(3.232.129.123) 您好!臺灣時間:2021/03/04 18:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉雲傑
研究生(外文):Yun-Chieh Yeh
論文名稱:功能性硒化鉍氧化物之電子結構及其於電子元件之相關應用
論文名稱(外文):Electronic Structure of Oxidized Bismuth Selenide and its Application in Electronic Devices
指導教授:陳俊維陳俊維引用關係
口試委員:溫政彥周方正朱明文張玉明
口試日期:2014-06-03
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:125
中文關鍵詞:硒化鉍拓樸絕緣體縱深分析有機太陽能電池載子傳輸層
外文關鍵詞:Bi2Se3topological insulatordepth profileorganic solar cellscarrier transporting layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究乃包含兩大部分,第一部分之研究乃以氧電漿(O2 plasma)轟擊單晶硒化鉍(Bi2Se3)表面,通過控制轟擊時間以調控之單晶表面之氧化程度。X光光電子能譜縱深分析顯示氧化深度可達約30奈米,縱向成分分析亦顯示氧化物分布呈梯度變化,表面氧化層部分以氧化鉍及氧化硒為主,而由於表面氧化層之屏蔽作用,晶體內部因氧分子穿透較少量故晶體內部主要以較低氧化態之元素態硒及硒化鉍為主,表面氧化層至內部未被氧化且呈現單晶狀態之硒化鉍間,其氧化態呈現遞減之趨勢,根據電子顯微鏡之切面觀察,於氧化層與非氧化層間,其晶相亦呈現散亂之現象,顯示氧電漿處理乃屬於一破壞性之氧化過程。進一步將氧化處理所成長之氧化層與下方為氧化之硒化鉍晶體整合可製得一具不對稱蕭基障礙(schottky barrier)之金屬-半導體-金屬接面電晶體,根據變溫電性量測,表面氧化層具半導體特性並即有機會可進一步應用為電子元件之功能性傳輸層。
第二部分之研究主要著以水溶液製程(solution-processable)且具大範圍電子結構調控區間(electronic structure controlling window)之功能性材料並將其分別應用於電子(electron)及電洞(hole)傳輸層(transporting layer)中並根據材料之差異對於元件之傳輸行為逕行系統性之載子動態分析(carrier dynamic) 。電子傳輸曾方面以溶液凝膠法(sol-gel method)合成不同化學劑量比之氧化鈦(TiOx中,x = 1.56-1.93 )藉由化學劑量比之調變TiOx之能帶結構亦有所變動直接影響最高佔據軌道(higest occupied molecular orbital, HOMO)及最低為佔據軌道(lowest unoccupied molecular orbital)位置致使有機太陽能電池之內建電場產生系統性之改變,藉此抑制減電荷複合率(recombination rate)以提升整體之元件效率。
電動傳層方面,乃利用硒化鉍電子結構可調控之性質,以氧電漿轟擊對於塗佈於氧化銦錫(indium tin oxide, ITO)基板之硒化鉍進行表面氧化並配合聚3-己基&;#22139;吩 (poly(3-hexylthiophene), P3HT)緩衝層(buffer layer)以達陽極功函數修飾之目的,電洞之傳輸性質可根據整體功函數之改變加以控制。以上之介面修飾層均具大範圍 電子結構可調及可以水溶液製程之性質,對於不同能帶對準(band alignment)之主動層(active layer)可藉由氧電漿處理調控功函數以達到能帶匹配之目的,可廣泛應用有機太陽能電池或發光二極管(light emitting diode)等元件中。


In this study, we mainly focus on two parts. The first part demonstrates the controllable oxidation toward single crystal Bi2Se3 via O2 plasma bombardment. The oxidation depth could be reached from ~3 to ~30 nm in accordance with oxidation duration. Longitudinal composition and component evolution reveals gradient oxidation states evolution with respect to probing depth. Transition from Bi2Se3 to oxidized species, including BiOx, SeOx and elemental Se was observed in surface oxide layer. Further integrate the oxide layer with Bi2Se3 beneath, a device with metal-semiconductor-mental (M-S-M) is successfully fabricated. Electrical properties revealed from temperature dependent I-V analysis indicates semiconductor nature toward oxygen doped Bi2Se3, which gets great potential to be further implemented as a functional transport layer in electronic devices.
The second part in this thesis is focus on developing of solution-processible functional materials with wide-range electronic structure controllable window for cathode and anode modificaiton, respectively. In anode modifier, poly(3-hexylthiophene) (P3HT) grifted oxidized bismuth selenide (Bi2Se3) through lithium intercalation approach is utilized. We found that work function of the solution-processed Bi2Se3 cluster on indium tin oxide (ITO) can be controlled via O2 plasma treatment. Degree of oxidation is found to highly correlated with device performance according to the established hole transporting barrier by individual modified anode. The optimized device exhibits a promising power conversion efficiency, compatible with the device using poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), which is conventionally used for hole transport layers.
In cathode modifier part, we systematically investigated the stoichiometric dependence of titanium oxide (TiOx, x=1.56-1.93) as a cathode modifier on polymer solar cells. Electronic structures of the synthesized TiOx modifier layers were controlled by tuning the compositions of various O/Ti ratios, meanwhile, band edges of individual TiOx is alerted. With TiOx incorporation the cathode workfunctions and the corresponding device performances of polymer solar cells are systematically changed with respected to the established built-in potential. Regarding the advantage of controllable electronic structure and being solution processable, the functional materials developed in this research could further be implanted as new interfacial modifier for band edge match with respect to different active material to facilitate hole and electron transport.

