(3.235.11.178) 您好!臺灣時間:2021/03/05 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:趙士鈞
研究生(外文):Shih-Chun Chao
論文名稱:原子層沉積技術成長二氧化鈦薄膜之應力分析及應用
論文名稱(外文):Stress Analysis and Applications of Titanium Oxide Thin Films Grown by Atomic Layer Deposition
指導教授:溫政彥
指導教授(外文):Cheng-Yen Wen
口試委員:林招松陳俊維
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:88
中文關鍵詞:二氧化鈦原子層沉積法穿透式電子顯微鏡應力分析電阻式記憶體
外文關鍵詞:Titanium oxideAtomic layer depositionTransmission electron microscopyStrain analysisResistive random access memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是探討原子層沉積法成長之二氧化鈦薄膜的特性並應用於電阻式記憶體元件當中。為了將成長之薄膜應用在電阻式記憶體元件中,實驗中使用了包含穿透式電子顯微鏡、X光光電子能譜等技術來進行薄膜性質的分析。結果中顯示藉由原子層沉積法成長參數的調控可以達到薄膜組成成分、晶體結構以及缺陷數目的改變。此外,研究發現薄膜在結晶態時會發生破裂的情形,因此研究中利用穿透式電子顯微鏡技術,進行殘留應力之計算。根據實驗結果可推斷此應力的成因為降溫時所產生之熱應力,且當薄膜成長厚度達到臨界厚度後,會於降溫過程中藉由結晶的方式以消除內部所累積之熱應變能。根據薄膜形貌與應力分析結果,在元件的應用上,我們採用非晶相薄膜以減少薄膜中的缺陷,並減少薄膜厚度,以避免應變能的累積而造成薄膜破裂發生,維持元件的性能。最後,根據以上的實驗結果我們成功地將原子層沉積法成長之二氧化鈦薄膜應用於電阻式記憶體當中,並將Pt/TiO2/Pt和FTO/TiO2/ITO兩種結構之元件進行電性量測。結果顯示由於電阻轉換反應的差異使得利用惰性金屬薄膜作為電極的元件穩定度較差;而使用導電金屬氧化物(FTO、ITO)薄膜作為電極之元件穩定度及操作特性有明顯地改善。

In this study, we investigate the properties of TiO2 thin films grown by atomic layer deposition method (ALD) and apply them to the resistive random access memory devices (ReRAM). For the application in the ReRAM devices, various characterization methods, such as transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS), are used to analyze the properties of TiO&;#172;2 thin films. Based on the experimental results, it shows that TiO2 films with different properties, such as the crystal structure, the chemical composition and the concentration of oxygen vacancies, can be grown by tuning the growth parameters.
Besides, because some fractures in the polycrystalline TiO2 films are observed in the cross-sectional TEM images, it proves the existence of the residual stress. In this study, TEM techniques are used to measure the residual stress in thin films. According to the experimental results, we infer the residual stress is thermal stress. During the growth, amorphous TiO2 films are deposited on the substrates, and crystallize to release the thermal strain energy at the critical thickness in the cooling process. In the ReRAM devices, amorphous TiO2 thin films are used to reduce the concentration of the defects; at the same time, the thickness of thin films is reduced to avoid the high accumulated strain energy and the fracture problems.
Based on these experimental results, we successfully apply ALD-grown TiO2 films to the ReRAM devices and investigate the I-V characteristics of the two different device structures, Pt/TiO2/Pt and FTO/TiO2/ITO. It shows that the stability of the devices with the Pt/TiO2/Pt structure is not good enough because its resistive switching mechanism. On the other hand, the stability and the operating characteristics are improved significantly using the conducting metal oxides, such as the FTO and ITO thin films, as electrodes.

Key words: Titanium oxide, Atomic layer deposition, Transmission electron microscopy, Strain analysis, Resistive random access memory.


