(34.236.244.39) 您好!臺灣時間:2021/03/09 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江宜達
研究生(外文):I-Da Chiang
論文名稱:表面電漿子增益光碟片污水處理系統
論文名稱(外文):Plasmonic Enhanced Optical Disk Reactor for Wastewater Treatment
指導教授:蔡定平
指導教授(外文):Din Ping Tsai
口試委員:江海邦任貽均王智明林恭如
口試委員(外文):Hai-Pang ChiangYi-Jun JenChih-Ming WangGong-Ru Lin
口試日期:2014-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:65
中文關鍵詞:光催化氧化鋅表面電漿子學旋轉反應器廢水處理
外文關鍵詞:PhotocatalysisZinc OxidePlasmonicsHot ElectronsRotational ReactorWastewater Treatment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  對於生活在21世紀的人類而言,環境保護是文明發展所必須面對的一大課題;而在水資源有限的台灣,水資源的維護與污水處理更是環保議題中不可忽視的部份。本研究中所探討的是以電漿子增益之半導體光觸媒分解水中有機污染物。近代半導體光觸媒之研究約始於1969年,由日本的K. Honda和A. Fujishima兩位教授首先以實驗證明二氧化鈦光觸媒可應用在氫燃料生成的技術。自此之後,許多研究人力與資源投入了光觸媒的研究,也包含了利用光觸媒進行污水處理;其中,氧化鋅光觸媒以高光敏感度、高物理穩定性、低成本與大能隙等優勢,成為最受歡迎的光觸媒材料之一。
  光觸媒以光作為啟動化學反應的能量源,而研究人員的終極目標為研發出可直接在地表以太陽光驅動之架構。然而,具應用價值之半導體光觸媒通常擁有高能隙,使之只能吸收紫外光的光子;對於太陽光譜佔了90%以上能量的可見光與進紅外光而言,半導體光觸媒是無法直接運用的。研究人員提出了許多方法,嘗試去改變光觸媒的光學性質,主要分成添加其他物質和在半導體中製作缺陷等兩種方法。本研究主要探討的方法就是添加具侷域表面電漿共振特性之奈米金屬粒子至光觸媒中,以其熱電子效應使整個光觸媒系統可利用可見光進行化學反應,並提升整體反應效率。
  本研究開發了一個大面積製作含有奈米金屬粒子之氧化鋅奈米柱,此結構是生長於光碟片基板上,並可結合特殊設計之旋轉反應器進行高效率的污水分解程序。樣品成長過程中,氧化鋅奈米柱的生長是以水熱法達成,水熱法可以相對低的成本與溫度成長徑直的奈米柱,使奈米柱合成過程保持光碟片基板的完整性。光碟片基板雖然不耐熱,但是擁有可高速旋轉的物理結構以及耐衝擊等優勢,非常適合應用於本研究。本研究中使用的奈米金屬粒子為銀粒子,擁有非常強的侷域表面電漿共振。本研究中使用濺鍍法在氧化鋅奈米柱表層形成銀奈米顆粒。氧化鋅奈米柱以及銀奈米粒子的表面形貌由掃描式電子顯微鏡進行觀測。本研究中以甲基橙水溶液模擬污水,而其濃度可由穿透光譜系統進行監控。在樣本參數最佳化的情況下,本系統可在20分鐘內分解溶液中90%以上之甲基橙分子。

Environmental protection is one of the most crucial issues of the human civilization in the 21st century. Researchers have been working on using semiconductor photocatalyst for organic chemical decomposition since 1969, the year when Honda-Fujishima effect was experimentally demonstrated. Among the photocatalytic materials, zinc oxide (ZnO) has attracted much attention due to its high photosensitivity, stability, low cost, and wide band gap.
However, the wide band gap of semiconductor photocatalysts results in low absorption in the visible and infrared region. This property limits the possibility of the ultimate goal of photocatalysts: using solar energy for direct chemical reaction, since the over 90% of solar power is carried by photons in visible or infrared region. Researchers have been working on artificial defects and additives to modify optical properties of photocatalyst. The localized surface plasmon resonance, together with its induced hot electron effect, is one of the most promising strategies to solve the enigma.
