[1]E. Leorri, S. Mitra, M. J. Irabien, A. R. Zimmerman, W. H. Blake, and A. Cearreta, "A 700 year record of combustion-derived pollution in northern Spain: tools to identify the Holocene/Anthropocene transition in coastal environments," Sci Total Environ 470-471, 240 (2014).
[2]S. Al-Qaradawi and S. R. Salman, "Photocatalytic degradation of methyl orange as a model compound," J Photochem Photobiol A 148, 161 (2002).
[3]C. A. Gueymard, D. Myers, and K. Emery, "Proposed reference irradiance spectra for solar energy systems testing," Sol Energy 73, 443 (2002).
[4]H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat Mater 9, 205 (2010).
[5]Y. L. Chen, L. C. Kuo, M. L. Tseng, H. M. Chen, C. K. Chen, H. J. Huang, R. S. Liu, and D. P. Tsai, "ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange," Optics express 21, 7240 (2013).
[6]郭立中, "新穎表面電漿光觸媒光碟片," 碩士論文, 國立臺灣大學, 2012.[7]A. D. McNaught and A. Wilkinson, Compendium of Chemical Terminology (IUPAC, Zurich, 1997), 2 edn.
[8]K. Hashimoto, H. Irie, and A. Fujishima, "TiO 2 Photocatalysis: A Historical Overview and Future Prospects," Jpn J Appl Phys 44, 8269 (2005).
[9]A. J. Nozik and R. Memming, "Physical Chemistry of Semiconductor&;#8722;Liquid Interfaces," J Phys Chem 100, 13061 (1996).
[10]N. Sato, Electrochemistry at Metal and Semiconductor Electrodes (Elsevier, Amsterdam, 1998).
[11]A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature 238, 37 (1972).
[12]A. Fujishima, X. T. Zhang, and D. A. Tryk, "TiO2 photocatalysis and related surface phenomena," Surf Sci Rep 63, 515 (2008).
[13]S. N. Frank and A. J. Bard, "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders," J Phys Chem 81, 1484 (1977).
[14]M. A. Fox and M. T. Dulay, "Heterogeneous photocatalysis," Chem Rev 93, 341 (1993).
[15]M. Fujihira, Y. Satoh, and T. Osa, "Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2," Nature 293, 206 (1981).
[16]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental Applications of Semiconductor Photocatalysis," Chem Rev 95, 69 (1995).
[17]J. F. Gibson, D. J. E. Ingram, M. C. R. Symons, and M. G. Townsend, "Electron resonance studies of different radical species formed in rigid solutions of hydrogen peroxide after u.-v. irradiation," Trans Faraday Soc 53, 914 (1957).
[18]I. Izumi, W. W. Dunn, K. O. Wilbourn, F.-R. F. Fan, and A. J. Bard, "Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders," J Phys Chem 84, 3207 (1980).
[19]J. Weinstein and B. H. J. Bielski, "Kinetics of the interaction of perhydroxyl and superoxide radicals with hydrogen peroxide. The Haber-Weiss reaction," J Am Chem Soc 101, 58 (1979).
[20]M. D. Archer, "Electrochemical aspects of solar energy conversion," J Appl Electrochem 5, 17 (1975).
[21]C.-y. Wang, H. Groenzin, and M. J. Shultz, "Molecular Species on Nanoparticulate Anatase TiO2 Film Detected by Sum Frequency Generation:&;#8201; Trace Hydrocarbons and Hydroxyl Groups," Langmuir : the ACS journal of surfaces and colloids 19, 7330 (2003).
[22]T. Zubkov, D. Stahl, T. L. Thompson, D. Panayotov, O. Diwald, and J. T. Yates, Jr., "Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1 x 1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets," J Phys Chem B 109, 15454 (2005).
[23]J. M. White, J. Szanyi, and M. A. Henderson, "The Photon-Driven Hydrophilicity of Titania:&;#8201; A Model Study Using TiO2(110) and Adsorbed Trimethyl Acetate," J Phys Chem B 107, 9029 (2003).
[24]H. M. Chen, C. K. Chen, R.-S. Liu, L. Zhang, J. Zhang, and D. P. Wilkinson, "Nano-architecture and material designs for water splitting photoelectrodes," Chem Soc Rev 41, 5654 (2012).