口試委員會審定書 #
致謝 i
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables xvi
Chapter 1 緒論 1
Chapter 2 文獻回顧 3
2.1 二氧化鈦材料簡介 3
2.2 原子層沉積技術 5
2.3 新型記憶體-電阻式記憶體 8
2.3.1 電阻式記憶體簡介 9
2.3.2 電阻轉換行為 10
2.3.3 電阻轉換機制 12
2.3.4 金屬離子電化學反應 13
2.3.5 價電子轉換反應 14
2.3.6 熱化學反應 16
2.4 二氧化鈦薄膜的電阻轉換機制簡介 17
2.5 薄膜殘留應力種類及成因 22
2.6 薄膜應力量測技術 24
2.6.1 傳統薄膜應力量測方法 24
2.6.2 新型薄膜應力量測法-穿透式電子顯微鏡曲率量測法 26
Chapter 3 實驗步驟與研究方法 33
3.1 二氧化鈦薄膜之成長與分析 33
3.2 薄膜殘留應力量測 36
3.3 電阻式記憶體之電性量測與特性分析 36
3.4 分析方法介紹 37
3.4.1 TEM分析與試片製備方法 37
3.4.2 X光繞射儀 40
3.4.3 X光光電子能譜 41
3.4.4 聚束電子繞射法之試片厚度量測 43
Chapter 4 結果與討論 46
4.1 二氧化鈦薄膜之成長與分析 46
4.2 薄膜殘留應力量測 57
4.3 電阻式記憶體之電性量測與特性分析 67
Chapter 5 結論 81
Reference 82


[1]X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, "Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications," Nanoscale, vol. 5, pp. 3601-3614, 2013.
[2]W. J. Yin, S. Y. Chen, J. H. Yang, X. G. Gong, Y. F. Yan, and S. H. Wei, "Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction," Applied Physics Letters, vol. 96, p. 221901, 2010.
[3]D. A. H. Hanaor and C. C. Sorrell, "Review of the anatase to rutile phase transformation," Journal of Materials Science, vol. 46, pp. 855-874, 2011.
[4]X. Nie, S. Zhuo, G. Maeng, and K. Sohlberg, "Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties," International Journal of Photoenergy, vol. 2009, 2009.
[5]J. A. T. Suntola, US Patent No. 405430, 1975.
[6]J. Aarik, A. Aidla, T. Uustare, M. Ritala, and M. Leskela, "Titanium isopropoxide as a precursor for atomic layer deposition: characterization of titanium dioxide growth process," Applied Surface Science, vol. 161, pp. 385-395, 2000.
[7]Z. Zhang, G. Triani, and L. J. Fan, "Amorphous to anatase transformation in atomic layer deposited titania thin films induced by hydrothermal treatment at 120 °C," Journal of Materials Research, vol. 23, pp. 2472-2479, 2008.
[8]R. Matero, Atomic Layer Deposition of Oxide Films: Growth, Characterisation and Reaction Mechanism Studies: Raija Matero, 2004.
[9]A. Rahtu and M. Ritala, "Reaction mechanism studies on titanium isopropoxide–water atomic layer deposition process," Chemical Vapor Deposition, vol. 8, pp. 21-28, 2002.
[10]施敏, "浮閘記憶體 從發明到數位電子時代," 國家奈米元件實驗室奈米通訊, vol. 19, pp. 2-13, 2012.
[11]P. H. Nielsen and N. M. Bashara, "The reversible voltage-induced initial resistance in the negative resistance sandwich structure," Electron Devices, IEEE Transactions on, vol. 11, pp. 243-244, 1964.
[12]J. Gibbons and W. Beadle, "Switching properties of thin NiO films," Solid-State Electronics, vol. 7, pp. 785-790, 1964.
[13]A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, "Reproducible switching effect in thin oxide films for memory applications," Applied Physics Letters, vol. 77, pp. 139-141, 2000.
[14]W. Zhuang, W. Pan, B. Ulrich, J. Lee, L. Stecker, A. Burmaster, et al., "Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM)," in Electron Devices Meeting, 2002. IEDM''02. International, 2002, pp. 193-196.
[15]H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, et al., "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[16]B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, et al., "Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition," Journal of Applied Physics, vol. 98, p. 033715, 2005.
[17]W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, "On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt," Applied Physics Letters, vol. 93, p. 223506, 2008.
[18]R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges," Advanced Materials, vol. 21, pp. 2632-2663, 2009.
[19]K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, and R. Waser, "TiO2—a prototypical memristive material," Nanotechnology, vol. 22, p. 254001, 2011.
