(3.238.186.43) 您好!臺灣時間:2021/02/26 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾成侑
研究生(外文):Chen-yo Chung
論文名稱:開發螢光偵測技術探討發育基因於孤雌胎生豌豆蚜之非典型表現
論文名稱(外文):Exploration of non-canonical expression of developmental genes in the asexual viviparous pea aphid using fluorescence approaches
指導教授:張俊哲
口試委員:李後晶劉逸軒蕭信宏林明德江運金劉薏雯
口試日期:2014-07-10
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:昆蟲學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:147
中文關鍵詞:豌豆蚜前後體軸全體螢光原位雜合生殖細胞hunchbackpumilio
外文關鍵詞:Acyrthosiphon pisumanteroposterior axiswhole-mount fluorescent in situ hybridization (FISH)germ cellshunchbackpumilio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
豌豆蚜為半翅目昆蟲中第一個被全基因體解序的昆蟲,由於其複雜生活史中的非遺傳多型性以及不同型式的胚胎發育使之成為發育生物學中獨特的模式物種,為更進一步瞭解豌豆蚜胚胎發育過程,解開發育基因之表現型式為不可或缺的方法,為達到此一目的,分子工具以及基因表現分析皆同等重要。早先,全體原位雜合反應已被發展並運用於監測基因於豌豆蚜卵巢的表現,但此一技術在同時偵測兩基因表現及建立三維空間表現上有其極限,因此,我發展了可信賴的全體螢光原位雜合程序來解決這些問題,利用不同螢光染色原理的優勢,我成功偵測到基因在不同組織間—如胚外以及胚體—的表現,此外,結合不同方式所進行的雙色螢光原位雜合也成功讓我同時觀察到兩個基因於胚胎中的表現,此螢光原位雜合程序也幫助我在接下來的研究中,解析發育基因的表現。在 2010 年由本實驗室所發表的報告中,我們發現 Aphb 信使核糖核酸 (messenger RNA) 除表現在早期胚胎前端,也會表現在中、晚期體節以及中央神經系統 (CNS) 中,顯示 Aphb 擁有保守的表現位置。在本研究中,我發現 Aphb 有一新的表現在生殖細胞,此生殖細胞的表現最早出現自原始生殖細胞 (primordial germ cell, PGC),並且持續到胚胎最晚期,甚至也在形成中的生殖原區及其產生的卵母細胞前端表現。這樣的表現顯示Aphb 在早期可能取代了 bicoid 的角色,以及接下來時期可能協助生殖細胞的形成。為推測 Nanos (Nos) 及 Pumilio (Pum) 複合體是否可能抑制後端 Aphb 的轉譯,我分析了 Appum 蛋白質的結構以及信使核糖核酸表現,高度保守的 PUM-HD 顯示 ApPum 能夠抑制 Aphb 的轉譯,雖然沒有偵測到不對稱性的信使核糖核酸表現。將此結果與過去 Aphb, Appum, and ApNos表現做比較,我發現豌豆蚜在後端體軸決定是倚賴 Nos 及 Pum 複合體,但前端則是被 Aphb 決定。

The pea aphid Acyrthosiphon pisum is a genomic model insect and a unique model for polyphenism due to its developmental plasticity in response to environmental cues. To uncover the relation of embryonic development and gene regulations, reliable expression protocols and functional tools are required. Whole-mount in situ hybridization (WISH) we previously reported can be used to monitor gene expressions during embryogenesis, however chromogenic signals are defective in double detection of genes and construction of three-dimensional image. I therefore developed a fluorescent in situ hybridization (FISH) protocol to overcome these defects. By means of different advantages of four FISH methods, I successfully detected gene expressions in somatic and extraembryonic tissues. The combination of FISH methods also allowed the double detection of genes in somatic cells, germ cells, or both in one preparation. This FISH protocol further aids me in revealing the expression of developmental genes. In our previous findings, mRNA expression of A. pisum hunchback (Aphb), a Drosophila homolog of hunchback, was found in the segments and central nervous system of mid/late stages apart from the anterior pole of early stages, implicating its conserved roles among arthropods and lower organisms. Here I discovered a novel expression pattern of Aphb in germ cells of the pea aphid. Germline expression of Aphb initiates while primordial germ cells formed, and maintains throughout developmental stages. In late embryos, Aphb is also expressed in maturing germaria as well as the protruding oocytes. These findings implicate that the homolog of hb in aphids replaces the role of bicoid in anterior determination and, moreover, has the roles in formation of germ cells. To reveal whether the complex of Nanos (Nos) and Pumilio (Pum) is required to repress the translation of anterior-localized Aphb in the posterior, I analyzed the structure of A. pisum Pum (ApPum) protein and the expression patterns of Appum mRNA. The highly conserved protein structure indicates the ApPum can repress the translation of Aphb, though the asymmetric expression of Appum mRNA, like Drosophila pum, was not found. Together with the known expression patterns of Aphb, Appum, and A. pisum Nos (ApNos), it appears that posterior determination of the pea aphid relies on the ApNos/ApPum complex and the anterior is determined by Aphb.

