(3.237.178.91) 您好!臺灣時間:2021/03/04 09:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂志彬
研究生(外文):Chih-Pin Lu
論文名稱:二維材料以及超導鐵硒碲傳輸和掃描穿隧式顯微鏡的研究
論文名稱(外文):TRANSPORT AND SCANNING TUNNELING MICROSCOPY STUDIES OF 2D MATERIALS AND FeSe0.5Te0.5 SUPERCONDUCTORS
指導教授:王立民王立民引用關係
口試委員:吳秋賢陳坤麟尤孝雯陳昭翰
口試日期:2014-07-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:119
中文關鍵詞:掃描穿隧式顯微鏡石墨烯氮化硼二硫化鉬鐵硒碲超導
外文關鍵詞:scanning tunneling microscopygraphenehexagonal boron nitride (hBN)molybdenum disulphide (MoS2)FeSe0.5Te0.5 superconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究員一直以來持續的對各種二維材料以及他們跟不同材料的交互作用有很大的關注,其中二維材料包含了石墨烯、氮化硼、二硫化鉬和層狀氧化物,超導材料為鐵硒碲,本論文展示了我們在這些新穎材料上的傳輸以及掃描穿隧式顯微鏡在低溫以及磁場下研究的成果,最主要的貢獻包含: 第一,藉由利用一層石墨烯去遮蔽帶電雜質以達到上層石墨烯元件特性的改善,第二,研究石墨烯跟二氧化鉬之間隨著外加背電極的相互作用,第三,利用結合傳輸以及掃描穿隧式顯微鏡技術去探討半導體二氧化鉬的特性,並解決了最近在這領域的難題像是有關體二氧化鉬的參雜主要是來自硫的空缺,進一步在單層二氧化鉬元件中觀察到來自二氧化矽表面的參雜效應: 最後,我們試圖用掃描穿隧式顯微鏡去研究石墨烯跟超導鐵硒碲之間的作用,這部分正在持續在進行中。

Researchers have paying intense attention to other two-dimensional (2D) layer crystals such as isolated monolayer graphene and thin-layer crystals of hexagonal boron nitride (hBN), molybdenum disulphide (MoS2), other dichalcogenides, superconductors and combination of them. This thesis presents results of transport and scanning tunneling microscopy (STM) and spectroscopy (STS) experiments on these novel 2D materials and superconductor at low temperatures and in magnetic field. The main findings include that: First, the observation of improvement of graphene device quality by putting another graphene layer underneath. Second, the interaction between graphene and MoS2 as carrier density changed by back gate voltage. Third, we employed scanning tunneling microscopy and spectroscopy combined with gated transport to probe the semiconductor properties of 2H-MoS2. The main conclusions are that n-doping in bulk 2H-MoS2 are caused by S vacancies and the significantly higher doping observed in thin films deposited on SiO2 are likely due to trapped donors SiO2 interface. Finally, we try to study the interaction between graphene and FeSe0.5Te0.5 superconductor by STM and it is still on-going project.

誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
Chapter 1 Introduction..............................................................................................1
1.1 Introduction......................................................................................................1
1.2 Graphene and its physical properties................................................................2
1.2.1 The electronic band structure: Tight binding approach..........................2
1.2.2 Density of states in graphene..................................................................4
1.2.3 Graphene in magnetic field: Landau levels(LLS)..................................6
1.3 MoS2 and its physical properties......................................................................7
1.3.1 MoS2.......................................................................................................7
1.3.2 The electronic band structure of MoS2...................................................9
Chapter 2 Experimental method.............................................................................11
2.1 Scanning Tunneling Microscopy and Spectroscopy.......................................11
2.1.1 The tunneling current............................................................................11
2.1.2 Topography...........................................................................................13
2.1.3 Spectroscopy.........................................................................................14
2.2 Experimental setup........................................................................................14
2.3 Materials and Nanofabrication of graphene samples.....................................16
2.4 Method of measuring micron-size samples in a low temperature STM........21
Chapter 3 High quality graphene device: Transport measurement....................27
3.1 Suspended graphene device.........................................................................27
Chapter 4 Landau levels in graphene and screening effect.................................32
4.1 Graphene on SiO2...........................................................................................36
4.2 Graphene on graphite.....................................................................................41
4.3 Twisted Bilayer graphene on SiO2.................................................................42
Chapter 5 Graphene with different substrates......................................................55
5.1 Graphene on Boron Nitride.........................................................................55
5.2 Graphene on MoS2......................................................................................59
Chapter 6 Charge impurity in graphene system...................................................72
6.1 Lifting of degeneracy in graphene..................................................................72
Chapter 7 Bandgap, mid-gap states, and gating effects in MoS2.....................85
7.1 Bandgap and doping effects in MoS2.............................................................85
Chapter 8 Induced Superconductivity in graphene system.................................97
8.1 The STM study the FeSe0.5Te0.5 superconductor............................................97
Chapter 9 Conclusions and outlook......................................................................101
Chapter 10 List of abbreviations.............................................................................106
Reference.....................................................................................................................107



1.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, (5696), 666-9.