In this work, a process of growing large-area plasmonic-nano-particles-decorated ZnO nanorods on the polycarbonate optical disk substrate was developed, while a corresponding photocatalytic rotational reactor was fabricated. Hydrothermal process was adapted to grow ZnO nanorods perpendicular to the optical disk substrate at relatively lower temperature. The optical disk substrate has advantages of durable property in fast rotation and high impact-resistance. The plasmonic nano-particles, in this case, silver nano-particles, were deposed on the ZnO nanorods by direct sputtering. The morphology of ZnO nanorods and plasmonic nano-particles was investigated by Scanning Electron Microscope (SEM).
The photocatalytic activity of the sample was evaluated by the degradation of methyl orange (MO) as a model compound in aqueous solution, and the decomposition rate of MO molecules is monitored by the optical spectroscopy measurements. In the optimized condition, less than 10% of the MO remained in the aqueous solution after a 20-minute treatment in the rotational reactor with our sample.

口試委員會審定書........................................................................................................... I
序言 .................................................................................................................................. II
中文摘要 ........................................................................................................................ III
英文摘要 ........................................................................................................................ IV
目 錄 ............................................................................................................................ VI
圖目錄 ............................................................................................................................ IX
表目錄 ......................................................................................................................... XVI
第一章 緒論 .............................................................................................................. 1
1.1 前言 .................................................................................................................. 1
1.2 半導體光觸媒簡介 .......................................................................................... 2
1.2.1 原理 .......................................................................................................... 2
1.2.2 常見材料 .................................................................................................. 5
1.2.3 一般污染物分解架構 .............................................................................. 6
1.3 表面電漿共振簡介 .......................................................................................... 8
1.3.1 體積電漿振盪原理 .................................................................................. 8
1.3.2 介面與薄膜表面電漿共振原理 ............................................................ 10
1.3.3 侷域表面電漿共振原理 ........................................................................ 14
1.3.4 表面電漿共振之應用 ............................................................................ 16
VII
1.4 表面電漿共振增益光觸媒簡介 .................................................................... 16
1.4.1 原理 ........................................................................................................ 16
1.4.2 發展歷史 ................................................................................................ 20
1.5 研究目的 ........................................................................................................ 20
第二章 實驗架構 .................................................................................................... 21
2.1 前言 ................................................................................................................ 21
2.2 光碟片旋轉反應系統 .................................................................................... 21
2.2.1 構想與優勢 ............................................................................................ 21
2.2.2 光碟片基板簡介 .................................................................................... 22
2.3 氧化鋅奈米結構製備 .................................................................................... 23
2.3.1 氧化鋅奈米結構的選擇 ........................................................................ 23
2.3.2 氧化鋅奈米柱常見合成方法 ................................................................ 24
2.3.3 半導體表面處理 .................................................................................... 26
2.4 銀奈米粒子製備 ............................................................................................ 27
2.4.1 常見銀奈米粒子製備法 ........................................................................ 27
2.4.2 芝浦 CFS-4EP-LL 濺鍍機簡介 ............................................................. 28
2.5 表面電漿子增益光碟片製作參數與量測 .................................................... 30
2.5.1 水熱法製作氧化鋅奈米柱 .................................................................... 30
2.5.2 氧化鋅表面處理 .................................................................................... 31
2.5.3 濺鍍法製作銀奈米粒子 ........................................................................ 31
2.5.4 汙染物分解效率量測系統 .................................................................... 33
VIII
第三章 實驗結果與分析 ........................................................................................ 38
3.1 前言 ................................................................................................................ 38
3.2 氧化鋅奈米柱樣品分析 ................................................................................ 38
3.3 旋轉反應系統轉速測試 ................................................................................ 39
3.4 乾蝕刻效果探討 ............................................................................................ 43
3.5 銀奈米粒子加工樣本效率分析 .................................................................... 46
3.5.1 銀奈米粒子參數測試 ............................................................................ 46
3.5.2 表面電漿增益光觸媒效率測試 ............................................................ 48
第四章 結論 ............................................................................................................ 53
參考文獻 ........................................................................................................................ 54
附錄 ................................................................................................................................ 65

[1]E. Leorri, S. Mitra, M. J. Irabien, A. R. Zimmerman, W. H. Blake, and A. Cearreta, "A 700 year record of combustion-derived pollution in northern Spain: tools to identify the Holocene/Anthropocene transition in coastal environments," Sci Total Environ 470-471, 240 (2014).