Table of Contents
口試委員會審定書…………………...………………………..…………………..….I
Acknowledgment…………...…………………………………………………….….II
摘要…………………...………………………..…………………………………....III
Abstract…………………………………...……..………………………………..…IV
Table of Contents…………………………….…..…………………….……….......VI
Figure Index…...………………………..….……….…………………………........IX
Table Index….……………...…………………….……..…………………….......XIV

Foundation Research toward Depth Related Single Crystal Bi2Se3 Gradient Oxidation and Incorporation of Oxide Layer in Device Electronic

Chapter 1 Foundation and Literature Review of Topological Insulator-Bi2Se3….1

1-1 Basic Concept of Topological Insulator…………………………………………...1
1-2 Topological Insulator: Bi2Se3……………………………………………………...3
1-3 Homogeneous Bulk Doping toward Bi2Se3……………………….........................7
1-4 Mild and Restricted Area Doping toward Bi2Se3….................................................8
1-5 Motivation..............................................................................................................14
1-6 Reference...............................................................................................................15

Chapter 2 Vertical Gradient Oxidation of Single Crystal Bi2Se3 via O2 plasma Bombardment and the Application in Oxide Incorporated Metal-Semiconductor-Metal (M-S-M) Devices……………………………………18

Abstract……………………………………………………….……………………...19
2-1 Introduction……………………………………………………………………....20
2-2 Experimental………………………......................................................................23
2-2.1 Bi2Se3 single crystal growth……………………..........................................23
2-2.2 Preparation of the surface oxide layers of Bi2Se3………….........................23
2-2.3 Characterization……………………............................................................24
2-3 Controllable Gradient Oxidation toward Single Crystal Bi2Se3…........................26
2-3.1 Environmental Oxidation toward Bi2Se3…………......................................26
2-3.2 Longitudinal Structural Investigation toward O2 Plasma Treated Bi2Se3……………………..........................................................................28
2-3.3 Longitudinal Chemical States and Composition Investigation toward O2 Plasma Treated Bi2Se3...................................................................................31
2-3.4 Integration of O2 Plasma Generated Oxide Layer with Bottom Pristine Bi2Se3……………………...........................................................................35
2-4 Conclusion.............................................................................................................39
2-5 Reference...............................................................................................................40
2-6 Supporting Information..........................................................................................43

Functional Electrode Modify Layer Development for Organic Solar Cells

Chapter 3 Foundation and Literature Survey of Carrier Transport Materials..46
3-1 Carrier Dynamic of Organic Solar Cells………………………………………....46
3-2 Common Structure toward Photoactive Layer in Organic Solar Cells………......48
3-3 Current Transporting Layer Materials Discussion….............................................50
3-3.1 Hole Transporting Materials………….........................................................50
3-3.2 Electron Transporting Materials………………………...............................55
3-4 Motivation for Functional Electrode Modify Layer Development for Organic Solar Cells.............................................................................................................62
3-5 Reference...............................................................................................................63

Chapter 4 Oxidation of Bi2Se3 Nanostructures as an Electrode Modify Layer in Polymer Solar Cell…………………………...………………………………….…..65
Abstract……………………………………………………….……………………...66
4-1 Introduction……………………………………………………………………....67
4-2 Experimental………………………......................................................................71
4-2.1 Lithium Intercalation Assisted Bi2Se3 Exfoliation………………….........71
4-2.2 Fabrication of Electrode Modify Layer and Photovaltic Devices…….........71
4-2.3 Characterization……………………............................................................72
4-3 Electronic Structure Controllable Bi2Se3 Nanostructures as Electrode Modify Layer in Polymer Solar Cells………………………..….........…..………………..…73
4-3.1 Material Identification toward Exfoliated and Oxidized Bi2Se3……….......73
4-3.2 Work Function Engineering toward Bi2Se3/ITO………………...................77
4-3.3 Electrode Modified Layer Fabrication and Coverage Dependent toward Device Performance.....................................................................................79
4-3.4 Work Function Dependent toward Device Performance…..........................82
4-4 Conclusion.............................................................................................................86
4-5 Reference...............................................................................................................87
4-6 Supporting Information..........................................................................................91


Chapter 5 Stoichiometric Dependence of TiOx as a Cathode Modifier on Band Alignment of Polymer Solar Cells…………………………...………...……….…..93
Abstract……………………………………………………….……………………...94
5-1 Introduction……………………………………………………………………....95
5-2 Experimental………………………......................................................................98
5-2.1 Preparation of TiOx with different Ti/O ratio……….......…………….........98
5-2.2 Fabrication of OPV device……………………………………………........98
5-2.3 Characterization……………………............................................................99
5-3 Stoichiometric TiOx as Function Electrode Modify Layer in Organic Solar Cells…………………………………………………………………………………102
5-3.1 Structure Identification of Stoichiometric TiOx………..............................102
5-3.2 Electronic Structure Engineering and Correlated Band Edge Identification toward Stoichiometric TiOx………………................................................105
5-3.3 Stoichiometric TiOx as a Functional Electrode Modifier............................107
5-3.4 Stoichiometric TiOx Affected Carrier Dynamic in OPVs………………...109
5-4 Conclusion............................................................................................................115
5-5 Reference..............................................................................................................116
5-6 Supporting Information........................................................................................120
Conclusion……………………………………………………………………….…124