2.Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, (30), 10451-3.
3.Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nature nanotechnology 2012, 7, (11), 699-712.
4.Geim, A. K.; Novoselov, K. S. Nature materials 2007, 6, (3), 183-91.
5.Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev Mod Phys 2009, 81, (1), 109-162.
6.Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Rev Mod Phys 2011, 83, (2), 407-470.
7.Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nature chemistry 2013, 5, (4), 263-75.
8.Geim, A. K.; Grigorieva, I. V. Nature 2013, 499, (7459), 419-25.
9.Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nature nanotechnology 2011, 6, (3), 147-50.
10.Wallace, P. R. Phys. Rev. 1947, 71, 622.
11.McClure, J. W. Phys. Rev. 1957, 108, 612.
12.Slonczewski, J. C., and P. R. Weiss. Phys. Rev. 1958, 109, 272.
13.Parravicini, G. G. a. G. P. Solid State Physics. Academic Press 2000.
14.Andrei, E. Y.; Li, G.; Du, X. Reports on progress in physics. Physical Society 2012, 75, (5), 056501.
15.Goerbig, M. O. Rev Mod Phys 2011, 83, (4), 1193-1243.
16.Y, A. E. Two-Dimensional Electron Systems on Helium and Other Cryogenic Substrates 1997.
17.H, D. J. The Physics of Low-Dimensional Semiconductors: An Introduction (Cambridge: Cambridge University Press) 1997.
18.Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. ACS nano 2012, 6, (1), 74-80.
19.Wang, H.; Yu, L.; Lee, Y. H.; Shi, Y.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Nano letters 2012, 12, (9), 4674-80.
20.Li, H.; Yin, Z.; He, Q.; Li, H.; Huang, X.; Lu, G.; Fam, D. W.; Tok, A. I.; Zhang, Q.; Zhang, H. Small 2012, 8, (1), 63-7.
21.Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Angewandte Chemie 2011, 50, (47), 11093-7.
22.Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Nano letters 2011, 11, (12), 5111-6.
23.Lauritsen, J. V.; Kibsgaard, J.; Helveg, S.; Topsoe, H.; Clausen, B. S.; Laegsgaard, E.; Besenbacher, F. Nature nanotechnology 2007, 2, (1), 53-8.
24.Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T.; Chang, C. S.; Li, L. J.; Lin, T. W. Advanced materials 2012, 24, (17), 2320-5.
25.Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys Rev Lett 2010, 105, (13) 136805.
26.Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano letters 2010, 10, (4), 1271-1275.
27.Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Phys Rev Lett 2012, 108, (19).
28.Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Nat Phys 2014, 10, (5), 343-350.
29.Binning, G.; Rohrer, H.; Gerber, C.; Weibel, E. Phys Rev Lett 1982, 49, (1), 57-61.
30.Tersoff, J.; Hamann, D. R. Phys Rev Lett 1983, 50, (25), 1998-2001.
31.Tersoff, J.; Hamann, D. R. Phys Rev B 1985, 31, (2), 805-813.
32.Kaiser, J. A. S. a. W. J. Scanning tunneling microscopy, volume 27. Academic Pr 1993.
33.Wiesendanger, R. Scanning probe microscopy and spectroscopy: methods and applications, Cambridge Univ Pr 1994.
34.Hoffman, J. E. Reports on Progress in Physics 2011, 74, (12).
35.Chen, C. J. Introduction to scanning tunneling microscopy, volume 4. Oxford University Press, USA 1993.