[2]S. Al-Qaradawi and S. R. Salman, "Photocatalytic degradation of methyl orange as a model compound," J Photochem Photobiol A 148, 161 (2002).
[3]C. A. Gueymard, D. Myers, and K. Emery, "Proposed reference irradiance spectra for solar energy systems testing," Sol Energy 73, 443 (2002).
[4]H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat Mater 9, 205 (2010).
[5]Y. L. Chen, L. C. Kuo, M. L. Tseng, H. M. Chen, C. K. Chen, H. J. Huang, R. S. Liu, and D. P. Tsai, "ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange," Optics express 21, 7240 (2013).
[6]郭立中, "新穎表面電漿光觸媒光碟片," 碩士論文, 國立臺灣大學, 2012.
[7]A. D. McNaught and A. Wilkinson, Compendium of Chemical Terminology (IUPAC, Zurich, 1997), 2 edn.
[8]K. Hashimoto, H. Irie, and A. Fujishima, "TiO 2 Photocatalysis: A Historical Overview and Future Prospects," Jpn J Appl Phys 44, 8269 (2005).
[9]A. J. Nozik and R. Memming, "Physical Chemistry of Semiconductor&;#8722;Liquid Interfaces," J Phys Chem 100, 13061 (1996).
[10]N. Sato, Electrochemistry at Metal and Semiconductor Electrodes (Elsevier, Amsterdam, 1998).
[11]A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature 238, 37 (1972).
[12]A. Fujishima, X. T. Zhang, and D. A. Tryk, "TiO2 photocatalysis and related surface phenomena," Surf Sci Rep 63, 515 (2008).
[13]S. N. Frank and A. J. Bard, "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders," J Phys Chem 81, 1484 (1977).
[14]M. A. Fox and M. T. Dulay, "Heterogeneous photocatalysis," Chem Rev 93, 341 (1993).
[15]M. Fujihira, Y. Satoh, and T. Osa, "Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2," Nature 293, 206 (1981).
[16]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis," Chem Rev 95, 69 (1995).
[17]J. F. Gibson, D. J. E. Ingram, M. C. R. Symons, and M. G. Townsend, "Electron resonance studies of different radical species formed in rigid solutions of hydrogen peroxide after u.-v. irradiation," Trans Faraday Soc 53, 914 (1957).
[18]I. Izumi, W. W. Dunn, K. O. Wilbourn, F.-R. F. Fan, and A. J. Bard, "Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders," J Phys Chem 84, 3207 (1980).
[19]J. Weinstein and B. H. J. Bielski, "Kinetics of the interaction of perhydroxyl and superoxide radicals with hydrogen peroxide. The Haber-Weiss reaction," J Am Chem Soc 101, 58 (1979).
[20]M. D. Archer, "Electrochemical aspects of solar energy conversion," J Appl Electrochem 5, 17 (1975).
[21]C.-y. Wang, H. Groenzin, and M. J. Shultz, "Molecular Species on Nanoparticulate Anatase TiO2 Film Detected by Sum Frequency Generation:&;#8201; Trace Hydrocarbons and Hydroxyl Groups," Langmuir : the ACS journal of surfaces and colloids 19, 7330 (2003).
[22]T. Zubkov, D. Stahl, T. L. Thompson, D. Panayotov, O. Diwald, and J. T. Yates, Jr., "Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1 x 1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets," J Phys Chem B 109, 15454 (2005).
[23]J. M. White, J. Szanyi, and M. A. Henderson, "The Photon-Driven Hydrophilicity of Titania:&;#8201; A Model Study Using TiO2(110) and Adsorbed Trimethyl Acetate," J Phys Chem B 107, 9029 (2003).
[24]H. M. Chen, C. K. Chen, R.-S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, "Nano-architecture and material designs for water splitting photoelectrodes," Chem Soc Rev 41, 5654 (2012).