摘要 i
Abstract iii
Table of Contents v
List of Tables ix
List of Figures x
Abbreviations xii
Chapter 1: Introduction 1 1
1.1 The role of hunchback among insects 2
Segmentation in Drosophila 2
The role and expression patterns of Drosophila hb 3
The role and expression patterns of hb in other insects 4
Regulation of the hb mRNA expression 7
The expression of hb in the asexual viviparous pea aphid Acyrthosiphon pisum 7
1.2 The role of pumilio in Drosophila and other insect models 8
The role of translational regulation in developmental biology 8
Translational regulation in the development of Drosophila 9
Translational regulation in the development of other insects 10
The function of pumilio 11
The structure of PUF protein 11
The mechanism of translational regulation of pumilio 12
The anteroposterior axis formation of the pea aphid 12
1.3 The pea aphid as a genome model and a research model 14
Pea aphid as a model organism 14
Essential criteria for a model organism 15
The development of in situ hybridization (ISH) 15
The use of WISH in different organisms 16
Common steps of chromogenic in situ hybridization (CISH) in model organisms 17
Improvement of chromogenic WISH in the pea aphid 18
The development of fluorescent in situ hybridization (FISH) 19
The application of whole-mount FISH in Drosophila 21
The application of FISH in other organisms 21
Chapter 2: Materials and methods 24
2.1 The culture of asexual pea aphid 25
2.2 Synthesis of riboprobes for the whole-mount FISH study 25
2.3 Cloning and sequence analysis of Appum 27
2.4 Riboprobe synthesis of Appum 27
2.5 Cloning and sequence analysis of hb ortholog in A. pisum (Aphb) and M. persicae (Mphb) 28
2.6 Riboprobe synthesis of Aphb and Mphb 29
2.7 Dissection of asexual ovaries 30
2.8 Detection of endogenous fluorescence 30
2.9 Riboprobe hybridization 31
2.10 Color development of chromogenic in situ hybridization (CISH) and substrate fluorescence-fluorescent in situ hybridization (SF-FISH) 32
2.11 Direct fluorescent antibody staining 33
2.12 TSA (Plus) systems 33
2.13 Double whole-mount FISH with combination of SF and TSA 35
2.14 Microscopy 36
Chapter 3: Results 37
3.1 Germline expression of Aphb during embryogenesis of the asexual viviparous pea aphid 38
Molecular cloning and identification of Myzus persicae hunchback 38
The initiation of germline Aphb expression 40
Germline expression of Aphb throughout the mid and late embryonic stages 40
Aphb expression in the forming germarium 41
Germline expression of M. persicae ortholog of Aphb 43
3.2 The presumptive roles of A. pisum homolog of Drosophila pumilio in anteroposterior formation of the pea aphid 44
Cloning and identification of Acyrthosiphon pisum homolog of pumilio 44
Appum expression during early development of telotrophic ovariole 45
The mRNA expression of Appum before katatrepsis 46
Pre-expression of Appum in maturing germaria of asexual embryos 47
Identification of expression patterns of Appum isoform 1-3 47
Transcriptional expression of Appum during oogenesis of sexual ovariole 48
3.3 Development of whole-mount FISH in the pea aphid 49
Disturbance of endogenous fluorescence 49
Detection of gene expression using different FISH methods 51
Detecting extraembryonic and somatic gene expression 53
Double FISH using SF/TSA, TSA/TSA, or SF/TSA Plus in the whole-mount viviparous embryo 55
Application of FISH to sexual ovaries using TSA system 57
Chapter 4: Discussion 58
4.1 Presumptive roles of MpHb 59
4.2 Anterior localization of hb in A. pisum and M. persicae 59
4.3 The presumable translational repression of Mphb by M. persicae Nos 60
4.4 The conservation of Aphb expression in CNS 60
4.5 The presumptive roles of the non-canonical expression of the Drosophila gap gene: the germline hb expression in aphids 61
4.6 The existence of Appum in oviparous and viviparous ovaries 62
4.7 The putative roles of Appum 63
4.8 The presumptive regulation in anteroposterior axis formation of A. pisum 63
4.9 The putative roles of Appum isoforms 65
4.10 Performance of whole-mount WISH and FISH in an viviparous ovary 66
4.11 The efficiency of TSA 67
4.12 The key factors that affect the sensitivity in FISH 67
References 70
Tables 81
Figures 92
Additional pages 132
博士班口試問與答記錄 142


Abzhanov A, Extavour CG, Groover A, Hodges SA, Hoekstra HE, Kramer EM, Monteiro A. (2008). Are we there yet? Tracking the development of new model systems. Trends Genet. 24:353-360.
Akam ME. (1983). The location of Ultrabithorax transcripts in Drosophila tissue sections. EMBO J 2:2075-2084.