36.Pan, S. H.; Hudson, E. W.; Davis, J. C. Rev Sci Instrum 1999, 70, (2), 1459-1463.
37.Dubois, C.; Bisson, P. E.; Manuel, A. A.; Fischer, O.; Reymond, S. Rev Sci Instrum 2006, 77, (4).
38.Pietzsch, O.; Kubetzka, A.; Haude, D.; Bode, M.; Wiesendanger, R. Rev Sci Instrum 2000, 71, (2), 424-430.
39.Mashoff, T.; Pratzer, M.; Morgenstern, M. Rev Sci Instrum 2009, 80, (5).
40.Dreyer, M.; Lee, J. H.; Wang, H.; Barker, B. Rev Sci Instrum 2010, 81, (5).
41.Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Nature nanotechnology 2010, 5, (10), 722-6.
42.Xu, K.; Cao, P.; Heath, J. R. Nano letters 2009, 9, (12), 4446-51.
43.Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W. Proceedings of the National Academy of Sciences of the United States of America 2007, 104, (22), 9209-12.
44.Geringer, V.; Liebmann, M.; Echtermeyer, T.; Runte, S.; Schmidt, M.; Ruckamp, R.; Lemme, M. C.; Morgenstern, M. Phys Rev Lett 2009, 102, (7), 076102.
45.Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Nano letters 2007, 7, (6), 1643-8.
46.Li, G.; Luican, A.; Andrei, E. Y. Rev Sci Instrum 2011, 82, (7), 073701.
47.Luican, A.; Li, G. H.; Andrei, E. Y. Phys Rev B 2011, 83, (4).
48.Zhang, C. H.; Joglekar, Y. N. Phys Rev B 2007, 75, (24).
49.Young, A. F.; Sanchez-Yamagishi, J. D.; Hunt, B.; Choi, S. H.; Watanabe, K.; Taniguchi, T.; Ashoori, R. C.; Jarillo-Herrero, P. Nature 2014, 505, (7484), 528.
50.Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nature nanotechnology 2008, 3, (8), 491-495.
51.Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun 2008, 146, (9-10), 351-355.
52.Moser, J.; Barreiro, A.; Bachtold, A. Appl Phys Lett 2007, 91, (16).
53.Velasco, J.; Jing, L.; Bao, W.; Lee, Y.; Kratz, P.; Aji, V.; Bockrath, M.; Lau, C. N.; Varma, C.; Stillwell, R.; Smirnov, D.; Zhang, F.; Jung, J.; MacDonald, A. H. Nature nanotechnology 2012, 7, (3), 156-160.
54.Ezawa, M. Physica E 2007, 40, (2), 269-272.
55.Zhang, L. F. M.; Fogler, M. M.; Arovas, D. P. Phys Rev B 2011, 84, (7).
56.Goerbig, M. O. Rev Mod Phys 2011, 83, (4), 1193-1243.
57.Semenoff, G. W. Phys. Rev. Lett. 53, 2449 1984.
58.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, (7065), 197-200.
59.Vonklitzing, K.; Dorda, G.; Pepper, M. Phys Rev Lett 1980, 45, (6), 494-497.
60.Bolotin, K. I.; Ghahari, F.; Shulman, M. D.; Stormer, H. L.; Kim, P. Nature 2009, 462, (7270), 196-199.
61.Li, G.; Andrei, E. Y. Nat Phys 2007, 3, (9), 623-627.
62.Matsui, T.; Kambara, H.; Niimi, Y.; Tagami, K.; Tsukada, M.; Fukuyama, H. Phys Rev Lett 2005, 94, (22).
63.Hashimoto, K.; Sohrmann, C.; Wiebe, J.; Inaoka, T.; Meier, F.; Hirayama, Y.; Romer, R. A.; Wiesendanger, R.; Morgenstern, M. Phys Rev Lett 2008, 101, (25).
64.Jiang, Z.; Henriksen, E. A.; Tung, L. C.; Wang, Y. J.; Schwartz, M. E.; Han, M. Y.; Kim, P.; Stormer, H. L. Phys Rev Lett 2007, 98, (19).
65.Deacon, R. S.; Chuang, K. C.; Nicholas, R. J.; Novoselov, K. S.; Geim, A. K. Phys Rev B 2007, 76, (8).
66.Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; von Klitzing, K.; Smet, J. H.; Yacoby, A. Nat Phys 2009, 5, (9), 669-674.