[25]A. Duret and M. Gratzel, "Visible Light-Induced Water Oxidation on Mesoscopic α-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis," J Phys Chem B 109, 17184 (2005).
[26]P. Hartmann, D.-K. Lee, B. M. Smarsly, and J. Janek, "Mesoporous TiO2: Comparison of Classical Sol&;#8722;Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction," ACS Nano 4, 3147 (2010).
[27]M. Liu, N. de Leon Snapp, and H. Park, "Water photolysis with a cross-linked titanium dioxide nanowire anode," Chem Sci 2, 80 (2011).
[28]S. K. Mohapatra, S. E. John, S. Banerjee, and M. Misra, "Water Photooxidation by Smooth and Ultrathin α-Fe2O3 Nanotube Arrays," Chem Mater 21, 3048 (2009).
[29]A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, "Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting," Adv Funct Mater 19, 1849 (2009).
[30]A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, "Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays," Small 5, 104 (2009).
[31]V. Chakrapani, J. Thangala, and M. K. Sunkara, "WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production," Int J Hydrogen Energ 34, 9050 (2009).
[32]B. D. Alexander, P. J. Kulesza, L. Rutkowska, R. Solarska, and J. Augustynski, "Metal oxide photoanodes for solar hydrogen production," J Mater Chem 18, 2298 (2008).
[33]M. Gratzel, "Photoelectrochemical cells," Nature 414, 338 (2001).
[34]K. Sivula, F. Le Formal, and M. Gratzel, "Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes," ChemSusChem 4, 432 (2011).
[35]H. M. Chen, C. K. Chen, R.-S. Liu, C.-C. Wu, W.-S. Chang, K.-H. Chen, T.-S. Chan, J.-F. Lee, and D. P. Tsai, "A New Approach to Solar Hydrogen Production: a ZnO–ZnS Solid Solution Nanowire Array Photoanode," Adv Energy Mater 1, 742 (2011).
[36]J.-J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, "Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting," J Phys Chem C 115, 210 (2010).
[37]F. D. Mai, C. C. Chen, J. L. Chen, and S. C. Liu, "Photodegradation of methyl green using visible irradiation in ZnO suspensions: Determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography–photodiode array-electrospray ionization-mass spectrometry method," J Chromatogr A 1189, 355 (2008).
[38]R. Wang, L. L. H. King, and A. W. Sleight, "Highly conducting transparent thin films based on zinc oxide," J Mater Res 11, 1659 (1996).
[39]A. Hernandez Battez, R. Gonzalez, J. L. Viesca, J. E. Fernandez, J. M. Diaz Fernandez, A. Machado, R. Chou, and J. Riba, "CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants," Wear 265, 422 (2008).
[40]C. A. Wilkie and A. B. Morgan, Fire Retardancy of Polymeric Materials, Second Edition (CRC Press, Boca Raton, 2009), 2 edn.
[41]K. Takahashi, A. Yoshikawa, and A. Sandhu, Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices (Springer, Berlin, 2007).
[42]P. Christopher, H. Xin, and S. Linic, "Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures," Nat Chem 3, 467 (2011).
[43]H. Cheng and A. Selloni, "Hydroxide ions at the water/anatase TiO2(101) interface: structure and electronic states from first principles molecular dynamics," Langmuir : the ACS journal of surfaces and colloids 26, 11518 (2010).
[44]H. Pang, Y. Li, L. Guan, Q. Lu, and F. Gao, "TiO2/Ni nanocomposites: Biocompatible and recyclable magnetic photocatalysts," Catal Commun 12, 611 (2011).
[45]G. Sinha, L. E. Depero, and I. Alessandri, "Recyclable SERS Substrates Based on Au-Coated ZnO Nanorods," ACS Appl Mater Interfaces 3, 2557 (2011).
[46]邱國斌 and 蔡定平, "金屬表面電漿簡介," 物理雙月刊 廿八卷, 14 (2006).
[47]R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos Mag 4, 396 (1902).
[48]U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)," J Opt Soc Am 31, 213 (1941).
