(3.238.186.43) 您好!臺灣時間:2021/03/05 22:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡昀嶧
研究生(外文):Yun-Yi Tsai
論文名稱:矽鍺半導體奈米線的成長與分析
論文名稱(外文):Growth and Analysis of Group IV Semiconductor Nanowires
指導教授:溫政彥
口試委員:林招松陳俊維
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:79
中文關鍵詞:氣相液相固相機制氣相固相固相機制奈米線異質介面穿透式電子顯微鏡
外文關鍵詞:silicongermaniumvapor-liquid-solid mechanismvapor-solid-solid mechanismheterojunctiontransmission electron microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:325
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
將四族半導體材料成長為奈米線(Nanowire)結構,可應用於製作效能更高的電子元件,並克服矽鍺異質介面結構因晶格常數差異而產生缺陷的難題。為了達到這些目的,半導體奈米線的形貌以及成份分佈必須能精準的控制。在本篇論文研究中,奈米線成長是以化學氣相沉積(CVD)的製程方法,藉由氣相液相固相(Vapor-Liquid-Solid, VLS)機制成長出矽奈米線以及矽鍺合金奈米線,另外並藉由氣相固相固相(Vapor-Solid-Solid, VSS)機制成長具有矽鍺異質介面的奈米線結構。研究中對各種影響奈米線成長的要素包含催化劑的成份、氣體選擇、溫度壓力、試片表面乾淨度進行研究與探討。而在矽鍺合金奈米線中,鍺元素會改變奈米線的傳導性質,因此控制矽鍺合金奈米線中鍺含量的多寡、以及鍺含量的準確量測即成為重要的問題。由於奈米線的直徑小於一百奈米,常見的表面分析成份量測工具不易得到準確的結果,因此我們藉由掃描穿透式電子顯微鏡的能量分散光譜技術,利用已知成份組成的矽鍺薄膜做為標準試片,定量分析奈米線中鍺的含量多寡。實驗結果顯示,矽鍺合金奈米線中矽鍺含量的比例與CVD中反應氣體的成份比呈現非線性的關係,進料氣體先驅物的化學活性差異是控制矽鍺含量比的最重要因素。在矽鍺異質介面的成長中,有效控制介面處的成份變化,將有助於達成理想的電子元件結構。針對這個目的,改採以VSS的成長機制,利用金銀合金(成份比1:1)作為成長用的催化劑,製作出寬度僅數奈米的矽鍺異質介面。

Group IV semiconductor materials such as silicon and germanium are potential candidates for future applications in high performance semiconductor devices by means of nanowire structure. Defects due to lattice mismatch between Si and Ge at Si-Ge heterojunction interface can be avoided as well when the heterojunction is made into nanowire structure. In order to realize these applications, the morphology and interior composition distribution must be controlled precisely. In this study, we grew Si nanowires and SiGe alloy nanowires via vapor-liquid-solid (VLS) mechanism and grew heterojunction structure nanowires via vapor-solid-solid (VSS) mechanism in a chemical vapor deposition (CVD) reactor. The correlation between nanowire growth and growth factors such as catalysts, gas precursors, temperature, pressure, and cleanness was discussed based on our experimental results. In SiGe alloy nanowires, the amount of Ge would affect the transport properties of nanowires, so it is important to control and measure the Ge content in nanowires. Common surface analysis techniques are difficult to get accurate composition due to the small diameter of nanowires. Thus, we performed quantitative analysis of SiGe alloy nanowires by using energy dispersive spectroscopy (EDS) in scanning transmission electron microscopy (STEM). Four SiGe films with different compositions were served as standards in EDS analysis. The results of quantitative analysis showed that the amount of Ge increases as a nonlinear function of partial pressure of gas precursors, and the chemical reactivity of gas precursors is the key to control the nanowire interior composition. In Si-Ge heterojunction growth, controlling the composition distribution at interface precisely is helpful for fabricating desired electronic devices. For this purpose, we grew nanowires via VSS mechanism and finally fabricated heterojunction nanowires by using a mixture of Ag and Au as catalysts (AgAu). The interface width of Si-Ge heterojunction is only few nanometers.