Asaoka-Taguchi M, Yamada M, Nakamura A, Hanyu K, Kobayashi S. (1999). Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat. Cell Biol. 1:431-437.
Barker DD, Wang C, Moore J, Dickinson LK, Lehmann R. (1992). Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. Genes. Dev. 6:2312-2326.
Bashirullah A, Halsell SR, Cooperstock RL, Kloc M, Karaiskakis A, Fisher WW, Fu W, Hamilton JK, Etkin LD, Lipshitz HD. (1999). Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster. EMBO J. 18:2610-2620.
Bate M, Arias AM. (1993). The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Pr.
Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nusslein-Volhard C. (1988). The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 7:1749-1756.
Blackman RL. (1978). Early development of the parthenogenetic egg in three species of aphids (homoptera : Aphididae). Int. J. Insect Morphol. Embryo. l7:33-44.
Blackman RL, Eastop VF. (2000). Aphids on the world''s crops. An identification and information guide John Wiley &; Sons. vii-466. p.
Bobrow MN, Harris TD, Shaughnessy KJ, Litt GJ. (1989). Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J. Immunol. Methods 125:279-285.
Bobrow MN, Litt GJ, Shaughnessy KJ, Mayer PC, Conlon J. (1992). The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J. Immunol. Methods 150:145-149.
Bobrow MN, Shaughnessy KJ, Litt GJ. (1991). Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J. Immunol. Methods 137:103-112.
Bohbot J, Pitts RJ, Kwon HW, Rutzler M, Robertson HM, Zwiebel LJ. (2007). Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol. Biol. 16:525-537.
Brend T, Holley SA. (2009). Zebrafish whole mount high-resolution double fluorescent in situ hybridization. J. Vis. Exp. 25:1229.
Broihier H. (2012). Whole-mount fluorescence in situ hybridization and antibody staining of Drosophila embryos. Cold Spring Harb. Protoc. 2012.
Buning J. (1994). The insect ovary : ultrastructure, previtellogenic growth, and evolution Chapman &; Hall, New York.
Castagnetti S, Ephrussi A. (2003). Orb and a long poly(A) tail are required for efficient oskar translation at the posterior pole of the Drosophila oocyte. Development 130:835-843.
Chagnovich D, Lehmann R. (2001). Poly(A)-independent regulation of maternal hunchback translation in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 98:11359-11364.
Chang C-c, Hsiao YM, Huang TY, Cook CE, Shigenobu S, Chang TH. (2013). Noncanonical expression of caudal during early embryogenesis in the pea aphid Acyrthosiphon pisum: maternal cad-driven posterior development is not conserved. Insect Mol. Biol. 22:442-455.
Chang C-c, Huang TY, Cook CE, Lin GW, Shih CL, Chen RP. (2009). Developmental expression of Apnanos during oogenesis and embryogenesis in the parthenogenetic pea aphid Acyrthosiphon pisum. Int. J. Dev. Biol. 53:169-176.
Chang C-c, Huang TY, Shih CL, Lin GW, Chang TP, Chiu H, Chang WC. (2008). Whole-mount identification of gene transcripts in aphids: protocols and evaluation of probe accessibility. Arch. Insect Biochem. Physiol. 68:186-196.
Chang C-c, Lee WC, Cook CE, Lin GW, Chang T. (2006). Germ-plasm specification and germline development in the parthenogenetic pea aphid Acyrthosiphon pisum: Vasa and Nanos as markers. Int. J. Dev. Biol. 50:413-421.
Chang C-c, Lin GW, Cook CE, Horng SB, Lee HJ, Huang TY. (2007). Apvasa marks germ-cell migration in the parthenogenetic pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Dev. Genes Evol. 217:275-287.
Cho PF, Poulin F, Cho-Park YA, Cho-Park IB, Chicoine JD, Lasko P, Sonenberg N. (2005). A new paradigm for translational control: inhibition via 5''-3'' mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121:411-423.
Choi WC, Nagl W. (1977). Patterns of DNA and RNA synthesis during the development of ovarian nurse cells in Gerris najas (Heteroptera). Dev. Biol. 61:262-272.
Clay H, Ramakrishnan L. (2005). Multiplex fluorescent in situ hybridization in zebrafish embryos using tyramide signal amplification. Zebrafish 2:105-111.
Clyde DE, Corado MS, Wu X, Pare A, Papatsenko D, Small S. (2003). A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature 426:849-853.
Cook HA, Koppetsch BS, Wu J, Theurkauf WE. (2004). The Drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification. Cell 116:817-829.
Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J. (2002). A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417:660-663.
Davidson LA, Keller RE. (1999). Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development 126:4547-4556.
Davis GK. (2012). Cyclical parthenogenesis and viviparity in aphids as evolutionary novelties. J. Exp. Zool. B. Mol. Dev. Evol. 318:448-459.
