跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 21:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王正彥
研究生(外文):Cheng-Yen Wang
論文名稱:使用兩種填料真空硬銲Incoloy 800之研究
論文名稱(外文):The Study of Vacuum Brazing Incoloy 800 Using Two Fillers
指導教授:薛人愷
口試委員:郭東昊蔡履文
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:63
中文關鍵詞:鎳基填料銅填料鎳基合金顯微結構組織剪力強度
外文關鍵詞:Ni-based fillerCopper fillerNi-based alloyMicrostructureShear strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this research, both copper foil and Ni-based V2177 foil are applied in brazing IN-800 substrate. Analyses of the microstructural evolution of the joint by controlling brazing temperature, time and the thickness of foil were performed. Selected specimens were applied in shear test in order to evaluate the effect of microstructure on the brazed joint. First, IN-800/Cu/IN-800 brazed joints show no precipitate, and their shear strengths do not change with the brazing temperature and thickness of the filler foil. The crack is originated from Cu-rich matrix based on SEM microstructure analysis of the fractured surface. IN-800/VZ2177/IN-800 brazed joints include two types of precipitates, B2Cr5P and Cr4Ni3P4, in the Ni-based matrix, and both are coarsened with increasing brazing temperature and/or time. However, B2Cr5P phase is coarsened more prominent than Cr4Ni3P4 at higher temperature due to enhanced diffusion rate of boron at higher temperature. Coarsening of B2Cr5P phase is also enhanced by increasing the thickness of filler foil. Based on the result of SEM microstructural examination and XRD analyses of the fractured surfaces, the crack are originated from B2Cr5P phases, and the shear strength is decreased with the coarsened B2Cr5P phase. Optimized conditions are brazed between 1050℃ and 1080℃ for 10 ~ 20 min and using the foil with 40 μm in thickness.

中文摘要 I
英文摘要 III
目 錄 IV
圖目錄 VI
表目錄 IX
第一章 前言 1
第二章 文獻回顧 2
2-1 基材簡介 2
2-1-1 Incoloy 800 2
2-1-2 純銅 2
2-2 接合製程 2
2-2-1 硬銲接合製程[4, 5] 3
2-2-2 影響硬銲接合強度因素 4
2-3 爐體硬銲簡介[10] 5
2-4 接合研究發展概況 6
第三章 實驗方法與步驟 16
3-1 IN-800基材與純CU和VZ2177兩種硬銲填料接合製程 16
3-2 剪力試驗 16
3-3 SEM顯微組織分析 17
3-4 EPMA定量分析 17
3-5 X光繞射(X-RAY DIFFRACTION, XRD)分析 17
第四章 使用純CU填料硬銲接合IN-800合金 21
4-1 IN-800/CU/IN-800 硬銲接合 21
4-1-1 IN-800/Cu/IN-800硬銲接合於1120℃ 21
4-1-2 IN-800/Cu/IN-800硬銲接合於1160℃ 22
4-1-3 IN-800/Cu/IN-800硬銲接合於1200℃ 22
4-1-4 IN-800/Cu(100 μm)/IN-800 硬銲於 1120℃、1160℃、1200℃ 22
4-1-5 IN-800/Cu/IN-800 成分擴散深度分析 23
4-1-6 IN-800/Cu(50 μm)/IN-800 銲點剪力試驗 24
4-1-7 IN-800/Cu(100 μm)/IN-800 銲點剪力試驗 25
第五章 使用VZ2177填料硬銲接合IN-800合金 40
5-1 IN-800/VZ2177/IN-800 硬銲接合 40
5-1-1 IN-800/VZ2177/IN-800 硬銲於 1050℃ 40
5-1-2 IN-800/VZ2177/IN-800 硬銲於 1080℃ 41
5-1-3 IN-800/VZ2177/IN-800 硬銲於 1110℃ 41
5-1-4 IN-800/VZ2177(80 μm)/IN-800 硬銲於1080℃ 42
5-1-5 IN-800/VZ2177(40 μm)/IN-800 銲點剪力試驗 42
5-1-6 IN-800/VZ2177(80 μm)/IN-800 銲點剪力試驗 44
第六章 結 論 60
6-1 IN-800 與 CU 硬銲填料接合製程 60
6-2 IN-800 與 VZ2177 硬銲填料接合製程 60
參考文獻 62


1.M. M. Schwartz, ASM Handbook, Vol.6, , Introduction to Brazing and Soldering, pp.114-125, pp.924-930, ASM International, 1993.