Figure Index
Figure 1.1 An idealized band structure for a topological insulator with (a) bulk and (b) surface respect....…………………………………………………………...............….3
Figure 1.2 (a) Crystal structure of Bi2Se3. (b) projection of single quintuple layer of Bi2Se3 along the z-direction. (c) side view of single quintuple layer, the Se2 atomic plane acts as inversion plane for upper and lower sets of Bi-Se plane.………………………………………...…………………………………..….…4
Figure 1.3 ARPES spectra of Bi2Se3 films at room temperature with respected to thickness from (a) single to (e) 6 QLs.………………………………………………...5
Figure 1.4 ARPES band dispersion on samples of Bi2Se3 with carrier density (a) 2.3×1019 and (b) 2.3×1017 cm&;#8722;3.…………………………………………………………….7
Figure 1.5 (a) correlation between Ca dosage vs (a) Hall effect measured carrier concentration and (b) ARPES spectra……………...………………….………………8
Figure 1.6 (a) Illustration of the bulk contamination process. Se atoms diffuse out leaving Se vacancies (V) and O atoms and water molecules (W) naturally diffuse into the structure. (b) The carrier density (left axis open triangles) and the mobility (right axis solid squares); immediately after growth, 1 week in vacuum (Vac), 1 week in O2 gas, and 1 week in N2 gas.……………………………………………………………10
Figure 1.7. XPS studies on a Bi2Se3 single crystal with Bi 4f (c) and Se 3d (d) spectra, including samples right after cleaving (<10 s air exposure), etched with Ar plasma for 5 min, and aged in air for 2 days.………………………………………………….…12
Figure 1.8 Full-range control of EF position by surface or bulk doping. (a) Different carrier type regions: n-type (region I), bulk insulating (region II), Dirac transport and p-type (region III) determined by the EF position. (b) Evolution of the band structure (along the M-G-M direction) by photonassisted surface doping with O2, where the unit Langmuir (L) corresponds to an exposure of 10–6 torr/s. The blue dashed line traces the upshift of the Dirac point with the O2 doping.……………………….....…13
Figure 2.1 Procedure for Bi2Se3 transfer and lateral oxidation……………………...24
Figure 2.2 XPS (a) Bi 4f and (b) Se 3d spectra of as-cleaved, air-exposed, and oxygen plasma treated Bi2Se3 surfaces.……………………………….……………………...27
Figure 2.3 (a) Cross-sectional TEM image near the top surface of 60 second oxygen plasma treated Bi2Se3. An amorphous surface oxide layer (1) and an interfacial layer (2) containing nanocrystals are formed. The region labeled (3) is the bulk Bi2Se3 crystal. (b) Correlation between the total thickness of the oxidized layer and the length of oxygen plasma treatment. The red bars indicate the etching depth of the stepwise Ar+ polishing in XPS depth-profile analysis. The inset schematically illustrates the tri-layer structure in the oxygen plasma treated Bi2Se3.……………………………...30
Figure 2.4 XPS spectra of (a) Bi 4f and (b) Se 3d measured from different layers in the Bi2Se3 crystal treated with oxygen plasma for 60 seconds and the as-cleaved Bi2Se3 surface. (c) Compositional depth profiles of Bi, Se, and O elements. (d) Depth profiles of the relative contents of the phases. (c) and (d) are calculated from XPS spectra at each depth.…………………………………………………………………33
Figure 2.5 (a) Cross-sectional scanning transmission electron microscopy (STEM) image of Bi2Se3 after the oxygen plasma treatment for 60 seconds. (b) Compositional maps of Bi and Se in the area labeled in (a). The white dash lines indicate the boundary between the oxidized regime and the bulk Bi2Se3 crystal.……………...…34
Figure 2.6 Current density (I) vs. voltage (V) curves measured from (a) pristine Bi2Se3 and Bi2Se3 crystals with (b) 10 nm and (c) 30 nm oxidized layers at different temperatures. The insets in (a) and (b) shows the device structure used in the measurements. (d) Plots of I/T2 as a function of the inverse of the measurement temperature (1/T). The current densities at ±2.3 V at various temperatures in (c) are used for calculating the Schottky barrier heights in the forward and reverse bias directions. The calculations are based on the thermionic emission equation I=A**T2Exp(-qF/kT), where F is the effective barrier height, k is the Boltzmann’s constant, and A** is the Richardson constant.…………………………………….…38
Figure S2.1 XPS studies on air exposed Bi2Se3 with (a) Bi 4f and (b) Se 3d spectra. The sample was kept at 25oC and in 30% humidity.………………………………....43
Figure S2.2 Current density (I) vs. voltage (V) curves measured from ~10 nm oxidized layers at different temperatures.……………………………………….…...44
Figure S2.3 (a) Reflective UV-vis absorption spectrum for the oxide layer on Bi2Se3 crystal after the oxygen plasma treatment for 1 min. (b) Tauc’s plot of the absorption spectrum in (a). A direct band gap of ~2.0 eV is observed.……………………….....45
Figure 3.1 (a) composite of active layer. Working principle of organic solar cell: (b) light absorption. Exciton (c) generation (d) diffusion (e) dissociation and (f) Carrier transport and collection................................................................................................47
Figure 3.2 Cross section of (a) bi-layer and (b) bulk heterojunction type organic solar cells. Photoinduced electrons and holes (positive charge carriers) are generated at the donor-acceptor interface and transported via the acceptor and donor phases to the cathode and anode.…………………………………………………………………...49
Figure 3.3 Chemical structures of Poly (3,4-ethylenedioxythiophene) : poly (styrenesulfonate) (PEDOT:PSS)……………………….……………………………51
Figure 3.4 AFM image of (a) NiO/ITO with RMS roughness 1.53 nm and (b) pristine ITO substrate with roughness of 4.81 nm. (c) Energy level diagrams of device components referenced to the vacuum level. (d)Current density–voltage plots for solar cells fabricated with varying layer thicknesses of NiO on the ITO anode.….……….52