De Jong AS, Van Kessel-van Vark M, Raap AK. (1985). Sensitivity of various visualization methods for peroxidase and alkaline phosphatase activity in immunoenzyme histochemistry. Histochem. J. 17:1119-1130.
de Moor CH, Meijer H, Lissenden S. (2005). Mechanisms of translational control by the 3'' UTR in development and differentiation. Semin. Cell Dev. Biol. 16:49-58.
Dhawan S, Gopinathan KP. (2002). Molecular cloning and expression pattern of a Cubitus interruptus homologue from the mulberry silkworm Bombyx mori. Mech. Dev. 118:203-207.
Douglas AE. (1998). Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43:17-37.
Draper BW, Mello CC, Bowerman B, Hardin J, Priess JR. (1996). MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 87:205-216.
Driever W, Nusslein-Volhard C. (1988). A gradient of bicoid protein in Drosophila embryos. Cell 54:83-93.
Driever W, Nusslein-Volhard C. (1989). The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 337:138-143.
Dubnau J, Struhl G. (1996). RNA recognition and translational regulation by a homeodomain protein. Nature 379:694-699.
Duncan EJ, Leask MP, Dearden PK. (2013). The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs. Dev. Biol. 377:262-274.
El-Sherif E, Averof M, Brown SJ. (2012). A segmentation clock operating in blastoderm and germband stages of Tribolium development. Development 139:4341-4346.
Evans TC, Crittenden SL, Kodoyianni V, Kimble J. (1994). Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo. Cell 77:183-194.
Ewen-Campen B, Jones TE, Extavour CG. (2013). Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect. Biol. Open 2:556-568.
Forbes A, Lehmann R. (1998). Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125:679-690.
Forrest KM, Gavis ER. (2003). Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Curr. Biol. 13:1159-1168.
Fowlkes CC, Luengo Hendriks CL, Keranen SVE, Biggin MD, Knowles DW, Sudar D, Malik J. (2005). Registering Drosophila embryos at cellular resolution to build a quantitative 3D atlas of gene expression patterns and morphology. Computational Systems Bioinformatics Conference, 2005 Workshops and Poster Abstracts IEEE; 8-12 Aug. 2005. pp 354-357.
Frohnhofer HG, Nusslein-Volhard C. (1986). Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324:120-125.
Gall JG, Pardue ML. (1969). Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. USA 63:378-383.
Gavis ER, Lehmann R. (1992). Localization of nanos RNA controls embryonic polarity. Cell 71:301-313.
Gavis ER, Lunsford L, Bergsten SE, Lehmann R. (1996). A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 122:2791-2800.
Goltsev Y, Hsiong W, Lanzaro G, Levine M. (2004). Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev. Biol. 275:435-446.
Goodwin EB, Ellis RE. (2002). Turning clustering loops: sex determination in Caenorhabditis elegans. Curr. Biol. 12:R111-120.
Goto S, Hayashi S. (1997). Cell migration within the embryonic limb primordium of Drosophila as revealed by a novel fluorescence method to visualize mRNA and protein. Dev. Genes Evol. 207:194-198.
Hafen E, Kuroiwa A, Gehring WJ. (1984). Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryonic development. Cell 37:833-841.
Hafen E, Levine M, Garber RL, Gehring WJ. (1983). An improved in situ hybridization method for the detection of cellular RNAs in Drosophila tissue sections and its application for localizing transcripts of the homeotic Antennapedia gene complex. EMBO J. 2:617-623.
Hargrave M, Bowles J, Koopman P. (2006). In situ hybridization of whole-mount embryos. Methods Mol. Biol. 326:103-113.
Harland RM. (1991). In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell. Biol. 36:685-695.
Hauptmann G. (1999). Two-color detection of mRNA transcript localizations in fish and fly embryos using alkaline phosphatase and beta-galactosidase conjugated antibodies. Dev. Genes Evol. 209:317-321.
Hauptmann G. (2001). One-, two-, and three-color whole-mount in situ hybridization to Drosophila embryos. Methods 23:359-372.
Hauptmann G, Gerster T. (1994). Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos. Trends Genet. 10:266.
Hecht RM, Gossett LA, Jeffery WR. (1981). Ontogeny of maternal and newly transcribed mRNA analyzed by in situ hybridization during development of Caenorhabditis elegans. Dev. Biol. 83:374-379.
Hemmati-Brivanlou A, Frank D, Bolce ME, Brown BD, Sive HL, Harland RM. (1990). Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization. Development 110:325-330.
Hsia CC, Pare AC, Hannon M, Ronshaugen M, McGinnis W. (2010). Silencing of an abdominal Hox gene during early development is correlated with limb development in a crustacean trunk. Evol. Dev. 12:131-143.
Huang NN, Mootz DE, Walhout AJ, Vidal M, Hunter CP. (2002). MEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans. Development 129:747-759.
Huang TY, Cook CE, Davis GK, Shigenobu S, Chen RP, Chang C-c. (2010). Anterior development in the parthenogenetic and viviparous form of the pea aphid, Acyrthosiphon pisum: hunchback and orthodenticle expression. Insect Mol. Biol. 19 Suppl 2:75-85.