2.W.F. Smith, Structure and Properties of Engineering Alloys 1993: McGraw-Hill Science/Engineering/Math.
3.C.H Hsu, H.W. Hsu, T.Y. Yeh, R. K. Shiue, Developing Corrosion-resistant Joints Applied in the Plate Heat Exchanger, Advantace Material Resarch, Vol. 410, 2012, pp. 191-195.
4.M. Schwartz, Brazing. 2nd ed. 2003: ASM International.
5.G. Humpston and D.M. Jacobson, Principles of Soldering and Brazing. 1993, Materials Park, OH: ASM International.
6.R. D. Milner, A Survey of the Scientific Principles Related to Wetting and Spreading, Br. Weld. J., Vol. 5, 1958, pp.90-105.
7.D. L. Olson et. Al., Metals Handbook, 10th ed., ASM International Vol.6, 1990, Welding Brazing and Soldering.
8.X. Yuan, C. Yun Kang, and M.B. Kim, Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni–Si–B filler metal. Materials Characterization, 2009. 60(9): p. 923-931.
9.F. Jalilian, M. Jahazi, and R.A.L. Drew, Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni–Si–B filler metal. Materials Science and Engineering: A, 2006. 423(1–2): p. 269-281.
10.Annual Book of ASTM Standards Section 3, Metals Test Methods &; Analytical Procedures, West Conshohocken, Pa., ASTM International, 2004.
11.T. Wang, et al., Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with copper interlayer sheet. Transactions of Nonferrous Metals Society of China, 2010. 20(10): p. 1829-1834.
12.S. Wang and X. Wu, Investigation on the microstructure and mechanical properties of Ti–6Al–4V alloy joints with electron beam welding. Materials &; Design, 2012. 36(0): p. 663-670.
13.Y. Peng, et al., Beam quality test technology and devices of electron beam welding. Vacuum, 2011. 86(3): p. 261-266.
14.S. Yan, et al., CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets. Optics and Lasers in Engineering, 2010. 48(7–8): p. 732-736.
15.G. Padmanaban and V. Balasubramanian, Effects of laser beam welding parameters on mechanical properties and microstructure of AZ31B magnesium alloy. Transactions of Nonferrous Metals Society of China, 2011. 21(9): p. 1917-1924.
16.R. Li, et al., A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al–Zr–Fe titanium alloy. Materials Science and Engineering: A, 2011. 528(3): p. 1138-1142.
17.C.S. Wu, H.L. Wang, and Y.M. Zhang, Numerical analysis of the temperature profiles and weld dimension in high power direct-diode laser welding. Computational Materials Science, 2009. 46(1): p. 49-56.
18.C.-H. Lee and K.-H. Chang, Three-dimensional finite element simulation of residual stresses in circumferential welds of steel pipe including pipe diameter effects. Materials Science and Engineering: A, 2008. 487(1–2): p. 210-218.
19.C.D. Elcoate, et al., Three dimensional multi-pass repair weld simulations. International Journal of Pressure Vessels and Piping, 2005. 82(4): p. 244-257.
20.C. Sharma, D.K. Dwivedi, and P. Kumar, Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al–Zn–Mg alloy AA7039. Materials &; Design, 2013. 43(0): p. 134-143.
21.S.J. Yuan, Z.L. Hu, and X.S. Wang, Formability and microstructural stability of friction stir welded Al alloy tube during subsequent spinning and post weld heat treatment. Materials Science and Engineering: A, 2012. 558(0): p. 586-591.
22.P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams. 1995, Materials Park: ASM International.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