67.Ponomarenko, L. A.; Yang, R.; Gorbachev, R. V.; Blake, P.; Mayorov, A. S.; Novoselov, K. S.; Katsnelson, M. I.; Geim, A. K. Phys Rev Lett 2010, 105, (13).
68.Luican, A.; Li, G. H.; Andrei, E. Y. Solid State Commun 2009, 149, (27-28), 1151-1156.
69.Pereira, J. M.; Peeters, F. M.; Vasilopoulos, P. Phys Rev B 2007, 76, (11).
70.Miller, D. L.; Kubista, K. D.; Rutter, G. M.; Ruan, M.; de Heer, W. A.; First, P. N.; Stroscio, J. A. Science 2009, 324, (5929), 924-927.
71.Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Neto, A. H. C.; Crommie, M. F. Science 2010, 329, (5991), 544-547.
72.Cheng, P.; Song, C. L.; Zhang, T.; Zhang, Y. Y.; Wang, Y. L.; Jia, J. F.; Wang, J.; Wang, Y. Y.; Zhu, B. F.; Chen, X.; Ma, X. C.; He, K.; Wang, L. L.; Dai, X.; Fang, Z.; Xie, X. C.; Qi, X. L.; Liu, C. X.; Zhang, S. C.; Xue, Q. K. Phys Rev Lett 2010, 105, (7).
73.Hanaguri, T.; Igarashi, K.; Kawamura, M.; Takagi, H.; Sasagawa, T. Phys Rev B 2010, 82, (8).
74.Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Nano letters 2007, 7, (6), 1643-1648.
75.Mashoff, T.; Pratzer, M.; Geringer, V.; Echtermeyer, T. J.; Lemme, M. C.; Liebmann, M.; Morgenstern, M. Nano letters 2010, 10, (2), 461-465.
76.Park, Y. B.; Rhee, S. W. Appl Phys Lett 1995, 66, (25), 3477-3479.
77.Peres, N. M. R.; Guinea, F.; Neto, A. H. C. Phys Rev B 2006, 73, (12).
78.Zhu, W.; Shi, Q. W.; Wang, X. R.; Chen, J.; Yang, J. L.; Hou, J. G. Phys Rev Lett 2009, 102, (5).
79.Li, G. H.; Luican, A.; Andrei, E. Y. Phys Rev Lett 2009, 102, (17).
80.Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Peres, N. M. R.; Leist, J.; Geim, A. K.; Novoselov, K. S.; Ponomarenko, L. A. Science 2012, 335, (6071), 947-950.
81.Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O.; Eaves, L.; Ponomarenko, L. A.; Geim, A. K.; Novoselov, K. S.; Mishchenko, A. Nature nanotechnology 2013, 8, (2), 100-103.
82.Choi, M. S.; Lee, G. H.; Yu, Y. J.; Lee, D. Y.; Lee, S. H.; Kim, P.; Hone, J.; Yoo, W. J. Nat Commun 2013, 4.
83.Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Nature nanotechnology 2013, 8, (11), 826-830.
84.Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A.; Mishchenko, A.; Mayorov, A. S.; Woods, C. R.; Wallbank, J. R.; Mucha-Kruczynski, M.; Piot, B. A.; Potemski, M.; Grigorieva, I. V.; Novoselov, K. S.; Guinea, F.; Fal''ko, V. I.; Geim, A. K. Nature 2013, 497, (7451), 594-597.
85.Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P.; Ashoori, R. C. Science 2013, 340, (6139), 1427-1430.
86.Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M.; Taniguchi, T.; Watanabe, K.; Shepard, K. L.; Hone, J.; Kim, P. Nature 2013, 497, (7451), 598-602.
87.Xue, J. M.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Leroy, B. J. Nature materials 2011, 10, (4), 282-285.
88.Decker, R.; Wang, Y.; Brar, V. W.; Regan, W.; Tsai, H. Z.; Wu, Q.; Gannett, W.; Zettl, A.; Crommie, M. F. Nano letters 2011, 11, (6), 2291-2295.
89.Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A.; Guo, J.; Kim, P.; Hone, J.; Shepard, K. L.; Dean, C. R. Science 2013, 342, (6158), 614-617.