口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xiv
Chapter 1 緒論 1
Chapter 2 理論與文獻回顧 3
2.1 矽奈米線的合成機制 3
2.1.1 氣相液相固相成長機制(Vapor-Liquid-Solid, VLS) 3
2.1.2 氣相固相固相成長機制(Vapor-Solid-Solid, VSS) 6
2.1.3 溶液液相固相機制(Solution Liquid Solid, SLS) 6
2.1.4 氧化物輔助成長機制(Oxide Assisted Growth , OAG) 8
2.2 成長奈米線的方法 10
2.2.1 化學氣相沉積法(Chemical Vapor Deposition, CVD) 10
2.2.2 雷射消熔法(Laser Ablation) 11
2.2.3 分子束磊晶法(Molecular Beam Epitaxy, MBE) 12
2.2.4 溶液法(Solution-Based Method) 12
2.3 各種機制與成長方式的比較 13
2.4 VLS與VSS中的層狀成長機制 13
2.5 成長矽鍺合金奈米線 18
2.6 成長軸向異質介面結構(Axial Heterojunction) 21
2.6.1 利用VLS成長軸向的異質介面 21
2.6.2 利用VSS機制成長軸向異質介面 26
Chapter 3 實驗方法與儀器介紹 30
3.1 超高真空化學氣相沉積(Ultra-High Vacuum Chemical Vapor Deposition, UHVCVD) 30
3.1.1 超高真空化學氣相沉積 30
3.1.2 蒸鍍系統 30
3.1.3 預抽室(Loadlock Chamber) 31
3.2 金奈米粒子合成 32
3.3 試片準備 33
3.4 催化劑的添加 33
3.5 奈米線的成長 34
3.5.1 矽奈米線的成長 34
3.5.2 緩衝層(Buffer Layer)與矽鍺薄膜(SiGe film)的成長 34
3.5.3 矽鍺合金奈米線的成長 35
3.5.4 異質介面結構的成長 36
3.6 製作截面TEM試片 37
3.7 分析設備 38
3.7.1 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 38
3.7.2 穿透式電子顯微鏡(Transmission electron microscopy, TEM) 38
3.7.3 高功率X光繞射儀(X-ray diffractometer, XRD) 38
3.8 能量分散光譜定量分析(Quantitative analysis of Energy Dispersive Spectroscopy) 39
3.8.1 使用X-ray來分析材料成份的起源 39
3.8.2 Cliff-Lorimer法(The Cliff-Lorimer Ratio Technique) 39
3.8.3 利用標準成份試片決定Cliff-Lorimer因子(k-factor) 40
3.8.4 EDS光譜中背景值的去除以及峰值積分 41
3.8.5 吸收校正係數(Absorption Correction Factor, ACF)的計算 41
Chapter 4 結果與討論 43
4.1 矽奈米線成長的基礎特性研究 43
4.1.1 催化劑選擇對奈米線成長的影響 43
4.1.2 影響奈米線成長速率的因素-溫度、氣體種類、壓力 47
4.1.3 試片表面乾淨度對奈米線成長的影響 50
4.1.4 控制奈米線的密度 52
4.2 矽鍺合金奈米線形貌觀察及成份定量分析 53
4.2.1 矽鍺奈米線的形貌觀察 54
4.2.2 作為標準試片的矽鍺薄膜的成份組成分析 56
4.2.3 使用已知成份的矽鍺薄膜求k-factor 59
4.2.4 計算吸收校正係數(Absorption Correction Factor, ACF) 60
4.2.5 定量分析矽鍺奈米線的成份 64
4.3 成長奈米線軸向的異質介面結構 65
4.3.1 藉由VLS成長奈米線軸向的異質介面結構 65
4.3.2 以AgAu為催化劑經由VSS機制的矽奈米線成長 68
4.3.3 利用VSS機制成長Si-Ge-Si的軸向量子井結構 72
Chapter 5 結論 74
REFERENCE 75



[1]S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, "Germanium nanowire growth below the eutectic temperature," Science, vol. 316, pp. 729-732, May 4 2007.