Hughes SC, Saulier-Le Drean B, Livne-Bar I, Krause HM. (1996). Fluorescence in situ hybridization in whole-mount Drosophila embryos. Biotechniques 20:748-750.
Hulskamp M, Lukowitz W, Beermann A, Glaser G, Tautz D. (1994). Differential regulation of target genes by different alleles of the segmentation gene hunchback in Drosophila. Genetics 138:125-134.
Hunter CP, Kenyon C. (1996). Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos. Cell 87:217-226.
Ingham PW. (1988). The molecular genetics of embryonic pattern formation in Drosophila. Nature 335:25-34.
Ishikawa A, Ogawa K, Gotoh H, Walsh TK, Tagu D, Brisson JA, Rispe C, Jaubert-Possamai S, Kanbe T, Tsubota T, Shiotsuki T, Miura T. (2012). Juvenile hormone titre and related gene expression during the change of reproductive modes in the pea aphid. Insect Mol. Biol. 21:49-60.
Isshiki T, Pearson B, Holbrook S, Doe CQ. (2001). Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106:511-521.
Jaruzelska J, Kotecki M, Kusz K, Spik A, Firpo M, Reijo Pera RA. (2003). Conservation of a Pumilio-Nanos complex from Drosophila germ plasm to human germ cells. Dev. Genes Evol. 213:120-126.
John HA, Birnstiel ML, Jones KW. (1969). RNA-DNA hybrids at the cytological level. Nature 223:582-587.
Jowett T, Lettice L. (1994). Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. Trends Genet. 10:73-74.
Jowett T, Yan YL. (1996). Double fluorescent in situ hybridization to zebrafish embryos. Trends Genet. 12:387-389.
Kim-Ha J, Smith JL, Macdonald PM. (1991). oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66:23-35.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203:253-310.
King RS, Newmark PA. (2013). In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC Dev. Biol. 13:8.
Koga R, Tsuchida T, Fukatsu T. (2009). Quenching autofluorescence of insect tissues for in situ detection of endosymbionts. Appl. Entomol. Zool. 44:281-291.
Kosman D, Mizutani CM, Lemons D, Cox WG, McGinnis W, Bier E. (2004). Multiplex detection of RNA expression in Drosophila embryos. Science 305:846.
Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M. (1999). NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr. Biol. 9:1009-1018.
Kraut R, Levine M. (1991). Mutually repressive interactions between the gap genes giant and Kruppel define middle body regions of the Drosophila embryo. Development 111:611-621.
Kuersten S, Goodwin EB. (2003). The power of the 3'' UTR: translational control and development. Nat. Rev. Genet. 4:626-637.
Kurisaki I, Iwai T, Yamashita M, Kobayashi M, Ito E, Matsuoka I. (2007). Identification and expression analysis of rainbow trout pumilio-1 and pumilio-2. Cell Tissue Res. 327:33-42.
Kurz EM, Holstein TW, Petri BM, Engel J, David CN. (1991). Mini-collagens in hydra nematocytes. J. Cell Biol. 115:1159-1169.
Lamb MM, Laird CD. (1976). Increase in nuclear poly(A)-containing RNA at syncytial blastoderm in Drosophila melanogaster embryos. Dev. Biol. 52:31-42.
Lauter G, Soll I, Hauptmann G. (2011a). Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain. Neural Dev. 6:10.
Lauter G, Soll I, Hauptmann G. (2011b). Two-color fluorescent in situ hybridization in the embryonic zebrafish brain using differential detection systems. BMC Dev. Biol. 11:43.
Leatherman JL, Jongens TA. (2003). Transcriptional silencing and translational control: key features of early germline development. Bioessays 25:326-335.
Lee JY, Lim JM, Kim DK, Zheng YH, Moon S, Han BK, Song KD, Kim H, Han JY. (2008). Identification and gene expression profiling of the Pum1 and Pum2 members of the Pumilio family in the chicken. Mol. Reprod. Dev. 75:184-190.
Legendre F, Cody N, Iampietro C, Bergalet J, Lefebvre FA, Moquin-Beaudry G, Zhang O, Wang X, Lecuyer E. (2013). Whole mount RNA fluorescent in situ hybridization of Drosophila embryos. J. Vis. Exp. 71:e50057.
Lehmann R, Nusslein-Volhard C. (1986). Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell 47:141-152.
Lehmann R, Nusslein-Volhard C. (1987). hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev. Biol. 119:402-417.
Lehmann R, Nusslein-Volhard C. (1991). The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112:679-691.
Lemke S, Busch SE, Antonopoulos DA, Meyer F, Domanus MH, Schmidt-Ott U. (2010). Maternal activation of gap genes in the hover fly Episyrphus. Development 137:1709-1719.
Lemke S, Schmidt-Ott U. (2009). Evidence for a composite anterior determinant in the hover fly Episyrphus balteatus (Syrphidae), a cyclorrhaphan fly with an anterodorsal serosa anlage. Development 136:117-127.