90.Geringer, V.; Liebmann, M.; Echtermeyer, T.; Runte, S.; Schmidt, M.; Ruckamp, R.; Lemme, M. C.; Morgenstern, M. Phys Rev Lett 2009, 102, (7).
91.Zhang, Y. B.; Brar, V. W.; Wang, F.; Girit, C.; Yayon, Y.; Panlasigui, M.; Zettl, A.; Crommie, M. F. Nat Phys 2008, 4, (8), 627-630.
92.Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; Von Klitzing, K.; Yacoby, A. Nat Phys 2008, 4, (2), 144-148.
93.Zhang, Y. B.; Brar, V. W.; Girit, C.; Zettl, A.; Crommie, M. F. Nat Phys 2009, 5, (10), 722-726.
94.Martin Rodriguez-Vega, J. F., S. Das Sarma, E. Rossi. arXiv:1403.7206 2014.
95.Jung, S. Y.; Rutter, G. M.; Klimov, N. N.; Newell, D. B.; Calizo, I.; Hight-Walker, A. R.; Zhitenev, N. B.; Stroscio, J. A. Nat Phys 2011, 7, (3), 245-251.
96.Neugebauer, P.; Orlita, M.; Faugeras, C.; Barra, A. L.; Potemski, M. Physical Review Letters 2009, 103, (13), 136403.
97.Katsnelson, M. I. G., A. K. Phil. Trans. R. Soc. A 2008, 366, 195-204.
98.Ando, T. Journal of the Physical Society of Japan 2006, 75, (7), 074716.
99.Nomura, K.; MacDonald, A. H. Physical Review Letters 2007, 98, (7), 076602.
100.Hwang, E. H.; Adam, S.; Das Sarma, S. Physical Review Letters 2007, 98, (18), 186806.
101.Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Nature Physics 2008, 4, 144.
102.Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Nature 2009, 462, (7271), 339-341.
103.Regis Decker , Y. W., Victor W. Brar , William Regan , Hsin-Zon Tsai , Qiong Wu , William Gannett , Alex Zettl , &; Michae F. Crommie. Nano Lett. 2011, 11, 2291-2295.
104.Chae, J.; Jung, S.; Young, A. F.; Dean, C. R.; Wang, L.; Gao, Y.; Watanabe, K.; Taniguchi, T.; Hone, J.; Shepard, K. L.; Kim, P.; Zhitenev, N. B.; Stroscio, J. A. Physical Review Letters 2012, 109, (11), 116802.
105.Li, G.; Luican, A.; Lopes dos Santos, J. M. B.; Castro Neto, A. H.; Reina, A.; Kong, J.; Andrei, E. Y. Nat Phys 2009, 6, (2), 109-113.
106.Luican, A.; Li, G.; Reina, A.; Kong, J.; Nair, R. R.; Novoselov, K. S.; Geim, A. K.; Andrei, E. Y. Physical Review Letters 2011, 106, (12), 126802.
107.Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Kelly, P. J.; van den Brink, J. Physical Review B 2007, 76, (7), 073103.
108.Park, C.-H.; Yang, L.; Son, Y.-W.; Cohen, M. L.; Louie, S. G. Physical Review Letters 2008, 101, (12), 126804.
109.Yankowitz, M.; Xue, J.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Nat Phys 2012, 8, (5), 382-386.
110.Kam, K. K.; Parkinson, B. A. J. Phys. Chem. 1982, 86, 463-467.
111.Tersoff, J.; Hamann, D. R. Phys Rev B 1985, 31, (2), 805-813.
112.Gonzalez, J.; Guinea, F.; Vozmediano, M. A. H. Nuclear Physics B 1994, 424, (3), 595-618.
113.Elton, J. G. S.; Efthimios, K. ACS Nano 2013, 12.
114.Ando, T.; Fowler, A. B.; Stern, F. Reviews of Modern Physics 1982, 54, (2), 437-672.
115.Mizes, H. A., Foster, J. S. Science 1989, 244, (4904), 559-562.
116.Morgenstern, M. Physica Status Solidi B 2011, 248, 2423.
117.Pereira, V. M.; Nilsson, J.; Castro Neto, A. H. Physical Review Letters 2007, 99, (16), 166802.
118.Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Nat Phys 2008, 4, (5), 377-381.
119.Wehling, T. O.; Yuan, S.; Lichtenstein, A. I.; Geim, A. K.; Katsnelson, M. I. Physical Review Letters 2010, 105, (5), 056802.