[2]H. Jagannathan, M. Deal, Y. Nishi, J. Woodruff, C. Chidsey, and P. C. McIntyre, "Nature of germanium nanowire heteroepitaxy on silicon substrates," Journal of Applied Physics, vol. 100, Jul 15 2006.
[3]J. W. Dailey, J. Taraci, T. Clement, D. J. Smith, J. Drucker, and S. T. Picraux, "Vapor-liquid-solid growth of germanium nanostructures on silicon," Journal of Applied Physics, vol. 96, pp. 7556-7567, Dec 15 2004.
[4]Z. J. Li, H. J. Li, X. L. Chen, A. L. Meng, K. Z. Li, Y. P. Xu, et al., "Large-scale synthesis of crystalline beta-SiC nanowires," Applied Physics a-Materials Science &; Processing, vol. 76, pp. 637-640, Mar 2003.
[5]J. C. Harmand, G. Patriarche, N. Pere-Laperne, M. N. Merat-Combes, L. Travers, and F. Glas, "Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth," Applied Physics Letters, vol. 87, Nov 14 2005.
[6]L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, et al., "General route to vertical ZnO nanowire arrays using textured ZnO seeds," Nano Letters, vol. 5, pp. 1231-1236, Jul 2005.
[7]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, et al., "Low-temperature wafer-scale production of ZnO nanowire arrays," Angewandte Chemie-International Edition, vol. 42, pp. 3031-3034, 2003.
[8]O. Shirak, O. Shtempluck, V. Kotchtakov, G. Bahir, and Y. E. Yaish, "High performance horizontal gate-all-around silicon nanowire field-effect transistors," Nanotechnology, vol. 23, Oct 5 2012.
[9]Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, "High performance silicon nanowire field effect transistors," Nano Letters, vol. 3, pp. 149-152, Feb 2003.
[10]Q. L. Li, X. X. Zhu, Y. Yang, D. E. Ioannou, H. D. Xiong, D. W. Kwon, et al., "The large-scale integration of high-performance silicon nanowire field effect transistors," Nanotechnology, vol. 20, Oct 14 2009.
[11]G. Rosaz, B. Salem, N. Pauc, A. Potie, P. Gentile, and T. Baron, "Vertically integrated silicon-germanium nanowire field-effect transistor," Applied Physics Letters, vol. 99, Nov 7 2011.
[12]A. Lugstein, M. Steinmair, C. Henkel, and E. Bertagnolli, "Scalable Approach for Vertical Device Integration of Epitaxial Nanowires," Nano Letters, vol. 9, pp. 1830-1834, May 2009.
[13]J. Goldberger, A. I. Hochbaum, R. Fan, and P. D. Yang, "Silicon vertically integrated nanowire field effect transistors," Nano Letters, vol. 6, pp. 973-977, May 2006.
[14]E. K. Lee, L. Yin, Y. Lee, J. W. Lee, S. J. Lee, J. Lee, et al., "Large Thermoelectric Figure-of-Merits from SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties," Nano Letters, vol. 12, pp. 2918-2923, Jun 2012.
[15]A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, et al., "Enhanced thermoelectric performance of rough silicon nanowires," Nature, vol. 451, pp. 163-U5, Jan 10 2008.
[16]R. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D. Yang, and A. Majumdar, "Thermal conductance of thin silicon nanowires," Physical Review Letters, vol. 101, Sep 5 2008.
[17]A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature, vol. 451, pp. 168-171, Jan 10 2008.