Li J, Lehmann S, Weissbecker B, Ojeda Naharros I, Schutz S, Joop G, Wimmer EA. (2013). Odoriferous defensive stink gland transcriptome to identify novel genes necessary for quinone synthesis in the red flour beetle, Tribolium castaneum. PLoS Genet. 9:e1003596.
Liberman LM, Reeves GT, Stathopoulos A. (2009). Quantitative imaging of the dorsal nuclear gradient reveals limitations to threshold-dependent patterning in Drosophila. Proc. Natl. Acad. Sci. USA 106:22317-22322.
Lin GW, Cook CE, Miura T, Chang C-c. (2014). Posterior localization of ApVas1 positions the preformed germ plasm in the sexual oviparous pea aphid Acyrthosiphon pisum. Evodevo 5:18.
Lin H, Spradling AC. (1997). A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124:2463-2476.
Liu PZ, Kaufman TC. (2004a). hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development 131:1515-1527.
Liu PZ, Kaufman TC. (2004b). kruppel is a gap gene in the intermediate germband insect Oncopeltus fasciatus and is required for development of both blastoderm and germband-derived segments. Development 131:4567-4579.
Lu HL, Tanguy S, Rispe C, Gauthier JP, Walsh T, Gordon K, Edwards O, Tagu D, Chang C-c, Jaubert-Possamai S. (2011). Expansion of genes encoding piRNA-associated argonaute proteins in the pea aphid: diversification of expression profiles in different plastic morphs. PLoS One 6:e28051.
Lynch JA, Desplan C. (2010). Novel modes of localization and function of nanos in the wasp Nasonia. Development 137:3813-3821.
Macdonald PM. (1992). The Drosophila pumilio gene: an unusually long transcription unit and an unusual protein. Development 114:221-232.
MacDougall N, Clark A, MacDougall E, Davis I. (2003). Drosophila gurken (TGFα) mRNA localizes as particles that move within the oocyte in two dynein-dependent steps. Dev. Cell. 4:307-319.
Margolis JS, Borowsky ML, Steingrimsson E, Shim CW, Lengyel JA, Posakony JW. (1995). Posterior stripe expression of hunchback is driven from two promoters by a common enhancer element. Development 121:3067-3077.
Marin VA, Evans TC. (2003). Translational repression of a C. elegans Notch mRNA by the STAR/KH domain protein GLD-1. Development 130:2623-2632.
Marques-Souza H, Aranda M, Tautz D. (2008). Delimiting the conserved features of hunchback function for the trunk organization of insects. Development 135:881-888.
Melton DA. (1987). Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328:80-82.
Mitani S, Du H, Hall DH, Driscoll M, Chalfie M. (1993). Combinatorial control of touch receptor neuron expression in Caenorhabditis elegans. Development 119:773-783.
Mito T, Sarashina I, Zhang H, Iwahashi A, Okamoto H, Miyawaki K, Shinmyo Y, Ohuchi H, Noji S. (2005). Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development 132:2069-2079.
Miura T, Braendle C, Shingleton A, Sisk G, Kambhampati S, Stern DL. (2003). A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). J. Exp. Zool. B. Mol. Dev. Evol. 295:59-81.
Moda LM, Vieira J, Guimaraes Freire AC, Bonatti V, Bomtorin AD, Barchuk AR, Simoes ZL. (2013). Nutritionally driven differential gene expression leads to heterochronic brain development in honeybee castes. PLoS One 8:e64815.
Murdoch A, Jenkinson EJ, Johnson GD, Owen JJT. (1990). Alkaline phosphatase-fast red, a new fluorescent label: Application in double labelling for cell surface antigen and cell cycle analysis. J. Immunol. Methods 132:45-49.
Novotny T, Eiselt R, Urban J. (2002). Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development 129:1027-1036.
Nusslein-Volhard C, Frohnhofer HG, Lehmann R. (1987). Determination of anteroposterior polarity in Drosophila. Science 238:1675-1681.
Nusslein-Volhard C. (1991). Determination of the embryonic axes of Drosophila. Development 1:1-10.
Ogura K, Kishimoto N, Mitani S, Gengyo-Ando K, Kohara Y. (2003). Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development 130:2495-2503.
O''Neill JW, Bier E. (1994). Double-label in situ hybridization using biotin and digoxigenin-tagged RNA probes. Biotechniques 17:870, 874-875.
Ota R, Kotani T, Yamashita M. (2011). Biochemical characterization of Pumilio1 and Pumilio2 in Xenopus oocytes. J. Biol. Chem. 286:2853-2863.
Parisi M, Lin HF. (1999). The Drosophila pumilio gene encodes two functional protein isoforms that play multiple roles in germline development, gonadogenesis, oogenesis and embryogenesis. Genetics 153:235-250.