[25]A. Duret and M. Gratzel, "Visible Light-Induced Water Oxidation on Mesoscopic α-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis," J Phys Chem B 109, 17184 (2005).
[26]P. Hartmann, D.-K. Lee, B. M. Smarsly, and J. Janek, "Mesoporous TiO2: Comparison of Classical Sol&;#8722;Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction," ACS Nano 4, 3147 (2010).
[27]M. Liu, N. de Leon Snapp, and H. Park, "Water photolysis with a cross-linked titanium dioxide nanowire anode," Chem Sci 2, 80 (2011).
[28]S. K. Mohapatra, S. E. John, S. Banerjee, and M. Misra, "Water Photooxidation by Smooth and Ultrathin α-Fe2O3 Nanotube Arrays," Chem Mater 21, 3048 (2009).
[29]A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, "Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting," Adv Funct Mater 19, 1849 (2009).
[30]A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, "Photoelectrochemical Water Splitting Using Dense and Aligned TiO2 Nanorod Arrays," Small 5, 104 (2009).
[31]V. Chakrapani, J. Thangala, and M. K. Sunkara, "WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production," Int J Hydrogen Energ 34, 9050 (2009).
[32]B. D. Alexander, P. J. Kulesza, L. Rutkowska, R. Solarska, and J. Augustynski, "Metal oxide photoanodes for solar hydrogen production," J Mater Chem 18, 2298 (2008).
[33]M. Gratzel, "Photoelectrochemical cells," Nature 414, 338 (2001).
[34]K. Sivula, F. Le Formal, and M. Gratzel, "Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes," ChemSusChem 4, 432 (2011).
[35]H. M. Chen, C. K. Chen, R.-S. Liu, C.-C. Wu, W.-S. Chang, K.-H. Chen, T.-S. Chan, J.-F. Lee, and D. P. Tsai, "A New Approach to Solar Hydrogen Production: a ZnO–ZnS Solid Solution Nanowire Array Photoanode," Adv Energy Mater 1, 742 (2011).
[36]J.-J. Chen, J. C. S. Wu, P. C. Wu, and D. P. Tsai, "Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting," J Phys Chem C 115, 210 (2010).
[37]F. D. Mai, C. C. Chen, J. L. Chen, and S. C. Liu, "Photodegradation of methyl green using visible irradiation in ZnO suspensions: Determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography–photodiode array-electrospray ionization-mass spectrometry method," J Chromatogr A 1189, 355 (2008).
[38]R. Wang, L. L. H. King, and A. W. Sleight, "Highly conducting transparent thin films based on zinc oxide," J Mater Res 11, 1659 (1996).
[39]A. Hernandez Battez, R. Gonzalez, J. L. Viesca, J. E. Fernandez, J. M. Diaz Fernandez, A. Machado, R. Chou, and J. Riba, "CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants," Wear 265, 422 (2008).
[40]C. A. Wilkie and A. B. Morgan, Fire Retardancy of Polymeric Materials, Second Edition (CRC Press, Boca Raton, 2009), 2 edn.
[41]K. Takahashi, A. Yoshikawa, and A. Sandhu, Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices (Springer, Berlin, 2007).
[42]P. Christopher, H. Xin, and S. Linic, "Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures," Nat Chem 3, 467 (2011).
[43]H. Cheng and A. Selloni, "Hydroxide ions at the water/anatase TiO2(101) interface: structure and electronic states from first principles molecular dynamics," Langmuir : the ACS journal of surfaces and colloids 26, 11518 (2010).
[44]H. Pang, Y. Li, L. Guan, Q. Lu, and F. Gao, "TiO2/Ni nanocomposites: Biocompatible and recyclable magnetic photocatalysts," Catal Commun 12, 611 (2011).
[45]G. Sinha, L. E. Depero, and I. Alessandri, "Recyclable SERS Substrates Based on Au-Coated ZnO Nanorods," ACS Appl Mater Interfaces 3, 2557 (2011).
[46]邱國斌 and 蔡定平, "金屬表面電漿簡介," 物理雙月刊 廿八卷, 14 (2006).[47]R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos Mag 4, 396 (1902).
[48]U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves)," J Opt Soc Am 31, 213 (1941).
[49]A. Hessel and A. A. Oliner, "A New Theory of Wood?s Anomalies on Optical Gratings," Appl Opt 4, 1275 (1965).