[49]A. Hessel and A. A. Oliner, "A New Theory of Wood?s Anomalies on Optical Gratings," Appl Opt 4, 1275 (1965).
[50]J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys Rev Lett 83, 2845 (1999).
[51]L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys Rev Lett 86, 1114 (2001).
[52]W. C. Tan, T. W. Preist, and R. J. Sambles, "Resonant tunneling of light through thin metal films via strongly localized surface plasmons," Phys Rev B 62, 11134 (2000).
[53]W.-C. Liu and D. P. Tsai, "Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance," Phys Rev B 65, 155423 (2002).
[54]W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys Rev B 59, 12661 (1999).
[55]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
[56]I. Langmuir, "Oscillations in Ionized Gases," Proc Natl Acad Sci U S A 14, 627 (1928).
[57]J. D. Jackson, Classical electrodynamics (Wiley, New York, 1998), 3 edn.
[58]W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[59]J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys Rev B 64, 235402 (2001).
[60]K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles:&;#8201; The Influence of Size, Shape, and Dielectric Environment," J Phys Chem B 107, 668 (2002).
[61]M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, "Single Particle Spectroscopy Study of Metal-Film-Induced Tuning of Silver Nanoparticle Plasmon Resonances&;#8224;," J Phys Chem C 114, 7509 (2010).
[62]W. A. Murray and W. L. Barnes, "Plasmonic Materials," Adv Mater 19, 3771 (2007).
[63]Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. R. Auvil, and J. B. Ketterson, "Scanning plasmon optical microscope," Appl Phys Lett 66, 3407 (1995).
[64]C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl Phys Lett 77, 2949 (2000).
[65]W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, "Near-field images of the AgOx-type super-resolution near-field structure," Appl Phys Lett 78, 685 (2001).
[66]J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-Resolution Near-Field Structure and Signal Enhancement by Surface Plasmons," Jpn J Appl Phys 40, 1831 (2001).
[67]C. L. Haynes and R. P. Van Duyne, "Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy&;#8224;," J Phys Chem B 107, 7426 (2003).
[68]A. J. McQuillan, "The discovery of surface-enhanced Raman scattering," Notes Rec R Soc 63, 105 (2009).
[69]M. Moskovits, "Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals," J Chem Phys 69, 4159 (1978).
[70]K. Matsubara, S. Kawata, and S. Minami, "Optical chemical sensor based on surface plasmon measurement," Appl Opt 27, 1160 (1988).
[71]H. Kano and S. Kawata, "Grating-Coupled Surface Plasmon for Measuring the Refractive Index of a Liquid Sample," Jpn J Appl Phys 34, 331 (1995).
[72]I. Pockrand, J. D. Swalen, R. Santo, A. Brillante, and M. R. Philpott, "Optical properties of organic dye monolayers by surface plasmon spectroscopy," J Chem Phys 69, 4001 (1978).
[73]W. P. Chen and J. M. Chen, "Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films," J Opt Soc Am 71, 189 (1981).
[74]P. R. Villeneuve, "Light beats the diffraction limit," Phys World 11, 28 (1998).
[75]J. R. Sambles, "Photonics: More than transparent," Nature 391, 641 (1998).
[76]S. V. Boriskina, H. Ghasemi, and G. Chen, "Plasmonic materials for energy: From physics to applications," Mater Today 16, 375 (2013).
[77]H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, and D. P. Tsai, "Plasmon Inducing Effects for Enhanced Photoelectrochemical Water Splitting: X-ray Absorption Approach to Electronic Structures," ACS Nano 6, 7362 (2012).
[78]S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl Phys Lett 93, 073307 (2008).
[79]S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, "Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au," Nano Lett 13, 240 (2012).
[80]X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, "Plasmonic photocatalysis," Rep Prog Phys 76, 046401 (2013).
[81]ASTM G173 - 03(2012) (ASTM) http://enterprise.astm.org/filtrexx40.cgi?+REDLINE_PAGES/G173.htm (Accessed 05/14 2014).
[82]M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, "Photodetection with Active Optical Antennas," Science 332, 702 (2011).
[83]Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, "Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination," Nano Lett 11, 1111 (2011).