120.Bena, C. Physical Review B 2010, 81, (4), 045409.
121.Zhang, Y.; Barlas, Y.; Yang, K. Physical Review B 2012, 85, (16), 165423.
122.Hashimoto, K.; Sohrmann, C.; Wiebe, J.; Inaoka, T.; Meier, F.; Hirayama, Y.; RA&;#182;mer, R. A.; Wiesendanger, R.; Morgenstern, M. Physical Review Letters 2008, 101, (25), 256802.
123.Niimi, Y.; Kambara, H.; Fukuyama, H. Physical Review Letters 2009, 102, (2), 026803.
124.Miller, D. L.; Kubista, K. D.; Rutter, G. M.; Ruan, M.; de Heer, W. A.; Kindermann, M.; First, P. N.; Stroscio, J. A. Nat Phys 2010, 6, (10), 811-817.
125.Yoshioka, D. Journal of the Physical Society of Japan 2009, 76, (2).
126.Sanchez-Yamagishi, J. D.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Yacoby, A.; Jarillo-Herrero, P. Physical Review Letters 2012, 108, (7), 076601.
127.D. S. Lee, C. R., T. Beringer, A. H. Castro Neto, K. von Klitzing, U. Starke, and J. H. Smet. Phys. Rev. Lett. 2011, 107, 216602.
128.Dial, O. E.; Ashoori, R. C.; Pfeiffer, L. N.; West, K. W. Nature 2007, 448, (7150), 176-179.
129.Bolotin, K. I.; Ghahari, F.; Shulman, M. D.; Stormer, H. L.; Kim, P. Nature 2009, 462, 196-199.
130.Tarucha, S.; Austing, D. G.; Honda, T.; van der Hage, R. J.; Kouwenhoven, L. P. Physical Review Letters 1996, 77, (17), 3613-3616.
131.Ayari, A.; Cobas, E.; Ogundadegbe, O.; Fuhrer, M. S. Journal of Applied Physics 2007, 101, (1), 014507.
132.Ho, W.; Yu, J. C.; Lin, J.; Yu, J.; Li, P. Langmuir : the ACS journal of surfaces and colloids 2004, 20, (14), 5865-9
133.Gourmelon, E.; Lignier, O.; Hadouda, H.; Couturier, G.; Bernede, J. C.; Tedd, J.; Pouzet, J.; Salardenne, J. Sol Energ Mat Sol C 1997, 46, (2), 115-121
134.Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano letters 2010, 10, (4), 1271-5.
135.Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Small 2012, 8, (1), 63-67
136.Radisavljevic, B.; Kis, A. Nature nanotechnology 2013, 12, 815-820.
137.Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y.; Jin, Y. W.; Lee, S. Y.; Jena, D.; Choi, W.; Kim, K. Nat Commun 2012, 3.
138.Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Nano letters 2013, 13, (9), 4212-4216
139.Carvalho, A.; Neto, A. H. C. Physical Review B 2014, 89, (8), 081406.
140.Noh, J.-Y.; Park, M.; Kim, Y.-S.; Kim, H. arXiv:1307.3813 2013.
141.Fuhr, J. D.; Saul, A.; Sofo, J. O. Phys. Rev. Lett. 2004, 92, 026802.
142.Kim, B. H.; Park, M.; Lee, M.; Baek, S. J.; Jeong, H. Y.; Choi, M.; Chang, S. J.; Hong, W. G.; Kim, T. K.; Moon, H. R.; Park, Y. W.; Park, N.; Jun, Y. RSC Advances 2013, 3, (40), 18424-18429.
143.Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q.; Long, G.; Shi, Y.; Sun, L. T.; Wang, J. L.; Wang, X. R. Nat Commun 2013, 4.
144.Dolui, K.; Rungger, I.; Sanvito, S. Physical Review B 2013, 87 165402.
145.Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. ACS nano 2010, 4, (5), 2695-700.
146.Luryi, S. Appl.Phys.Lett. 988, 52, (6), 501-503
147.Sze, S. M., Physics of Semiconductor Devices. 2''nd ed.; Wiley: 1981.