Patel NH, Hayward DC, Lall S, Pirkl NR, DiPietro D, Ball EE. (2001). Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. Development 128:3459-3472.
Pearson BJ, Doe CQ. (2003). Regulation of neuroblast competence in Drosophila. Nature 425:624-628.
Peel A. (2004). The evolution of arthropod segmentation mechanisms. Bioessays 26:1108-1116.
Peel AD, Chipman AD, Akam M. (2005). Arthropod segmentation: beyond the Drosophila paradigm. Nat. Rev. Genet. 6:905-916.
Pietrantonio PV, Jagge C, Keeley LL, Ross LS. (2000). Cloning of an aquaporin-like cDNA and in situ hybridization in adults of the mosquito Aedes aegypti (Diptera: Culicidae). Insect Mol. Biol. 9:407-418.
Pritchard DK, Schubiger G. (1996). Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio. Genes Dev. 10:1131-1142.
Pultz MA, Pitt JN, Alto NM. (1999). Extensive zygotic control of the anteroposterior axis in the wasp Nasonia vitripennis. Development 126:701-710.
Pultz MA, Westendorf L, Gale SD, Hawkins K, Lynch J, Pitt JN, Reeves NL, Yao JC, Small S, Desplan C, Leaf DS. (2005). A major role for zygotic hunchback in patterning the Nasonia embryo. Development 132:3705-3715.
Qiao H, He X, Schymura D, Ban L, Field L, Dani FR, Michelucci E, Caputo B, della Torre A, Iatrou K, Zhou JJ, Krieger J, Pelosi P. (2011). Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell Mol. Life Sci. 68:1799-1813.
Rivera-Pomar R, Niessing D, Schmidt-Ott U, Gehring WJ, Jackle H. (1996). RNA binding and translational suppression by bicoid. Nature 379:746-749.
Rohr KB, Tautz D, Sander K. (1999). Segmentation gene expression in the mothmidge Clogmia albipunctata (Diptera, psychodidae) and other primitive dipterans. Dev. Genes Evol. 209:145-154.
Salvetti A, Rossi L, Lena A, Batistoni R, Deri P, Rainaldi G, Locci MT, Evangelista M, Gremigni V. (2005). DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132:1863-1874.
Schinko J, Posnien N, Kittelmann S, Koniszewski N, Bucher G. (2009). Single and double whole-mount in situ hybridization in red flour beetle (Tribolium) embryos. Cold Spring Harb. Protoc. 2009:pdb prot5258.
Schmitt-Engel C, Cerny AC, Schoppmeier M. (2012). A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum. Dev. Biol. 364:224-235.
Schroder R. (2003). The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422:621-625.
Schulte-merker S, Ho RK, Herrmann BG, Nusslein-Volhard C. (1992). The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116:1021-1032.
Schymura D, Forstner M, Schultze A, Krober T, Swevers L, Iatrou K, Krieger J. (2010). Antennal expression pattern of two olfactory receptors and an odorant binding protein implicated in host odor detection by the malaria vector Anopheles gambiae. Int. J. Biol. Sci. 6:614-626.
Seydoux G, Fire A. (1994). Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 120:2823-2834.
Seydoux G, Fire A. (1995). Whole-mount in situ hybridization for the detection of RNA in Caenorhabditis elegans embryos. Methods Cell Biol. 48:323-337.
Seydoux G, Mello CC, Pettitt J, Wood WB, Priess JR, Fire A. (1996). Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382:713-716.
Shinmyo Y, Mito T, Matsushita T, Sarashina I, Miyawaki K, Ohuchi H, Noji S. (2005). caudal is required for gnathal and thoracic patterning and for posterior elongation in the intermediate-germband cricket Gryllus bimaculatus. Mech. Dev. 122:231-239.
Shippy TD, Ronshaugen M, Cande J, He J, Beeman RW, Levine M, Brown SJ, Denell RE. (2008). Analysis of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters. Dev. Genes Evol. 218:127-139.
Smibert CA, Lie YS, Shillinglaw W, Henzel WJ, Macdonald PM. (1999). Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro. RNA 5:1535-1547.
Sommer R, Tautz D. (1991a). Nonradioactive in situ hybridization to sectioned tissues. Trends Genet. 7:110.
Sommer R, Tautz D. (1991b). Segmentation gene expression in the housefly Musca domestica. Development 113:419-430.
Sonoda J, Wharton RP. (1999). Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev. 13:2704-2712.
Spassov DS, Jurecic R. (2002). Cloning and comparative sequence analysis of PUM1 and PUM2 genes, human members of the Pumilio family of RNA-binding proteins. Gene 299:195-204.
Spassov DS, Jurecic R. (2003). Mouse Pum1 and Pum2 genes, members of the Pumilio family of RNA-binding proteins, show differential expression in fetal and adult hematopoietic stem cells and progenitors. Blood Cells Mol. Dis. 30:55-69.
St Johnston D, Driever W, Berleth T, Richstein S, Nusslein-Volhard C. (1989). Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development 107 Suppl:13-19.