[84]J. Hao, L. Zhou, and M. Qiu, "Nearly Total Absorption of Light and Heat Generation by Plasmonic Metamaterials," Phys Rev B 83, 165107 (2011).
[85]O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, "Solar Vapor Generation Enabled by Nanoparticles," ACS Nano 7, 42 (2012).
[86]N. Chandrasekharan and P. V. Kamat, "Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles," J Phys Chem B 104, 10851 (2000).
[87]P. V. Kamat, "Photophysical, photochemical and photocatalytic aspects of metal nanoparticles," J Phys Chem B 106 (2002).
[88]K. Awazu, F. M., C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, "A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide," J Am Chem Soc 130, 1767 (2008).
[89]P. Wang, B. Huang, Y. Dai, and M.-H. Whangbo, "Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles," Phys Chem Chem Phys 14, 9813 (2012).
[90]N. Zhang, S. Liu, and Y.-J. Xu, "Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst," Nanoscale 4, 2227 (2012).
[91]S. Linic, P. Christopher, and D. B. Ingram, "Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy," Nat Mater 10, 911 (2011).
[92]A. Kubacka, M. Fern’andez-Garc’&;#305;a, and G. Col’on, "Advanced nanoarchitectures for solar photocatalytic applications," Chem Rev 112, 1555 (2012).
[93]G. S. He, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, G. C. Xu, and P. N. Prasad, "Two-photon absorption and optical-limiting properties of novel organic compounds," Optics Letters 20, 435 (1995).
[94]Estimated Optical Disc Production Capacity in 80 Countries/Territories, (IIPA) http://www.iipa.com/pdf/EstimatedOpticalDiscProductionCapacityin80CountriesFINAL020907.pdf (Accessed 05/15 2014).
[95]Polycarbonate, (WIKIPEDIA) http://en.wikipedia.org/wiki/Polycarbonate (Accessed 05/15 2014).
[96]X. Chen, A. M. C. Ng, A. B. Djuri&;#353;i&;#263;, C. C. Ling, and W. K. Chan, "Hydrothermal treatment of ZnO nanostructures," Thin Solid Films 520, 2656 (2012).
[97]Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," J Phys Condens Matter 16, R829 (2004).
[98]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications," Adv Mater 15, 353 (2003).
[99]G. Xu, Y. Chen, M. Tazawa, and P. Jin, "Surface Plasmon Resonance of Silver Nanoparticles on Vanadium Dioxide," J Phys Chem B 110, 2051 (2006).
[100]J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K. Choi, "Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO," Appl Phys Lett 78, 3842 (2001).
[101]C.-C. Lin, H.-P. Chen, H.-C. Liao, and S.-Y. Chen, "Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates," Appl Phys Lett 86 (2005).
[102]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Prog Mater Sci 50, 293 (2005).
[103]D. Cao, W. Luo, J. Feng, X. Zhao, Z. Li, and Z. Zou, "Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction," Energy Environ Sci 7, 752 (2014).
[104]M. Li, W. Luo, B. Liu, X. Zhao, Z. Li, D. Chen, T. Yu, Z. Xie, R. Zhang, and Z. Zou, "Remarkable enhancement in photocurrent of In0.20Ga0.80N photoanode by using an electrochemical surface treatment," Appl Phys Lett 99 (2011).
[105]C. Cheng, B. Yan, S. M. Wong, X. Li, W. Zhou, T. Yu, Z. Shen, H. Yu, and H. J. Fan, "Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays," ACS Appl Mater Interfaces 2, 1824 (2010).
[106]S. Chu, J. Ren, D. Yan, J. Huang, and J. Liu, "Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence," Appl Phys Lett 101 (2012).
[107]J. Okumu, C. Dahmen, A. N. Sprafke, M. Luysberg, G. von Plessen, and M. Wuttig, "Photochromic silver nanoparticles fabricated by sputter deposition," J Appl Phys 97 (2005).
[108]A. I. Maaroof and D. S. Sutherland, "Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces," J Phys D Appl Phys 43, 405301 (2010).
[109]Methyl orange, (WIKIPEDIA) http://en.wikipedia.org/wiki/Methyl_orange (Accessed 05/18 2014).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