Figure 3.5 (a) A schematic showing energy levels of the bottom electrode ITO, various buffer layer materials, namely, PEDOT:PSS, V2O5, MoO3, donor polymer P3HT, acceptor PCBM, and top electrode Ca. (b) I-V characteristics of PV devices with different types of anodes, namely, ITO only, ITO with PEDOT:PSS 25 nm, ITO withV2O5 3 nm, and ITO with MoO3 5 nm.……………………………………….....54
Figure. 3.6 (a) Power conversion efficiency and contact angle with water of the Cs2CO3 layer as a function of different annealing temperatures. (b) I-V characteristics of the inverted PV devices. Annealing temperatures effect on Cs2CO3 layer with aspect of (c) evolution of secondary electron edge and (d) X-ray photoelectron spectroscopies of Cs 3d5/2 andO 1s spectra.………………………………………...57
Figure 3.7 (a) I/V characteristics of typical MDMO-PPV/PCBM solar cells with a LiF/Al electrode of various LiF thickness (█: 3 A, ●: 6 A, ▲: 12 A compared to the performance of a solar cell device with a pristine Al electrode (□). (b) and (c) are box plots with the statistics of the FF and the Voc from six separate solar cells.…………59
Figure 3.8 (a) A schematic view of the device architecture with the TiOx layer. (b) Comparison of the power conversion efficiencies as a function of storage time for polymer solar cells with and without the TiOx layer. Note that the characteristics of the devices were monitored with increasing storage time for the same devices.….…61
Figure 4.1 (a) Schematic diagram demonstration of Bi2Se3 exfoliation (b) high resolution TEM image of Bi2Se3 nanocrystal. Inset: The corresponded Fourier transform image of Bi2Se3.…………………………………………………….……..74
Figure 4.2 XPS surface studies on O2 plasma treated Bi2Se3 with (a) Bi 4f and (b) Se 3d spectra. (c) XPS probed time dependent composition profile and (d) substrate workfunction evolution with respected to O2 plasma bombardment from 5 to 20 minutes…………………………………………………………………………….....77
Figure 4.3 Plane view of deposited Bi2Se3/ITO (b) cross-sectional image (c) illustration of Bi2Se3:P3HT composite modified layer and (d) J-V characteristics of OPV device for Bi2Se3 cluster packing density optimization. All deposited Bi2Se3/ITO was oxidized by O2 plasma for 3 minutes before P3HT deposit.………………..…...81
Figure 4.4 (a) J-V characteristics of OPV devices for anode modify layer oxidation optimization (the deposited Bi2Se3/ITO was treated with different duration O2 plasma). For comparison, device with PEDOT as a hole transport layer and without any hole transport are also included. (b) Relative energy level diagrams for the illustrated device architecture in inset of (a).……………………………..……………………..83
Figure 4.5 Charge recombination rate versus open-circuit voltage (Voc) obtained using TOCVD measurements (b) calculated charge recombination rate at 0.45 V Device architecture : ITO/HTL (Bi2Se3/P3HT modify layer or PEDOT)/P3HT:PCBM/Al.……………………………..……………………….……85
Figure S4.1 XPS probed time dependent component profile……………………..…91
Figure S4.2 UV-vis absorption spectrum for deposit Bi2Se3/ITO. Inset: Tauc plot calculated from the corresponding absorption spectrum.…………………………….91
Figure S4.3 (a) Plotoluminescence spectra for P3HT in contact with different electrode modified layer (b) the corresponded photoluminescence decay curve for different interface. For comparison, P3HT on pristine glass substrate was also reported. ……………………………..………………………………..……………92
Figure 5.1 TEM images of TiOx with different reaction durations at 120 oC (a) 3 (b) 6 (c) 9 hours.……………………………..……………………………………………105
Figure 5.2 De-convoluted XPS spectra of TiOx with different O/Ti ratios for (a) Ti 2p b) O 1s……………………………..………………………………………..………104
Figure 5.3 (a) Tauc plots for TiOx with different O/Ti ratios. Inset: the correlated UV-vis absorption spectra. (b) Energy levels of a conventional P3HT:PCBM hybrid solar cell with various TiOx as cathode modifiers.……………………………….…106
Figure 5.4 (a) Device architecture of TiOx incorporated organic solar cells (b) Current-voltage characteristic of photovoltaic devices with different stoichiometric TiOx modification layer.……………………………..……………………...………108
Figure 5.5 (a) Mott–Schottky analysis for the solar cell devices incorporated with various TiOx modifiers. (b) Correlation of Vbi values with the devices with and without TiOx modification layers.……………………………..……………………111
Figure 5.6 (a) Impedance spectra of P3HT:PCBM BHJ solar cells with and without TiOx modifier. Dots are experimental data and solid lines are fitting results equivalent circuit for the impedance curve fitting according to Ref. 42, where Cg describes geometry capacitance contribution of diode, Rs stands for the series resistance composed of device resistance and wire effect of the circuit, rt models the resistance for electron transport in active layer, rrec is the resistance for bimolecular. recombination and Cn is distributed chemical capacitances generated by the modulation of stored excess electrons.……………………………………...………114
Figure S5.1 XRD spectra of TiOx with different O/Ti ratio (and annealed TiOx (450 oC 2hr)………………………………………………………………………………120
Figure S5.2 IR transmittance spectra TiOx with different O/Ti ratio………………121
Figure S5.3 AFM height images of TiOx layer on top of active layer (a) low (b) medium and (c) high. ………………………………………………………………124
Figure S5.3 AFM height images of TiOx layer on top of active layer (a) low (b) medium and (c) high. ………………………………………………………………123
Figure S5.4 I-V measurement for Al/TiOx/Al devices with different O/Ti ratio..…123




