(3.238.186.43) 您好!臺灣時間:2021/02/25 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:傅傳岩
研究生(外文):Chuen-Yen Fu
論文名稱:貴金屬修飾石墨烯與矽蕭特基二極體氣體感測元件
論文名稱(外文):Graphene/silicon Schottky diode gas sensors decorated with noble metal nanoparticles
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試委員:梁啟德林泰源
口試委員(外文):Chi-Te LiangTai-Yuan Lin
口試日期:2014-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:57
中文關鍵詞:石墨烯蕭特基二極體氣體感測器氫氣感測光電流
外文關鍵詞:grapheneSchottky diodegas sensorhydrogen detectionphotocurrent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們利用石墨烯其特殊的導電性質與高表面積的二
維結構特性,應用於氣體感測之研究。我們將化學氣相沉積法成長的
石墨烯轉印在矽基板上製作蕭特基能障二極體,我們用熱離子激發理
論探討機制,石墨烯吸附氣體後改變費米能階,進而改變石墨烯與矽
接面的能障高度,造成電特性顯著的變化,因此我們可以藉由量測電
流值,得知目標氣體存在與否和濃度大小的資訊。為了提升氣體感測
器的靈敏度,在石墨烯表面以貴金屬修飾,例如:金、鉑,增強其對
目標氣體的吸附能力。實驗顯示此元件結構的可行性與感測氣體的高
靈敏度,並證實金屬修飾後的石墨烯可以增強其對氣體的交互作用。
此研究有助於未來石墨烯在氣體或生物感測元件上之應用。

In this thesis, we utilize the special electrical properties and high surface of graphene for the gas sensing application. Graphene prepared by chemical vapor deposition(CVD) was transferred on the patterned silicon substrate in order to form Schottky barrier diode. The thermionic theory was implemented to discuss the gas sensing mechanism. It is found that the work function of graphene is changed when the molecules of target gas were adsorbed on graphene surface. This behavior changes the Schottky barrier height between the interface of graphene and silicon as well as the electric properties of the device. Accordingly, the magnitude of the current reveals the concentration of target gas. Furthermore, to enhance the adsorption ability of graphene, its surface is decorated by gold or platinum. It is found that the fabricated devices can serve as a highly sensitive gas sensor because the noble metals decorated on graphene surface can enhance the interaction between graphene and gas molecules. This research is therefore helpful for the application of graphene in biosensors and gas sensors.

口試委員會審定書 i
致謝ii
中文摘要iv
Abstract v
Contents vii
List of Figures ix
1 Introduction 1
Bibliography 5
2 Theoretical background 6
2.1 Thermionic emission theory . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Schottky diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Molecular adsorption theory . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Dalton’s law of partial pressure . . . . . . . . . . . . . . . . . . . . . . . 12
Bibliography 16
3 Experimental details, theoretical background and sample preparation 17
3.1 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1 Scanning Electron Microscope (SEM) . . . . . . . . . . . . . . . 17
3.1.2 Raman Scattering Spectra . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Gas sensor measurement system . . . . . . . . . . . . . . . . . . 24
3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Graphene synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Gas sensor fabrication . . . . . . . . . . . . . . . . . . . . . . . 25
Bibliography 29
4 Highly sensitive gas sensors based on graphene/silicon Schottky diode decorated
with noble metal nanoparticles 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Bibliography 52
5 Conclusion 57