[20]S. Q. Liu, N. J. Wu, and A. Ignatiev, "Electric-pulse-induced reversible resistance change effect in magnetoresistive films," Applied Physics Letters, vol. 76, pp. 2749-2751, 2000.
[21]T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aono, "Nanometer-scale switches using copper sulfide," Applied Physics Letters, vol. 82, pp. 3032-3034, 2003.
[22]M. N. Kozicki, M. Park, and M. Mitkova, "Nanoscale memory elements based on solid-state electrolytes," Nanotechnology, IEEE Transactions on, vol. 4, pp. 331-338, 2005.
[23]A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, pp. 28-36, 2008.
[24]R. Waser, "Resistive non-volatile memory devices," Microelectronic Engineering, vol. 86, pp. 1925-1928, 2009.
[25]C. Schindler, M. Meier, R. Waser, and M. N. Kozicki, "Resistive switching in Ag-Ge-Se with extremely low write currents," in Non-Volatile Memory Technology Symposium, 2007. NVMTS ''07, 2007, pp. 82-85.
[26]R. Yasuhara, K. Fujiwara, K. Horiba, H. Kumigashira, M. Kotsugi, M. Oshima, et al., "Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure," Applied Physics Letters, vol. 95, p. 012110, 2009.
[27]L. A. Bursill, B. G. Hyde, O. Terasaki, and D. Watanabe, "On a new family of titanium oxides and the nature of slightly-reduced rutile," Philosophical Magazine, vol. 20, pp. 347-359, 1969.
[28]C. N. R. Rao, S. Ramdas, R. E. Loehman, and J. M. Honig, "Semiconductor-metal transition in Ti3O5," Journal of Solid State Chemistry, vol. 3, pp. 83-88, 1971.
[29]L. Liborio, G. Mallia, and N. Harrison, "Electronic structure of the Ti4O7 Magneli phase," Physical Review B, vol. 79, p. 245133, 2009.
[30]L. Liborio and N. Harrison, "Thermodynamics of oxygen defective Magneli phases in rutile: A first-principles study," Physical Review B, vol. 77, p. 104104, 2008.
[31]R. F. Bartholomew and D. R. Frankl, "Electrical Properties of Some Titanium Oxides," Physical Review, vol. 187, pp. 828-833, 1969.
[32]H. Gruber and E. Krautz, "Magnetoresistance and conductivity in the binary system titanium–oxygen. II. Semiconductive Titanium Oxides," physica status solidi (a), vol. 75, pp. 511-518, 1983.
[33]J. Wu, J. Cao, W. Q. Han, A. Janotti, and H. C. Kim, Functional metal oxide nanostructures: Springer, 2012.
[34]D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, et al., "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory," Nature Nanotechnology, vol. 5, pp. 148-153, 2010.
[35]S. Lakkis, C. Schlenker, B. Chakraverty, R. Buder, and M. Marezio, "Metal-insulator transitions in Ti4O7 single crystals: crystal characterization, specific heat, and electron paramagnetic resonance," Physical Review B, vol. 14, p. 1429, 1976.
[36]R. Hoffman, "The mechanical properties of thin condensed films," Physics of thin films, vol. 3, pp. 211-273, 1966.
[37]G. G. Stoney, "The tension of metallic films deposited by electrolysis," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 82, pp. 172-175, 1909.
[38]J. Ligot, U. Welzel, P. Lamparter, A. C. Vermeulen, and E. J. Mittemeijer, "Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction," Journal of Applied Crystallography, vol. 38, pp. 1-29, 2005.
[39]G. Moulard, G. Contoux, G. Gardet, G. Motyl, and M. Courbon, "An improved optical cantilever technique using image processing for measuring in situ stress in thin films," Surface and Coatings Technology, vol. 97, pp. 206-211, 1997.
[40]K. G. Soderberg and A. K. Graham, "Stress in electro-deposits-Its significance," Proc. Am. Electroplater’s Soc, vol. 34, p. 97, 1947.
[41]H. J. D. R. H. Barklie, "The effect of surface conditions and electrodeposited metal on the resistance of materials to repeated stress," Proc. Inst. Mech. Eng., p. 2731, 1930.