St Johnston D, Nusslein-Volhard C. (1992). The origin of pattern and polarity in the Drosophila embryo. Cell 68:201-219.
Stauber M, Taubert H, Schmidt-Ott U. (2000). Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae). Proc. Natl. Acad. Sci. USA 97:10844-10849.
Stern D. (2008). Aphids. Curr. Bio. 18:R504-R505.
Struhl G, Struhl K, Macdonald PM. (1989). The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57:1259-1273.
Tautz D. (1988). Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres. Nature 332:281-284.
Tautz D. (2004). Segmentation. Dev. Cell 7:301-312.
Tautz D, Pfeifle C. (1989). A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81-85.
Tekotte H, Davis I. (2002). Intracellular mRNA localization: motors move messages. Trends Genet. 18:636-642.
Tessmar-Raible K, Steinmetz PR, Snyman H, Hassel M, Arendt D. (2005). Fluorescent two-color whole mount in situ hybridization in Platynereis dumerilii (Polychaeta, Annelida), an emerging marine molecular model for evolution and development. Biotechniques 39:460, 462, 464.
The International Aphid Genomics Consortium. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8:e1000313.
Thimm T, Tebbe CC. (2003). Protocol for rapid fluorescence in situ hybridization of bacteria in cryosections of microarthropods. Appl. Environ. Microbiol. 69:2875-2878.
Tribolium Genome Sequencing Consortium. (2008). The genome of the model beetle and pest Tribolium castaneum. Nature 452:949-955.
Vize PD, McCoy KE, Zhou X. (2009). Multichannel wholemount fluorescent and fluorescent/chromogenic in situ hybridization in Xenopus embryos. Nat. Protoc. 4:975-983.
Wang C, Lehmann R. (1991). Nanos is the localized posterior determinant in Drosophila. Cell 66:637-647.
Wang HN, Xu Y, Tao LJ, Zhou J, Qiu MX, Teng YH, Deng FJ. (2012). Identification and characterization of the pumilio-2 expressed in zebrafish embryos and adult tissues. Mol. Biol. Rep. 39:2811-2819.
Wang X, McLachlan J, Zamore PD, Hall TM. (2002). Modular recognition of RNA by a human pumilio-homology domain. Cell 110:501-512.
Weidmann CA, Goldstrohm AC. (2012). Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and brain tumor. Mol. Cell Biol. 32:527-540.
Weisblat DA, Kuo DH. (2009). In situ hybridization of Helobdella (leech) embryos. Cold Spring Harb. Protoc. 2009:pdb prot5194.
Welten MC, de Haan SB, van den Boogert N, Noordermeer JN, Lamers GE, Spaink HP, Meijer AH, Verbeek FJ. (2006). ZebraFISH: fluorescent in situ hybridization protocol and three-dimensional imaging of gene expression patterns. Zebrafish 3:465-476.
Wharton RP, Aggarwal AK. (2006). mRNA regulation by Puf domain proteins. Sci. STKE 2006:pe37.
Weil TT, Xanthakis D, Parton R, Dobbie I, Rabouille C, Gavis ER, Davis I. (2010). Distinguishing direct from indirect roles for bicoid mRNA localization factors. Development 137:169-176.
Wickens M, Bernstein DS, Kimble J, Parker R. (2002). A PUF family portrait: 3''UTR regulation as a way of life. Trends Genet. 18:150-157.
Wilhelm JE, Smibert CA. (2005). Mechanisms of translational regulation in Drosophila. Biol. Cell 97:235-252.
Wilkie GS, Davis I. (1998). Visualizing mRNA by in situ hybridization using ''high resolution'' and sensitive tyramide signal amplification. Technical Tips Online 3:94-97.
Wilkie GS, Davis I. (2001). Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles. Cell 105:209-219.
Wolff C, Schroder R, Schulz C, Tautz D, Klingler M. (1998). Regulation of the Tribolium homologues of caudal and hunchback in Drosophila: evidence for maternal gradient systems in a short germ embryo. Development 125:3645-3654.
Wolff C, Sommer R, Schroder R, Glaser G, Tautz D. (1995). Conserved and divergent expression aspects of the Drosophila segmentation gene hunchback in the short germ band embryo of the flour beetle Tribolium. Development 121:4227-4236.
Wreden C, Verrotti AC, Schisa JA, Lieberfarb ME, Strickland S. (1997). Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA. Development 124:3015-3023.
Xu X, Xu PX, Amanai K, Suzuki Y. (1997). Double-segment defining role of even-skipped homologs along the evolution of insect pattern formation. Dev. Growth Differ. 39:515-522.
Zalokar M. (1976). Autoradiographic study of protein and RNA formation during early development of Drosophila eggs. Dev. Biol. 49:425-437.
Zamore PD, Williamson JR, Lehmann R. (1997). The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3:1421-1433.
Zhang X, Zhang J, Park Y, Zhu KY. (2012). Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol. 42:674-682.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