Table Index
Table 4.1 Device parameters of OPV devices with electrode modify layer (coverage dependent…………………………………………………………………………….81
Table 4.2 Device parameters of OPV device with electrode modify layer (oxidation dependent) and the comparison.………………………………………………..…….83
Table S4.1 Decay time for P3HT with different interface………………………...…92
Table 5.1 Device performance parameters of OPV devices incorporated with TiOx modification layers…………………………………………………………...……..109
Table S5.1 Summary of LUMO levels determined by cyclic voltammograms and band gaps from Tauc’s plots for the band diagram..…………………...………..…..122
Table S5.2 Calculated resistivity for TiOx with different O/Ti ratios…….....….…..123



Chapter 1

1.C. L. Kane, E. J. Mele, Phys. Rev. Lett. 2005, 95, 146802.
2.H. Zhang, C. X. Liu, X. L. Qi, X Dai, Z. Fang, S. C. Zhang, Nat. phys. 2009, 5, 438 (2009).
3.Y. L. Chen, J. G. Analytis, J. -H. Chu, Z. K. Liu, S. -K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, Z.-X. Shen, Science 2009, 325, 5937.
4.D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett. 2009, 103, 146401.
5.L. Fu, Phys. Rev. Lett. 2009, 103, 266801.
6.K. Oura, A. V. Zotov, V. G. Lifshits, A. A. Saranin, M. Katayama, Surface Science, An Introduction (Springer, Berlin, 2003).
7.J. D. Koralek, J. F. Douglas, N. C. Plumb, J. D. Griffith, S. T. Cundiff, H. C. Kapteyn, M. M. Murnane, D. S. Dessau, Rev. Sci. Instrum. 2007, 78, 053905.
8.Y. Zhang, K. He, C. –Z. Chang, C. -Li Song, L. –L Wang, X. Chen, J. –F. Jia, Z. Fang, X. Dai,W. –Y. Shan, S. –Q. Shen, Q. Niu, X. –L. Qi, S. –C. Zhang, X. –C. Ma, Q. -K Xue, Nature Phys.2010, 6, 584.
9.A. A. Taskin, Y. Ando, Phys. Rev. B 2009, 80, 085303.
10.J. G. Checkelsky, Y. S. Hor, M. H. Liu, D. X. Qu, R. J. Cava, N. P. Ong, Phys. Rev. Lett. 2009, 103, 246601.
11.H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, Y. Cui, Nature Mater. 2010, 9, 225.
12.H. Kohler, Phys. Status Solidi B 1973, 58, 91.
13.J. G. Analytis, J. –H. Chu, Y. Chen, F. Corredor, R. D. McDonald, Z. X. Shen, I. R. Fisher, Appl. Phys. Lett. 2010, 81, 205407.
14.D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan, Nature 2009, 460, 1101.
15.M. R. Scholz, J. Sanchez-Barriga, D. Marchenko, A. Varykhalov, A. Volykhov, L. V. Yashina, and O. Rader, Phys. Rev. Lett. 2012, 108, 256810.
16.Y. H. Choi, N. H. Jo, K. J. Lee, J. B. Yoon, C. Y. You, M. H. Jung, J. Phys. Lett. 2011, 109, 07E312.
17.P. P. J. Haazen, J.-B. Laloe, T. J. Nummy, H. J. M. Swagten, P. Jarillo-Herrero, D. Heiman, J. S. Moodera Appl. Phys. Lett. 2012, 100, 082404.
18.M. Brahlek, Y. S. Kim, N. Bansai, E. Edrey, S. Oh, Appl. Phys. Lett. 2011, 99, 012109.
19.J. G. Analytis, Ross D. McDonald, S. C. Riggs, J. –H. Chu, G. S. Boebinger, I. R. Fisher, Nat. Phys. 2010, 6, 960.
20.H. Benia, C. Lin, K. Kern, C. R. Ast, Phys. Rev. Lett. 2011, 107, 177602.
21.M. Koleini, T. Frauenheim, B. Yan, Phys. Rev. Lett. 2013, 110, 016403.
22.D. Kong, J. J. Cha, K. Lai, H. Peng, J. G. Analytis, S. Meister, Y. Chen, H. –J. Zhang, I. R. Fisher, Z. –X. Shen, Yi Cui, ACS Nano 2011, 5, 4698.
23.Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, Z. X. Shen, Science 2010, 329, 659.
&;#8195;