[42]A. R. B. C.E. Heussner, and L. M. Morse, "Stress Data on Copper Deposits from Alkaline Baths," Plating vol. 35, p. 719, 1948.
[43]A. Brenner and S. Senderoff, "Calculation of stress in electrodeposits from the curvature of a plated strip," J. Res. Natl. Bur. Stand, vol. 42, pp. 105-123, 1949.
[44]N. N. Davidenkov, "Measurement of residual stress in electrolytic deposits," Sov. Phys, 1961.
[45]A. Ponchet, M. Cabie, and A. Rocher, "TEM measurement of the misfit stress by a curvature method in semiconducting epitaxial system," The European Physical Journal Applied Physics, vol. 26, pp. 87-94, 2004.
[46]A. Rocher, A. Ponchet, S. Blanc, and C. Fontaine, "TEM evaluation of epitaxial strain in III–V semi-conductors: evidence of coherent and incoherent stress relaxation," Applied surface science, vol. 188, pp. 55-60, 2002.
[47]H. Ibach, "The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures," Surface Science Reports, vol. 29, pp. 195-263, 1997.
[48]P. M. Kelly, A. Jostsons, R. G. Blake, and J. G. Napier, "The determination of foil thickness by scanning transmission electron microscopy," physica status solidi (a), vol. 31, pp. 771-780, 1975.
[49]D. R. G. Mitchell, D. J. Attard, and G. Triani, "Transmission electron microscopy studies of atomic layer deposition TiO2 films grown on silicon," Thin Solid Films, vol. 441, pp. 85-95, 2003.
[50]Y. Huang, G. Pandraud, and P. M. Sarro, "Characterization of low temperature deposited atomic layer deposition TiO2 for MEMS applications," Journal of Vacuum Science &; Technology A, vol. 31, p. 01A148, 2013.
[51]S. M. George, "Atomic layer deposition: an overview," Chemical Reviews, vol. 110, pp. 111-131, 2009.
[52]J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, "Morphology and structure of TiO2 thin films grown by atomic layer deposition," Journal of Crystal Growth, vol. 148, pp. 268-275, 1995.
[53]G. X. Liu, F. K. Shan, W. J. Lee, and B. C. Shin, "Growth temperature dependence of TiO2 thin films prepared by using plasma-enhanced atomic layer deposition method," Journal of the Korean Physical Society, vol. 50, pp. 1827-1832, 2007.
[54]K. Deok-Hwang, K. Kyung Min, J. Jae Hyuck, J. Jong Myeong, L. Min Hwan, K. Gun Hwan, et al., "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory," Nature Nanotechnology, vol. 5, pp. 148-153, 2010.
[55]W. Fang, H.-C. Tsai, and C.-Y. Lo, "Determining thermal expansion coefficients of thin films using micromachined cantilevers," Sensors and Actuators A: Physical, vol. 77, pp. 21-27, 1999.
[56]T. Hanada, N. Soga, and M. Ohkawa, "Thermal expansion and coordination state of cations in amorphous films in the system Al2O3-TiO2," Journal of non-crystalline solids, vol. 88, pp. 236-241, 1986.
[57]M. Okaji, "Absolute thermal expansion measurements of single-crystal silicon in the range 300–1300 K with an interferometric dilatometer," International Journal of Thermophysics, vol. 9, pp. 1101-1109, 1988.
[58]S. J. Park, J. P. Lee, J. S. Jang, H. Rhu, H. Yu, B. Y. You, et al., "In situ control of oxygen vacancies in TiO2 by atomic layer deposition for resistive switching devices," Nanotechnology, vol. 24, p. 295202, 2013.
[59]J. J. Yang, N. P. Kobayashi, J. P. Strachan, M. X. Zhang, D. A. Ohlberg, M. D. Pickett, et al., "Dopant control by atomic layer deposition in oxide films for memristive switches," Chemistry of Materials, vol. 23, pp. 123-125, 2010.
[60]Y. C. Huang, W. L. Tsai, C. H. Chou, C. Y. Wan, C. Hsiao, and H. C. Cheng, "High-performance programmable metallization cell memory with the pyramid-structured electrode," vol. 34, pp. 1244-1246, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