[1] V. R. Singh, Indian. J. Pure. Ap. Phy. 43, 7 (2005).
[2] G. W. Hunter, J. R. Stetter, P. J. Hesketh, C. C. Liu, Electrochem. Soc. Interface. 19(4), 29 (2010).
[3] J. Dong, D. Zhuang, Y. Huang, J. Fu, Sensors 9(10), 7771 (2009).
[4] W. H. Brattain, J. Bardeen, Bell System Tech. J. 32(1), 1 (1953).
[5] S. R. Morrison, Sens. Actuators 2, 329 (1982).
[6] G. Sberveglieri, Sens. Actuators B 23, 103 (1995).
[7] W. Yuan, G. Shi, J. Mater. Chem. A 1, 10078 (2013).
[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 438, 197 (2005).
[9] Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Nature 438, 201 (2005).
[10] R. K. Pathria, P. D. Beale, Statistical Mechanics. Academic Press (2011).
[11] D. V. Schroeder, An Introduction To Thermal Physics. Addison Wesley Publishing Company Incorporated (2000).
[12] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices. Wiley (2007).
[13] C. Hu, Modern Semiconductor Devices for Integrated Circuits. Pearson/Prentice Hall, Upper Saddle River, N.J. (2010).
[14] J. Tao, A. M. Rappe, Phys. Rev. Lett. 112, 106101 (2014).
[15] A. Dabrowski, Adv. Colloid Interface Sci. 93, 135 (2001).
[16] S. S. Zumdahl, Chemical Principles. Houghton Mifflin (2005).
[17] H. Seiler, J. Appl. Phys. 54(11), R1 (1983).
[18] G. E. Lloyd, Miner. Mag. 51, 3 (1987).
[19] K. C. A. Smith, C. W. Oatley, Brit. J. Appl. Phys. 6, 391 (1955).
[20] D. W. Ball, Spectroscopy 16, 32 (2001).
[21] D. W. Hahn, Raman scattering theory, Department of Mechanical and Aerospace Engineering University of Florida.
[22] D. F. Walls, Z. Phys. 244, 117 (1971).
[23] D. A. Long, in The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, pp. 49-84. John Wiley &; Sons, Ltd (2002).
[24] S. Bae, H. K. Kim, Y. B. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y. J. Kim, K. S. Kim, B. O &;#776;zyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 5(8), 574 (2010).
[25] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 457, 706 (2009).
[26] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 324(5932), 1312 (2009).
[27] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett. 9(1), 30 (2009).
[28] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, R. S. Ruoff, Nano Lett. 9(12), 4359 (2009).
[29] X. Wang, L. Zhi, K. M‥ullen, Nano Lett. 8(1), 323 (2008).
[30] T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, T. W. Lee, Nat. Photon. 6, 105 (2012).
[31] I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, K. L. Shepard, Nat. Nanotechnol. 3 654 (2008).
[32] S. Rumyantsev, G. Liu, M. S. Shur, R. A. Potyrailo, A. A. Balandin, Nano Lett. 12(5), 2294 (2012).
[33] M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 8(10), 3498 (2008).
[34] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 8(3), 902 (2008).
[35] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 146, 351 (2008).
[36] Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim, Nature 438, 201 (2005).
[37] G. Liu, W. Stillman, S. Rumyantsev, Q. Shao, M. Shur, A. A. Balandin, Appl. Phys.
Lett. 95(3), 033103 (2009).
[38] Y.-M. Lin, P. Avouris, Nano Lett. 8(8), 2119 (2008).
[39] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nat. Mater. 6, 652 (2007).
[40] W. J. Fleming, J. Electrochem. Soc. 124, 21 (1977).
[41] P. M. Tibbles, J. S. Edelsberg, N. Engl. J. Med. 334(25), 1642 (1996).
[42] M. Fitzgerald, D. B. Papkovsky, M. Smiddy, J. P. Kerry, C. K. O’Sullivan, D. J. Buckley, G. G. Guilbault, J. Food Sci. 66(1), 105 (2001).
[43] T. Takeuchi, Sens. Actuators 14(2), 109 (1988).
[44] D. N. Patel, A. Goel, S. B. Agarwal, P. Garg, K. K. Lakhani, J. Indian. Acad. Clin. Med. 4(3), 234 (2003).
[45] C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. Ren, S. J. Pearton, Appl. Phys. Lett. 99(24), 243502 (2011).
[46] T. Yajima, K. Koide, H. Takai, N. Fukatsu, H. Iwahara, Solid State Ionics 79(0), 333 (1995).
[47] R. M. Navarro, M. A. Pe&;#732;na, J. L. G. Fierro, Chem. Rev. 107(10), 3952 (2007).
[48] D. Eliezer, N. Eliaz, O. N. Senkov, F. H. Froes, Mater. Sci. Eng. A 280(1), 220 (2000).
[49] R. Ramachandran, R. K. Menon, Int. J. Hydrogen Energy 23, 593 (1998).
[50] T. H‥ubert, L. Boon-Brett, G. Black, U. Banach, Sens. Actuators B 157(2), 329 (2011).
[51] S. A. Sherif, F. Barbir, T. N. Veziroglu, Solar Energy 78(5), 647 (2005).
[52] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett. 9(1), 30 (2009).
[53] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 457, 706 (2009).
[54] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 324(5932), 1312 (2009).
[55] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
[56] C. Hu, Modern Semiconductor Devices for Integrated Circuits Pearson/Prentice Hall, Upper Saddle River, N.J. (2010).
[57] X. M. Li, H. W. Zhu, K. L. Wang, A. Y. Cao, J. Q. Wei, C. Y. Li, Y. Jia, Z. Li, X. Li, D. H. Wu, Adv. Mater. 22(25), 2743 (2010).
[58] U. K. Mishra, J. Singh, Semiconductor Device Physics and Design. Springer (2007).
[59] X. An, F. Liu, Y. J. Jung, S. Kar, Nano Lett. 13(3), 909 (2013).
[60] M. K. Kumar, S. Ramaprabhu, J. Phys. Chem. B 110(23), 11291 (2006).
[61] B. H. Chu, C. F. Lo, J. Nicolosi, C. Y. Chang, V. Chen, W. Strupinski, S. J. Pearton, F. Ren, Sens. Actuators B 157(2), 500 (2011).
[62] M. Shafiei, P. G. Spizzirri, R. Arsat, J. Yu, J. du Plessis, S. Dubin, R. B. Kaner, K. Kalantar-zadeh, W. Wlodarski, J. Phys. Chem. C 114(32), 13796 (2010).
[63] W. Wu, Z. Liu, L. A. Jauregui, Q. Yu, R. Pillai, H. Cao, J. Bao, Y. P. Chen, S.-S. Pei, Sens. Actuators B 150(1), 296 (2010).
[64] L. Zhu, Y. Jia, G. Gai, X. Ji, J. Luo, Y. Yao, Sens. Actuators B 190(0), 134 (2014).
[65] Y. H. Zhang, Y. B. Chen, K. G. Zhou, C. H. Liu, J. Zeng, H. L. Zhang, Y. Peng, Nanotechnology 20(18), 185504 (2009).
[66] G. Ko, H. Y. Kim, J. Ahn, Y. M. Park, K. Y. Lee, J. Kim, Curr. Appl. Phys. 10(4), 1002 (2010).
[67] Z.-D. Lin, C.-H. Hsiao, S.-J. Young, C.-S. Huang, S.-J. Chang, S.-B. Wang, IEEE Sens. J. 13(6), 2423 (2013).
[68] M. Penza, G. Cassano, R. Rossi, M. Alvisi, A. Rizzo, M. A. Signore, T. Dikonimos, E. Serra, R. Giorgi, Appl. Phys. Lett. 90(17), 173123 (2007).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