Chapter 2

1.O. V. Yazyev, J. E. Moore, S. G. Louie, Phys. Rev. Lett. 2010, 105, 266806.
2.Y. H. Wang, D. Hsieh, D. Pilon, L. Fu, D. R. Gardner, Y. S. Lee, N. Gedik, Phys. Rev. Lett. 2011, 107, 207602.
3.Z.-H. Pan, E. Vescovo, A.V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, G. D. Gu, T. Valla, Phys. Rev. Lett. 2011, 106, 257004.
4.L. Fu, C. L. Kane, Phys. Rev. Lett. 2008, 100, 096407.
5.I. Garate, M. Franz, Phys. Rev. Lett. 2010, 104, 146802.
6.D. Pesin, A. H. MacDonald, Nature Mater. 2012, 11, 409.
7.L. Fu, C. L. Kane, Phys. Rev. B 2009, 79, 161408(R).
8.J. J. Lee, F. T. Schmitt, R. G. Moore, I. M. Vishik, Y. Ma, Z. X. Shen, Appl. Phys. Lett. 2012, 101, 013118.
9.H. Zhang, C. X. Liu, X. L. Qi, X Dai, Z. Fang, S. C. Zhang, Nat. phys. 2009, 5, 438 (2009).
10.S. Kim, M. Ye, K. Kuroda, Y. Yamada, E. E. Krasovskii, E.V. Chulkov, K. Miyamoto, T. Okuda, Y. Ueda, K. Shimada, H. Namatame, M. Taniguchi, A. Kimura, Phys. Rev. Lett. 2011, 107, 506803.
11.C. –X. Liu, H. J. Zhang, B. Yan, X. –L. Qi4, T. Frauenheim, X. Dai2, Z. Fang, S. –C. Zhang. arXiv:0908.3654v2
12.Y. Yan, Z. –M. Liao, Y. –B. Zhou, H. –C. Wu, Y. –Q. Bie, J. –J. Chen, J. Meng1, X. –S. Wu, D. –P. Yu, Sci. Report 2013, 3, 1264,
13.Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, R. J. Cava, Phys. Rev. B 2009, 79, 195208.
14.Y. L. Chen, J. H.Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H. H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, Z. X. Shen, Science 2010, 329, 659.
15.L. A. Wray, S. Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, M. Z. Hasan, Nat. Phys. 2010, 7, 32.
16.D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan, Nature 2009, 460, 1101.
17.P. P. J. Haazen, J.B. Laloe, T. J. Nummy, H. J. M. Swagten, P. Jarillo-Herrero, D. Heiman, J. S. Moodera, Appl. Phys. Lett. 2012, 100, 082404.
18.S. Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. A. Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sanchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. H. Dil, J. Osterwalder, T. R. Chang, H. T. Jeng, H. Lin, A. Bansil, N. Samarth, M. Z. Hasan, Nat. Phys. 2012, 8, 616.
19.Z. Wang, T. Lin, P. Wei, X. Liu, R. Dumas, K. Liu, J. Shi, Appl. Phys. Lett. 2010, 97, 042112.
20.D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, Y. Cui, Nano Lett., 2010, 10, 2245.
21.L. A. Wray, S. Xu, M. Neupane, D. Hsieh, D. Qian, A. V. Fedorov, H. Lin, S. Basak, A. Bansil, Y. S. Hor, R. J. Cava, Z. Hasan, arXiv: 1105.4794.
22.D. Hsieh, J. W. McIver, D. H. Torchinsky, D. R. Gardner, Y. S. Lee, N. Gedik, Phys. Rev. Lett. 2011, 106, 057401.
23.H. M. Benia, C. Lin, K. Kern, C. R. Ast, Phys. Rev. Lett. 2011, 107, 177602.
24.M. Koleini, T. Frauenheim, B. Yan, Phys. Rev. Lett. 2013, 110, 016403.
25.D. Kong, J. J. Cha. K. Lai, H. Peng, J. G. Analytis, S. Meister, Y. Chen, H. J. Zhang, I. R. Fisher, Z. X. Shen, Y. Cui, ACS Nano 2011, 5, 4698.
26.T. Bjorkman, A. Gulans, A. V. Krasheninnikov, R. M. Nieminen, Phys. Rev. Lett. 2012, 108, 235502.
27.J. –H. Song, H. Jin, A. J. Freeman, Phys. Rev. Lett. 2010, 105, 096403.
28.J. Bludska, I. Jakubec, S. Karamazov, J. Horak, C. Uher, J. Solid State Chem. 2010, 183, 2813.
29.H. Bando, K. Koizumi, Y. Oikawa, K. Daikohara, V. A. Kulbachinskii, H. Ozaki, J. Phys.: Condens. Matter 2000, 12, 5607.
30.L. S. Brooks, J. Am. Chem. Soc. 1952, 74, 227.
31.R. G. Behrens, R. S. Lemons, G. M. Rosenblatt, J. Chem. Thermodynamics 1974, 6, 457.
32.A. Walsh, G. W. Watson, D. J. Payne, R. G. Edgell, J. Guo, P. A. Glans, T. Learmonth, K. E.Smith, Phys. Rev. B 2006, 73, 235104.
33.H. Deng, W. Hao, H. Xu, C. Wang, J. Phys. Chem. C 2012, 116, 1251.
34.D. S. Aidhy, S. B. Sinnott, E. D. Wachsman, S. R. Phillpot, Inoic 2010, 16, 297.
35.G. Zhong, Y. Wang, Z. Dai, J. Wang, Z. Zeng, Phys. Status Solidi B 2009, 246, 97.
36.M. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 2010, 82, 3045.
37.B. Yan, S. C. Zhang, Rep. Prog. Phys. 2012, 75, 096501.
38.K. Lee, H. Y. Kim, M. Lotya, J. N. Coleman, G. T. Kim, G. S. Duesberg, Adv. Mater. 2011, 23, 4178.
39.Z. Zhang, K. Y. Yang, Y. Liu, C. Jin, X. Liang, Q. Chen, L. M. Peng, Adv. Mater. 2007, 17, 2478.
40.Y. F. Lin, W. B. Jian, Nano Lett. 2008, 8, 3146.


Chapter 3

1.S. Barth and H. Bassler, Phys. Rev. Lett. 1997, 79, 4445-4448.
2.C. W. Tang, Appl. Phys. Lett. 1986, 48, 183-185.
3.D. Paraschuk, O. Parashchuk, SPIE DIO: 10.1117/2.1201112.003987.
4.J. Meyer, R. Khalandovsky, P. Georrn, A. Kahn, 2011, Adv.Mater. 23, 70–73.
5.E. Voroshazi, B. Verreet, T. Aernouts, P. Heremans, Sol.Energy Mater. Sol. Cells 2011, 95, 1303–1307.
6.Voroshazi, E.; Verreet, B.; Buri, A.; M€uller, R.; Di Nuzzo, D.; Heremans, P. Org. Electron. 2011, 12, 736–744.
7.M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. Chang, T. J. Marks, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2783–2787.
8.V. Shrotriya, G. Li, Y. Yao, C. -W. Chu, and Yang Yang, Appl. Phys Lett. 2006, 88, 073508.
9.L. J. Brillson, Surf. Sci. Rep. 1986, 2, 123.
10.J . M. Bharathan and Y. Yang, J. Appl. Phys. 1998, 84, 3207.
11.C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374.
12.H. –H. Liao, L. –M. Chen, G. Li, Y. Yang, Appl. Phys. Lett. 2008, 92, 173303.
13.C. J. Brabec, S. Shaheen, C. Winder, N. Sariciftci, P. Denk, Appl. Phys. Lett. 2002, 80, 1288.
14.R. Winkler and S. T. Pantelides, J. Chem. Phys. 1997, 106, 7714.
15.D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science, Cambridge University Press, Cambridge, UK, 1986".
16.S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, and N. R. Armstrong, J. Appl. Phys. 1998, 84, 2324.
17.K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, A. J. Heeger, Adv. Mater. 2007, 19, 2445.
18.S. H. Kim, J. Y. Kim, S. H. Park, K. Lee, Proc. SPIE-Int. Soc. Opt. Eng. 2005, 5937, 59371G1.
19.U. Diebold, Surf. Sci. Rep. 2003, 48, 53.
20.J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater. 2006, 18, 572.
&;#8195;

