( 2008 ) 1758 – 176.
[29] A. F. Zuvich, A. Caneiro, C. Cotaro, A. Serquis,” Preparation and characterization of anodes for intermediate temperature solid oxide fuel cells,” Procedia Materials Science, 1 ( 2012 ) 628 – 635.
[30] P. Holtappels, C. Sorof, M. C. Verbraeken, S. Rambert, U. Vogt,” Preparation of Porosity–Graded SOFC Anode Substrates,” FUEL CELLS 06, 2 (2006) 113–116.
[31] T. Fukui, S. Ohara, M. Naito, K. Nogi, “Performance and stability of SOFC anode fabricated from NiO–YSZ composite particles,” J. Power Sources, 110 (2002) 91–95.
[32] N.M. S ammes, Y. Du, R. Bove, “Design and fabrication of a 100W anode supported micro-tubular SOFC,” J. Power Sources, 145 (2005) 428–434.
[33] Y. Chen, F. Chen, D. Ding, J. Gao, “Development and Fabrication of a New Concept Planar-tubular Solid Oxide Fuel Cell (PT-SOFC),” FUEL CELLS, 11, 3 (2011) 451–458.
[34] T. H. Lim, J. L. Park, S. B. Lee, S. J. Park, R. H. Song, D. R. Shin,” Fabrication and operation of a 1 kW class anode-supported flat tubular SOFC stack,” International J. Hydrogen Energy, 35 (2010) 9687-9692.
[35] H. Y. Jung, S. H. Choi, H. Kim, J. W. Son, J. Kim, H. W. Lee, J. H. Lee,” Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10 cm×10 cm anode-supported cells,” J. Power Sources, 159 (2006) 478–483.
[36] S. B. Lee, T. H. Lim, R. H. Song, D. R. Shin, S. K. Dong, “Development of a 700Wanode-supported micro-tubular SOFC stack for APU applications,” International J. Hydrogen Energy, 33 ( 2008 ) 2330 – 2336.
[37] Y. Funahashi, T. Shimamori, T. Suzuki, Y. Fujishiro, M. Awano, “Fabrication and characterization of components for cube shaped micro tubular SOFC bundle,” J. Power Sources, 163 (2007) 731–736.
[38] Q.L. Liu, S.H. Chan, C.J. Fu, G. Pasciak, “Fabrication and characterization of large-size electrolyte/anode bilayer structures for low-temperature solid oxide fuel cell stack based on gadolinia-doped ceria electrolyte,” Electrochemistry Communications, 11 (2009) 871–874.
[39] W. Wu, W. Guan, G. Wang, W. Liu, Q. Zhang,T. Chen, W. G. Wang,” Evaluation of Ni80Cr20/(La0.75Sr0.25)0.95MnO3 dual layer coating on SUS 430 stainless steel used as metallic interconnect for solid oxide fuel cells,” International J. Hydrogen Energy, 39 (2014) 996-1004.
[40] Y. Mo, Y. Okawa, K. Inoue, K. Natukawa,” Low-voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas sensor array,” Sensors and Actuators A, 100 (2002) 94–101.
[41] B. Jiang, P. Muralt, P. Heeb, A. J. Santis-Alvarez, M. Nabavi, D. Poulikakos, P. Niedermann, T. Maeder, “A micro heater platform with fluid channels for testing micro-solid oxide fuel cell components,” Sensors and Actuators B, 175 (2012) 218– 224.
[42] A. J. S. Alvarez, M. Nabavi, N. Hild, D. Poulikakos, W. J. Stark, “A fast hybrid start-up process for thermally self-sustained catalytic n-butane reforming in micro-SOFC power plants,” Energy Environ. Sci., 4 (2011) 3041-3050.
[43] D. Beckel, D. Briand, A. Bieberle-H‥utter, J. Courbat, N. F. de Rooij, L. J. Gauckler, ”Micro-hotplates—A platform for micro-solid oxide fuel cells,” J. Power Sources, 166 (2007) 143–148.
[44] S. Hamann, M. Ehmann, S. Thienhaus, A. Savan, A. Ludwig,” Micro-hotplates for high-throughput thin film processing and in situ phase transformation characterization.” Sensors and Actuators A, 147 (2008) 576–582.
[45] S. E. V. Murrysville, R. A. George, “Anode gas stack start-up heater and pure gas generator,” U. S. Patent 7 951 500, May 31, 2011.
[46] 林廷諭,國立台灣大學碩士論文,2012
[47] Q. A. Huang, R. Hui, B. Wang, J. Zhanga, “Review of AC impedance modeling and validation in SOFC diagnosis,” Electrochimica Acta, 52 (2007) 8144–8164.
[48] A. A. Porporatia, T. Miyatake, K. Schilcherc, W. Zhua, G. Pezzottia, “Ball-on-ring test in ceramic materials revisited by means of &;#64258;uorescence piezospectroscopy,” J. European Ceram. Soc., 31 (2011) 2031–2036.
[49] ASTM, “Standard Test Method for Thermal Conductivity of Refractories by Hot Wire,” Desingnation, C 1113/C 1113M-09
[50] N. M. Abu-Hamdeh and R. C. Reader, “Soil Thermal Conductivity: Effects of Density, Moisture, Salt Concentration, and Organic Matter,” Soil. Sci. Soc. Am. J., 64 (2000) 1285-129
[51] 蔡居諭,國立台灣大學碩士論文,2010
[52] J. R. Rostrupnielsen, J.H.B. Hansen, “CO2-reforming of methane over transition metals,” J. Power Source,144 (1993) 38–49.
[53] 張源開,國立台灣大學碩士論文,2014
[54] D. Marinha, J. Hayd, L. Dessemond, E. Ivers-Tiffee, E. Djurado, “Performance of (La,Sr)(Co,Fe)O3-x double-layer cathode films for intermediate temperature solid oxide fuel cell,” J. Power Sources, 196 (2011) 5084-5090.
[55] H. Tikkanen, C.Suciu, I. Warnhus, A. C. Hoffmann, “Dip coating of 8YSZ nanopowder for SOFC applications” Ceram. International 37 (2011) 2869-77.
[56] Tosoh, http://www.tosoh.com/our-products/advanced-materials/zirconia-powders, (2013).
[57] China Steel Chemical Corp., http://www.cscc.com.tw/products.htm, (2013).
[58] Wolfram Research, Inc., http://www.periodictable.com/Elements/028/data.html, (2013).
[59] 劉立德、黃德榮、賴佑瑋、陳牧民、韋文誠,”固態燃料電池之薄層電解質與陽極共燒之性質評估”,粉末冶金會刊,38[4] (2013) 226-239.[60] Q. A. Huang, R. Hui, B. Wang, J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis,” Electrochimica Acta 52 (2007) 8144–8164
[61] 林國郎,福井雅男,”非定常熱線法&;#12395;&;#12424;&;#12427;熱伝導率&;#12398;測定&;#20516;&;#12395;及&;#12412;&;#12377;試料&;#28201;度&;#22793;動&;#12398;影響”,窯業協&;#20250;誌,85 (1977) 605-607.