[18]Y. Jiang, N. Singh, T. Y. Liow, G. Q. Lo, D. S. H. Chan, and D. L. Kwong, "Reduced carrier backscattering in heterojunction SiGe nanowire channels," Applied Physics Letters, vol. 93, Dec 22 2008.
[19]S. T. Le, P. Jannaty, X. Luo, A. Zaslavsky, D. E. Perea, S. A. Dayeh, et al., "Axial SiGe Heteronanowire Tunneling Field-Effect Transistors," Nano Letters, vol. 12, pp. 5850-5855, Nov 2012.
[20]W. Y. Fung, L. Chen, and W. Lu, "Esaki tunnel diodes based on vertical Si-Ge nanowire heterojunctions," Applied Physics Letters, vol. 99, Aug 29 2011.
[21]M. Shadi A. Dayeh, IEEE , Jianyu Huang, Aaron V. Gin, and S. T. Picraux, Senior Member, IEEE "Synthesis, Fabrication, and Characterization of Ge/Si Axial Nanowire Heterostructure Tunnel FETs," Proceedings of 10th IEEE International Conference on Nanotechnology Joint Symposium with Nano Korea, 2010.
[22]A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches," Nature, vol. 479, pp. 329-337, Nov 17 2011.
[23]F. C. Frank, "The Influence of Dislocations on Crystal Growth," Discussions of the Faraday Society, pp. 48-54, 1949.
[24]R. S. Wagner and W. C. Ellis, "The vapor-Liquid-Solid Mechanism of Crystal Growth and Its Application to Silicon," Transactions of the Metallurgical Society of AIME, vol. 233, pp. 1053-1064, 1965.
[25]R. S. Wagner, W. C. Ellis, K. A. Jackson, and S. M. Arnold, "Study of the Filamentary Growth of Silicon Crystals from the Vapor," Journal of Applied Physics, vol. 35, pp. 2993-3000, 1964.
[26]R. S. Wagner and W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth ( New Method Growth Catalysis from Impurity Whisker Epitaxial + Large Crystals Si E )," Applied Physics Letters, vol. 4, pp. 89-90, 1964.
[27]R. S. Wagner and C. J. Doherty, "Mechanism of Branching and Kinking during VLS Crystal Growth," Journal of the Electrochemical Society, vol. 115, pp. 93-&;, 1968.
[28]Y. Osada, H. Nakayama, M. Shindo, T. Odaka, and Y. Ogata, "Growth and Structure of Silicon Fibers," Journal of the Electrochemical Society, vol. 126, pp. 31-36, 1979.
[29]E. I. Givargizov, "Fundamental Aspects of Vls Growth," Journal of Crystal Growth, vol. 31, pp. 20-30, 1975.
[30]Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, and C. M. Lieber, "Diameter-controlled synthesis of single-crystal silicon nanowires," Applied Physics Letters, vol. 78, pp. 2214-2216, Apr 9 2001.
[31]J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, "Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction," Journal of Vacuum Science &; Technology B, vol. 15, pp. 554-557, May-Jun 1997.
[32]M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, "Effect of One Monolayer of Surface Gold Atoms on the Epitaxial-Growth of Inas Nanowhiskers," Applied Physics Letters, vol. 61, pp. 2051-2053, Oct 26 1992.
[33]Y. Y. Wu and P. D. Yang, "Direct observation of vapor-liquid-solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, Apr 4 2001.
[34]T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chang, and Y. A. Chang, "Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si," Applied Physics Letters, vol. 76, pp. 562-564, Jan 31 2000.
[35]T. I. Kamins, R. S. Williams, D. P. Basile, T. Hesjedal, and J. S. Harris, "Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms," Journal of Applied Physics, vol. 89, pp. 1008-1016, Jan 15 2001.
[36]T. Baron, M. Gordon, F. Dhalluin, C. Ternon, P. Ferret, and P. Gentile, "Si nanowire growth and characterization using a microelectronics-compatible catalyst: PtSi," Applied Physics Letters, vol. 89, Dec 4 2006.