Chapter 4

1.P. E. Shaw, A. Ruseckas, I. D. W. Samuel, Adv. Mater. 2008, 20, 3516.
2.J. T. Chen, C. S. Hsu, Ploym. Chem. 2011, 2, 2707.
3.M. C. Shih, B. C. Huang, C. C. Lin, S. S. Li, H. A. Chen, Y. P. Chiu, C. W. Chen, Nano Lett. 2013, 13 2387.
4.L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Adv. Mater. 2000, 12, 481.
5.N. K. Elumalai, A. Saha, C. Vijila, R. Jose, Z. Jie, S. Ramakrishna, Phys. Chem. Chem. Phys. 2013, 15, 6831.
6.G. T. Escobar, J. Pampel, J. M. Caicedo, M. L. Cantu, Energy Environ. Sci. 2013, 6, 3088.
7.S. S. Li, K. H. Tu, C. C. Lin, C. W. Chen, M. Chhowalla, ACS Nano 2010, 6, 3169.
8.A. Barbot, B. Lucas, C. D. Bin, B. Ratier, M. Aldissi, Appl. Phys. Lett. 2013, 102, 193305.
9.Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Adv. Mater. 2011, 23, 1679.
10.J. K. Lee, N. E. Coates, S. Cho, N. S. Cho, D. Moses, G. C. Bazan, K. Lee, A. J. Heeger, Appl. Phys. Lett. 2008, 92, 243308.
11.Y. -C. Yeh, S. –S. Li, P. –C. Kuo, C. -C. Wu, T. –W. Shao, C. –W. Chen, Solar Energy Materials &; Solar Cells 2014, 125, 233.
12.J. R. Williams, A. J. Bestwick, P. Gallagher, S. S. Hong, Y. Cui, A. S. Bleich, J. G. Analytis, I. R. Fisher, D. G. Gordon, Phys Rev. Lett. 2012, 109, 056803.
13.J. N. Coleman M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvetd, S. K. Arora, G. Stanton, H. –Y. Kim, K. Lee, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, P. D. Nellist, S. Nicolosi Science 2011, 331, 568.
14.K. J. Koski, J. J. Cha, B. W. Reed, C. D. Wessells, D. Kong, Y. Cui, Y. J. Am. Chem. Soc. 2012, 134, 7584.
15.M. S. Whittingham, J. Solid State Chem. 1979, 29, 303.
16.K. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Ceder, Science 2006, 311, 977-980.
17.J. –M. Tarascon, M. Armand Nature 2008, 451, 652.
18.H. Zhang, C. –X. Liu, X. -L. Qi, Z. Fang,, Nature Phys. 2009, 5, 438.
19.M. Bianchi, D. Guan, S. Bao, J. Mi, B. B. Iversen, P. D. D. King, P. Hofmann, Nature Commun. 2010, 1, 128.
20.C. Chen, S. He, H. Weng, W. Zhang, L. Zhao, H. Liu, X. Jia, D. Mou, S. Liu, J. He, Y. Peng, Y. Feng, Z. Xie, G. Liu, X. Dong, J. Zhang, X. Wang., Q. Peng, Z. Wang, S. Zhang, F. Yang, C. Chen, Z. Xu, X. Dai, Z. Fang, X. J. Zhou, PNAS 2012, 109, 3694.
21.M. Bianchi, R. C. Hatch, J. Mi, B. B. Iversen, P. Hofmann, Phys. Rev. Lett. 2011, 107, 086802.
22.H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. –L. Qi, S. –C. Zhang, Z. –X. Shen, Y. Cui, Nat. Mater. 2010, 9, 225.
23.Q. Wang, C. Jiang, C. Yu, Q. Chen, J. Nanopart. Res. 2007, 9, 269.
24.V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayna, A. Goswami, J. Electron. Spectrosc. Relat. Phenom. 1982, 25, 181.
25.L. Meng, H. Meng, W. Gong, W. Liu, Z. Zhang, Thin Solid Films 2011, 519, 7627.
26.C. –H. Lu, B. Bhattacharjee, C. –H. Hsu, S. –Y. Chen, R. –C. Ruaan, W. H. Chang, J. Electroceram. 2006, 17, 21.
27.T. Takahashi, T. Sagawa, H. Hamanaka, J. Non-Cryst. Solids 1984, 65, 261.
28.D. Kong, J. J. Cha, K. Lai, H. Peng, J. G. Analytis, S. Meister, Y. Chen, H. –J. Zhang, I. R. Fisher, Z. –X Shen, Y. Cui, ACS Nano 2011, 5, 4698.
29.T. –H. Kim, J. H. Baeck, H. Choi, K. –H. Jeong, M. –H. Cho, B. C. Kim, K. T. Jeong, J. Phys. Chem. C 2012, 116, 3737.
30.G. L. Frey, K. J. Reynolds, R. H. Friend, H. Cohen, Y. Feldman, J. Am. Chem. Soc. 2003, 125, 5998.
31.K. Sugiyama, H. Ishii, Y. Ouchi, K. Seki, J. Appl. Phys. 2000, 87, 295.
32.C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn, Appl. Phys. 1997, 70, 1348.
33.T. Kugler, A. Johansson, I. Dalsegg, U. Gelius, W. R. Salaneck, Synthetic Met. 1997, 91, 143.
34.M. G. Helander, Z. B. Wang, J. Qiu, Z. H. Lu, Appl. Phys. 2008, 93, 193310.
35.J. Ferber, R. Stangl, J. Luther, Sol. Energ. Mat. Sol C.1998, 54, 255.
36.Y. –Y. Lin, T. –H. Chu, S. –S. Li, C. –H. Chuang, C. –H. Chang, W. –F. Su, Y. –P. Chang, M. –W. Chu, C. –C. Chen. J. Am. Chem. Soc. 2009, 131, 3644.