148.Loth, S.; Wenderoth, M.; Winking, L.; Ulbrich, R. G.; Malzer, S.; Dohler, G. H. Phys Rev Lett 2006, 96, (6), 066403
149.Kitchen, D.; Richardella, A.; Tang, J. M.; Flatte, M. E.; Yazdani, A. Nature 2006, 442, (7101), 436-9.
150.Marczinowski, F.; Wiebe, J.; Tang, J. M.; Flatte, M. E.; Meier, F.; Morgenstern, M.; Wiesendanger, R. Phys Rev Lett 2007, 99, (15), 157202.
151.Feenstra, R. M. Physical review. B, Condensed matter 1994, 50, (7), 4561-4570.
152.Schlaf, R.; Lang, O.; Pettenkofer, C.; Jaegermann, W. J Appl Phys 1999, 85, (5), 2732-2753.
153.Hughes, H. P.; Starnberg, H. I. Electron Spectroscopies Applied to Low-Dimensional Structures. Kluwer Academic Publishers: 2000.
154.Gmelin Handbook of Inorganic and Organometallic Chemistry. 8th ed.; Springer-Verlag: Berlin, 1995; Vol. B7.
155.Constant, I.; Tardif, F.; Derrien, J. Semiconductor Science and Technology 2000, 15, (1), 61.
156.Luican-Mayer, A.; Kharitonov, M.; Li, G.; Lu, C. P.; Skachko, I.; Goncalves, A. M.; Watanabe, K.; Taniguchi, T.; Andrei, E. Y. Phys Rev Lett 2014, 112, (3), 036804.
157.Newns, D. M.; Krishnamurthy, H. R.; Pattnaik, P. C.; Tsuei, C. C.; Kane, C. L. Phys Rev Lett 1992, 69, (8), 1264-1267.
158.Gofron, K.; Campuzano, J. C.; Abrikosov, A. A.; Lindroos, M.; Bansil, A.; Ding, H.; Koelling, D.; Dabrowski, B. Phys Rev Lett 1994, 73, (24), 3302-3305.
159.Roldan, R.; Lopez-Sancho, M. P.; Guinea, F. Phys Rev B 2008, 77, (11).
160.Heersche, H. B.; Jarillo-Herrero, P.; Oostinga, J. B.; Vandersypen, L. M. K.; Morpurgo, A. F. Nature 2007, 446, (7131), 56-59.
161.Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Nat Phys 2007, 3, (1), 36-40.
162.Calandra, M.; Mauri, F. Phys Rev B 2007, 76, (16).
163.Song, C. L.; Wang, Y. L.; Cheng, P.; Jiang, Y. P.; Li, W.; Zhang, T.; Li, Z.; He, K.; Wang, L. L.; Jia, J. F.; Hung, H. H.; Wu, C. J.; Ma, X. C.; Chen, X.; Xue, Q. K. Science 2011, 332, (6036), 1410-1413.
164.Hanaguri, T.; Niitaka, S.; Kuroki, K.; Takagi, H. Science 2010, 328, (5977), 474-476.
165.Tonnoir, C.; Kimouche, A.; Coraux, J.; Magaud, L.; Delsol, B.; Gilles, B.; Chapelier, C. Phys Rev Lett 2013, 111, (24)
166.Wallbank, J. R.; Patel, A. A.; Mucha-Kruczynski, M.; Geim, A. K.; Falko, V. I. Phys Rev B 2013, 87, (24).
167.Pereira, V. M.; Nilsson, J.; Castro Neto, A. H. Physical Review Letters 2007, 99, (16), 166802.
168.Shytov, A. V.; Katsnelson, M. I.; Levitov, L. S. Physical Review Letters 2007, 99, 246802.
169.Zeldovich, Y. B.; Popov, V. S. Soviet Physics Uspekhi 1972, 14, (6), 673.
170.Wang, Y.; Brar, V. W.; Shytov, A. V.; Wu, Q.; Regan, W.; Tsai, H.-Z.; Zettl, A.; Levitov, L. S.; Crommie, M. F. Nat Phys 2012, 8, (9), 653-657.
171.Wang, Y.; Wong, D.; Shytov, A. V.; Brar, V. W.; Choi, S.; Wu, Q.; Tsai, H.-Z.; Regan, W.; Zettl, A.; Kawakami, R. K.; Louie, S. G.; Levitov, L. S.; Crommie, M. F. Science 2013, 340, (6133), 734-737.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