[37]T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, "Solution-Liquid-Solid Growth of Crystalline Iii-V Semiconductors - an Analogy to Vapor-Liquid-Solid Growth," Science, vol. 270, pp. 1791-1794, Dec 15 1995.
[38]T. Hanrath and B. A. Korgel, "Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals," Advanced Materials, vol. 15, pp. 437-440, Mar 4 2003.
[39]A. T. Heitsch, D. D. Fanfair, H. Y. Tuan, and B. A. Korgel, "Solution-liquid-solid (SLS) growth of silicon nanowires," Journal of the American Chemical Society, vol. 130, pp. 5436-+, Apr 23 2008.
[40]Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, et al., "Silicon nanowires prepared by laser ablation at high temperature," Applied Physics Letters, vol. 72, pp. 1835-1837, Apr 13 1998.
[41]N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee, "SiO2-enhanced synthesis of Si nanowires by laser ablation," Applied Physics Letters, vol. 73, pp. 3902-3904, Dec 28 1998.
[42]S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, "Oxide-assisted semiconductor nanowire growth," Mrs Bulletin, vol. 24, pp. 36-42, Aug 1999.
[43]R. Q. Zhang, Y. Lifshitz, and S. T. Lee, "Oxide-assisted growth of semiconducting nanowires," Advanced Materials, vol. 15, pp. 635-640, Apr 17 2003.
[44]S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, "Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires," Physical Review Letters, vol. 96, Mar 10 2006.
[45]F. Iacopi, P. M. Vereecken, M. Schaekers, M. Caymax, N. Moelans, B. Blanpain, et al., "Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts: an effective alternative to Au-mediated growth," Nanotechnology, vol. 18, Dec 19 2007.
[46]S. Hofmann, R. Sharma, C. T. Wirth, F. Cervantes-Sodi, C. Ducati, T. Kasama, et al., "Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth," Nature Materials, vol. 7, pp. 372-375, May 2008.
[47]C. Y. Wen, M. C. Reuter, J. Tersoff, E. A. Stach, and F. M. Ross, "Structure, Growth Kinetics, and Ledge Flow during Vapor-Solid-Solid Growth of Copper-Catalyzed Silicon Nanowires," Nano Letters, vol. 10, pp. 514-519, Feb 2010.
[48]C. Y. Wen, J. Tersoff, M. C. Reuter, E. A. Stach, and F. M. Ross, "Step-Flow Kinetics in Nanowire Growth," Physical Review Letters, vol. 105, p. 195502, 11/05/ 2010.
[49]X. F. Duan and C. M. Lieber, "General synthesis of compound semiconductor nanowires," Advanced Materials, vol. 12, pp. 298-302, Feb 17 2000.
[50]C. Deng, T. W. Sigmon, G. K. Giust, J. C. Wu, and M. N. Wybourne, "Novel scheme to fabricate SiGe nanowires using pulsed ultraviolet laser induced epitaxy," Journal of Vacuum Science &; Technology a-Vacuum Surfaces and Films, vol. 14, pp. 1860-1863, May-Jun 1996.
[51]H. Simka, M. Hierlemann, M. Utz, and K. F. Jensen, "Computational chemistry predictions of kinetics and major reaction pathways for germane gas-phase reactions," Journal of the Electrochemical Society, vol. 143, pp. 2646-2654, Aug 1996.
[52]B. S. Meyerson and J. M. Jasinski, "Silane Pyrolysis Rates for the Modeling of Chemical Vapor-Deposition," Journal of Applied Physics, vol. 61, pp. 785-787, Jan 15 1987.
[53]G. A. G. Bootsma, H.J. , "A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane," Journal of Crystal Growth, vol. 10, pp. 223-234, 1971.