[50]J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys Rev Lett 83, 2845 (1999).
[51]L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys Rev Lett 86, 1114 (2001).
[52]W. C. Tan, T. W. Preist, and R. J. Sambles, "Resonant tunneling of light through thin metal films via strongly localized surface plasmons," Phys Rev B 62, 11134 (2000).
[53]W.-C. Liu and D. P. Tsai, "Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance," Phys Rev B 65, 155423 (2002).
[54]W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys Rev B 59, 12661 (1999).
[55]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667 (1998).
[56]I. Langmuir, "Oscillations in Ionized Gases," Proc Natl Acad Sci U S A 14, 627 (1928).
[57]J. D. Jackson, Classical electrodynamics (Wiley, New York, 1998), 3 edn.
[58]W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 (2003).
[59]J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys Rev B 64, 235402 (2001).
[60]K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles:&;#8201; The Influence of Size, Shape, and Dielectric Environment," J Phys Chem B 107, 668 (2002).
[61]M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, "Single Particle Spectroscopy Study of Metal-Film-Induced Tuning of Silver Nanoparticle Plasmon Resonances&;#8224;," J Phys Chem C 114, 7509 (2010).
[62]W. A. Murray and W. L. Barnes, "Plasmonic Materials," Adv Mater 19, 3771 (2007).
[63]Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. R. Auvil, and J. B. Ketterson, "Scanning plasmon optical microscope," Appl Phys Lett 66, 3407 (1995).
[64]C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Moller, "Spectroscopy of single metallic nanoparticles using total internal reflection microscopy," Appl Phys Lett 77, 2949 (2000).
[65]W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, "Near-field images of the AgOx-type super-resolution near-field structure," Appl Phys Lett 78, 685 (2001).
[66]J. Tominaga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fukuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fukaya, and N. Atoda, "Super-Resolution Near-Field Structure and Signal Enhancement by Surface Plasmons," Jpn J Appl Phys 40, 1831 (2001).
[67]C. L. Haynes and R. P. Van Duyne, "Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy&;#8224;," J Phys Chem B 107, 7426 (2003).
[68]A. J. McQuillan, "The discovery of surface-enhanced Raman scattering," Notes Rec R Soc 63, 105 (2009).
[69]M. Moskovits, "Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals," J Chem Phys 69, 4159 (1978).
[70]K. Matsubara, S. Kawata, and S. Minami, "Optical chemical sensor based on surface plasmon measurement," Appl Opt 27, 1160 (1988).
[71]H. Kano and S. Kawata, "Grating-Coupled Surface Plasmon for Measuring the Refractive Index of a Liquid Sample," Jpn J Appl Phys 34, 331 (1995).
[72]I. Pockrand, J. D. Swalen, R. Santo, A. Brillante, and M. R. Philpott, "Optical properties of organic dye monolayers by surface plasmon spectroscopy," J Chem Phys 69, 4001 (1978).
[73]W. P. Chen and J. M. Chen, "Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films," J Opt Soc Am 71, 189 (1981).
[74]P. R. Villeneuve, "Light beats the diffraction limit," Phys World 11, 28 (1998).
[75]J. R. Sambles, "Photonics: More than transparent," Nature 391, 641 (1998).
[76]S. V. Boriskina, H. Ghasemi, and G. Chen, "Plasmonic materials for energy: From physics to applications," Mater Today 16, 375 (2013).
[77]H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y.-Y. Hsu, T.-S. Chan, J.-F. Lee, R.-S. Liu, and D. P. Tsai, "Plasmon Inducing Effects for Enhanced Photoelectrochemical Water Splitting: X-ray Absorption Approach to Electronic Structures," ACS Nano 6, 7362 (2012).
[78]S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Appl Phys Lett 93, 073307 (2008).
[79]S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, "Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au," Nano Lett 13, 240 (2012).
[80]X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, "Plasmonic photocatalysis," Rep Prog Phys 76, 046401 (2013).
[81]ASTM G173 - 03(2012) (ASTM) http://enterprise.astm.org/filtrexx40.cgi?+REDLINE_PAGES/G173.htm (Accessed 05/14 2014).
[82]M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, "Photodetection with Active Optical Antennas," Science 332, 702 (2011).