Chapter 5

1.M. A. Green, S. R. Wenham, Prog. Photovolt. Res. Appl. 1996, 4, 3.
2.Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, Nat. Mater. 2011, 11, 44.
3.C. M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, Y. Cui, Adv. Energy Mater. 2011, 2, 628-633.
4.T. C. M. Muller, B. E. Pierers, U. Rau, T. Kirchartz, J. Appl. Phys. 2013, 113, 134503.
5.S. Uchida, J. Xue, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 2004, 84 (2004) 4218.
6.W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295 2425.
7.J. Hou, H. Y. Chen, S. Zhang, G. Li, Y. Yang, J. Am. Chem. Soc. 2008, 130, 16144.
8.R. F. Service, Science 2011, 332, 293.
9.S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photonics 2009, 3, 297.
10.J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222.
11.J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, Nat. Commun. 2013, 4, 1446.
12.P. E. Shaw, A. Ruseckas, I. D. W. Samuel, Adv. Mater. 2008, 20, 3516.
13.J. T. Chen, C. S. Hsu, Ploym. Chem. 2011, 2, 2707.
14.M. C. Shih, B. C. Huang, C. C. Lin, S. S. Li, H. A. Chen, Y. P. Chiu, C. W. Chen, Nano Lett. 2013, 13 2387.
15.A. Mishra, P. Bauerle, Angew. Chem. Int. Ed. 2012, 51, 2020.
16.L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Adv. Mater. 2000, 12, 481.
17.N. K. Elumalai, A. Saha, C. Vijila, R. Jose, Z. Jie, S. Ramakrishna, Phys. Chem. Chem. Phys. 2013, 15, 6831.
18.G. T. Escobar, J. Pampel, J. M. Caicedo, M. L. Cantu, Energy Environ. Sci. 2013, 6, 3088.
19.S. S. Li, K. H. Tu, C. C. Lin, C. W. Chen, M. Chhowalla, ACS Nano 2010, 6, 3169.
20.A. Barbot, B. Lucas, C. D. Bin, B. Ratier, M. Aldissi, Appl. Phys. Lett. 2013, 102, 193305.
21.Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Adv. Mater. 2011, 23, 1679.
22.J. K. Lee, N. E. Coates, S. Cho, N. S. Cho, D. Moses, G. C. Bazan, K. Lee, A. J. Heeger, Appl. Phys. Lett. 2008, 92, 243308.
23.J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. M. Xiong, A. J. Heeger, Adv. Mater. 2006, 18, 572.
24.A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, Appl. Phys. Lett. 2007, 90, 163517.
25.J. H. Lee, S. Cho, A. Roy, H. T. Jung, A. J. Heeger, Appl. Phys. Lett. 2010, 96, 163303.
26.P. S. Ho, Y. C. Yeh, D. Y. Wang, S. S. Li, H. A. Chen, Y. H. Chung, C. C. Lin, W. H. Wang, C. W. Chen, ACS Nano 2012, 6, 6215.
27.J. Y. Ying, C. C. Wang, Chem. Mater. 1999, 11, 3113.
28.J. Livage, Catal. Today 1998, 41, 3.
29.S. Sodergern, H. Siegbahm, H. Reusmo, H. Lindstrom, A. Hagfeldt, S. E. Lindquist, J. Phys. Chem. B 1997, 101, 3087.
30.L. Q. Wang, D. R. Baer, M. H. Engelhard, A. N. Shultz, Surf. Sci. 1995, 344, 237.
31.E. Munoz, J.L. Boldu, E. Andrade, O. Novaro, X. Bokhimi, T. Lopez, R. Gomez, J. Am. Ceram. Soc. 2001, 84, 392.
32.J. Su, X. X. Zou, Y. C. Zou, G. D. Li, P. P. Wang, J. S. Chen, Inorg. Chem. 2013, 52, 5924-5930.
33.J. Tauc, Mater. Res. Bulletin, 1968, 3, 37-46.
34.M. A. Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch, S. Sensfuss, Sol. Energ. Mater. Sol. Cells, 2005, 80, 13.
35.W. H. Baek, H. Yang, T. S. Yoon, C.J. Kang, H. H. Lee, Y. S. Kim, Sol. Energ. Mater. Sol. Cells, 2009, 80, 1263.
36.D. A. Neamen, Semiconductor physics and device, ISBN 0071198628.
37.G. Dennler, C. Lungenschmied, N. S. Saricifti, R. Schwodiauer, S. Bauer, H. Reiss, Appl. Phys. Lett. 2005, 87, 163501.
38.J. Kong, J. Lee, Y. Jeong, M. Kim, S. O. Kang, K. Lee, Appl. Phys. Lett. 2012, 100, 213305.
39.M. Glatthaar, N. Mingirulli, B. Zimmermann, T. Ziegel, R. Kern, M. Niggermann, A. Hinsch, A. Gombert, Phys. Stat. Sol. A 2005, 202, R125.
40.C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374.
41.V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens, J. Appl. Phys. 2003, 94, 6849.
42.G. G. Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. electroic. 2008, 9, 847.
&;#8195;


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