[54]Y. Miyamoto and M. Hirata, "Growth of New Form Germanium Whiskers," Japanese Journal of Applied Physics, vol. 14, pp. 1419-1420, 1975.
[55]K. K. Lew, L. Pan, E. C. Dickey, and J. M. Redwing, "Effect of growth conditions on the composition and structure of Si1-xGex nanowires grown by vapor-liquid-solid growth," Journal of Materials Research, vol. 21, pp. 2876-2881, Nov 2006.
[56]J. E. Yang, C. B. Jin, C. J. Kim, and M. H. Jo, "Band-gap modulation in single-crystalline Si1-xGex nanowires," Nano Letters, vol. 6, pp. 2679-2684, Dec 13 2006.
[57]U. Givan and F. Patolsky, "Pressure-Modulated Alloy Composition in Si(1-x)Gex Nanowires," Nano Letters, vol. 9, pp. 1775-1779, May 2009.
[58]K. K. Lew, L. Pan, E. C. Dickey, and J. M. Redwing, "Vapor-liquid-solid growth of silicon-germanium nanowires," Advanced Materials, vol. 15, pp. 2073-+, Dec 17 2003.
[59]A. Potie, T. Baron, F. Dhalluin, G. Rosaz, B. Salem, L. Latu-Romain, et al., "Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires," Nanoscale Research Letters, vol. 6, Mar 1 2011.
[60]C. Qi, G. Goncher, R. Solanki, and J. Jordan, "SiGe nanowire growth and characterization," Nanotechnology, vol. 18, Feb 21 2007.
[61]E. Dailey, P. Madras, and J. Drucker, "Composition and growth direction control of epitaxial vapor-liquid-solid-grown SiGe nanowires," Applied Physics Letters, vol. 97, Oct 4 2010.
[62]Y. Y. Wu, R. Fan, and P. D. Yang, "Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires," Nano Letters, vol. 2, pp. 83-86, Feb 2002.
[63]B. Eisenhawer, V. Sivakov, A. Berger, and S. Christiansen, "Growth of axial SiGe heterostructures in nanowires using pulsed laser deposition," Nanotechnology, vol. 22, Jul 29 2011.
[64]N. Li, T. Y. Tan, and U. Gosele, "Transition region width of nanowire hetero- and pn-junctions grown using vapor-liquid-solid processes," Applied Physics a-Materials Science &; Processing, vol. 90, pp. 591-596, Mar 2008.
[65]T. E. Clark, P. Nimmatoori, K. K. Lew, L. Pan, J. M. Redwing, and E. C. Dickey, "Diameter dependent growth rate and interfacial abruptness in vapor-liquid-solid Si/Si(1-x)Ge(x) heterostructure nanowires," Nano Letters, vol. 8, pp. 1246-1252, Apr 2008.
[66]D. E. Perea, N. Li, R. M. Dickerson, A. Misra, and S. T. Picraux, "Controlling Heterojunction Abruptness in VLS-Grown Semiconductor Nanowires via in situ Catalyst Alloying," Nano Letters, vol. 11, pp. 3117-3122, Aug 2011.
[67]M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, et al., "One-dimensional steeplechase for electrons realized," Nano Letters, vol. 2, pp. 87-89, Feb 2002.
[68]C. Y. Wen, M. C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E. A. Stach, et al., "Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires," Science, vol. 326, pp. 1247-1250, Nov 27 2009.
[69]Y. C. Chou, C. Y. Wen, M. C. Reuter, D. Su, E. A. Stach, and F. M. Ross, "Controlling the Growth of Si/Ge Nanowires and Heterojunctions Using Silver-Gold Alloy Catalysts," Acs Nano, vol. 6, pp. 6407-6415, Jul 2012.
[70]V. Schmidt, J. V. Wittemann, and U. Gosele, "Growth, Thermodynamics, and Electrical Properties of Silicon Nanowires," Chemical Reviews, vol. 110, pp. 361-388, Jan 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