[83]Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, "Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination," Nano Lett 11, 1111 (2011).
[84]J. Hao, L. Zhou, and M. Qiu, "Nearly Total Absorption of Light and Heat Generation by Plasmonic Metamaterials," Phys Rev B 83, 165107 (2011).
[85]O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, "Solar Vapor Generation Enabled by Nanoparticles," ACS Nano 7, 42 (2012).
[86]N. Chandrasekharan and P. V. Kamat, "Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles," J Phys Chem B 104, 10851 (2000).
[87]P. V. Kamat, "Photophysical, photochemical and photocatalytic aspects of metal nanoparticles," J Phys Chem B 106 (2002).
[88]K. Awazu, F. M., C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, "A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide," J Am Chem Soc 130, 1767 (2008).
[89]P. Wang, B. Huang, Y. Dai, and M.-H. Whangbo, "Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles," Phys Chem Chem Phys 14, 9813 (2012).
[90]N. Zhang, S. Liu, and Y.-J. Xu, "Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst," Nanoscale 4, 2227 (2012).
[91]S. Linic, P. Christopher, and D. B. Ingram, "Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy," Nat Mater 10, 911 (2011).
[92]A. Kubacka, M. Fern’andez-Garc’&;#305;a, and G. Col’on, "Advanced nanoarchitectures for solar photocatalytic applications," Chem Rev 112, 1555 (2012).
[93]G. S. He, B. A. Reinhardt, J. C. Bhatt, A. G. Dillard, G. C. Xu, and P. N. Prasad, "Two-photon absorption and optical-limiting properties of novel organic compounds," Optics Letters 20, 435 (1995).
[94]Estimated Optical Disc Production Capacity in 80 Countries/Territories, (IIPA) http://www.iipa.com/pdf/EstimatedOpticalDiscProductionCapacityin80CountriesFINAL020907.pdf (Accessed 05/15 2014).
[95]Polycarbonate, (WIKIPEDIA) http://en.wikipedia.org/wiki/Polycarbonate (Accessed 05/15 2014).
[96]X. Chen, A. M. C. Ng, A. B. Djuri&;#353;i&;#263;, C. C. Ling, and W. K. Chan, "Hydrothermal treatment of ZnO nanostructures," Thin Solid Films 520, 2656 (2012).
[97]Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," J Phys Condens Matter 16, R829 (2004).
[98]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications," Adv Mater 15, 353 (2003).
[99]G. Xu, Y. Chen, M. Tazawa, and P. Jin, "Surface Plasmon Resonance of Silver Nanoparticles on Vanadium Dioxide," J Phys Chem B 110, 2051 (2006).
[100]J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K. Choi, "Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO," Appl Phys Lett 78, 3842 (2001).
[101]C.-C. Lin, H.-P. Chen, H.-C. Liao, and S.-Y. Chen, "Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates," Appl Phys Lett 86 (2005).
[102]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Prog Mater Sci 50, 293 (2005).
[103]D. Cao, W. Luo, J. Feng, X. Zhao, Z. Li, and Z. Zou, "Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction," Energy Environ Sci 7, 752 (2014).
[104]M. Li, W. Luo, B. Liu, X. Zhao, Z. Li, D. Chen, T. Yu, Z. Xie, R. Zhang, and Z. Zou, "Remarkable enhancement in photocurrent of In0.20Ga0.80N photoanode by using an electrochemical surface treatment," Appl Phys Lett 99 (2011).
[105]C. Cheng, B. Yan, S. M. Wong, X. Li, W. Zhou, T. Yu, Z. Shen, H. Yu, and H. J. Fan, "Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays," ACS Appl Mater Interfaces 2, 1824 (2010).
[106]S. Chu, J. Ren, D. Yan, J. Huang, and J. Liu, "Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence," Appl Phys Lett 101 (2012).
[107]J. Okumu, C. Dahmen, A. N. Sprafke, M. Luysberg, G. von Plessen, and M. Wuttig, "Photochromic silver nanoparticles fabricated by sputter deposition," J Appl Phys 97 (2005).
[108]A. I. Maaroof and D. S. Sutherland, "Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces," J Phys D Appl Phys 43, 405301 (2010).
[109]Methyl orange, (WIKIPEDIA) http://en.wikipedia.org/wiki/Methyl_orange (Accessed 05/18 2014).