跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/13 17:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾上銘
研究生(外文):Shang-Ming Tseng
論文名稱:斜坡式超導穿隧元件之製作與特性研究
論文名稱(外文):Fabrication and Characteristics of Ramp-type Superconducting Tunneling Device
指導教授:王立民王立民引用關係
指導教授(外文):Li-Min Wang
口試委員:吳秋賢陳昭翰
口試委員(外文):Chiu-Hsien WuJau-Han Chen
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:69
中文關鍵詞:高溫超導約瑟夫森結釹鋇銅氧量子穿隧元件
外文關鍵詞:ramp-type structurejosephson junctionNBCOSQUID
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討了一種斜坡式結構約瑟夫森元件的製作,利用超導體釹鋇銅氧(NdBa2Cu3O7-δ)及絕緣層鈦酸鍶(SrTiO&;not;3)成長於鈦酸鍶基板上。以光學微影及離子蝕刻方式製作斜坡,利用射頻磁控濺鍍方式成長所需之薄膜。利用X-Ray及MPMS做薄膜特性的量測;原子力顯微鏡做斜坡表面形態之量測。
由測量結果得知,以濺鍍方式可得到品質良好之超導薄膜,以乾蝕刻之方式可做出坡度平整、表面平緩之斜坡,為一可能取代雙晶基板製作約瑟夫森結之替代方案。


A ramp-type technique for the fabrication of high temperature superconducting tunneling device is researched. We use NdBa2Cu3O7-δ as top and bottom superconducting layer; SrTiO3 as insulating and barrier layer, both grown on 1cm2 SrTiO&;not;3 substrate.
The crystalline orientation and surface morphology are characterized by X-ray diffraction and atomic force microscope. The electric and magnetic properties of the superconducting films are studied by using low temperature measurement and superconducting quantum interference device (SQUID)
We found a gentle ramp angle and a flat ramp surface can be fabricated using dry-etching technique, combined with high quality c-axis orientation superconducting films, this method can be an alternative to produce artificial boundary josephson junctions.


目錄

致謝......................................................................................................................................................i
中文摘要..............................................................................................................................................ii
ABSTRACT........................................................................................................................................iii
目錄.....................................................................................................................................................iv
圖目錄................................................................................................................................................vi
表目錄..............................................................................................................................................ix
Chapter 1 緒論...................................................................................................................................1
1.1研究背景....................................................................................................................................1
1.1.1高溫超導量子干涉元件( High Temperature Superconducting Quantum Interference Device )之發展與應用........................................................................................................................1
1.1.2人造晶界之製作.............................................................................................................2
1.1.3人造晶界結之分類與詳細結構.....................................................................................4
1.2研究動機...................................................................................................................................11
Chapter 2 理論背景與原理介紹.....................................................................................................12
2.1 高溫超導體概述.....................................................................................................................12
2.1.1超導體之發展背景.......................................................................................................12
2.1.2超導體特性....................................................................................................................13
2.1.3 Anderson-Kim 磁通蠕動模型.....................................................................................19
2.1.4混合態霍爾效應與磁通釘扎........................................................................................20
2.2 約瑟芬結.................................................................................................................................22
2.2.1約瑟芬方程....................................................................................................................22
2.2.2 RS(C)J模型...................................................................................................................23
2.2.3直流超導量子干涉元件(DC SQUID)..........................................................................24
Chapter 3 實驗步驟與方法.............................................................................................................28
3.1研究流程..................................................................................................................................28
3.2薄膜成長機制..........................................................................................................................29
3.2.1射頻磁控濺鍍法(RF-Magnetron Sputtering)...............................................................30
3.3基板選擇與清洗.......................................................................................................................31
3.4釹鋇銅氧及鈦酸鍶薄膜製作...................................................................................................32
3.5光學微影製程...........................................................................................................................34
3.6蝕刻製程...................................................................................................................................36
3.7量測系統...................................................................................................................................38
3.7.1 XRD(X-Ray 晶格繞射儀)...........................................................................................38
3.7.2 AFM(原子力顯微鏡)....................................................................................................39
3.7.3電阻-溫度量測系統......................................................................................................40
3.7.4 SQUID量測系統..........................................................................................................41
Chapter 4 實驗結果與討論............................................................................................................ 42
4.1釹鋇銅氧靶材製備...................................................................................................................42
4.2釹鋇銅氧薄膜之成長與磁通釘扎特性...................................................................................48
4.3斜坡穿隧元件之製作...............................................................................................................54
4.3.1斜坡製作........................................................................................................................54
4.3.2 SQUID之設計..............................................................................................................57
4.3.3 SQUID之製作..............................................................................................................58
Chapter 5 結論.................................................................................................................................63
REFERENCE.....................................................................................................................................64
圖目錄
圖1.1 各種人造晶界之製作方式。(a) 雙磊晶(bi-epitaxial)、(b) 雙晶、(c) 斜坡式(ramp-type)、(d)垂直方向之三明治式、(e) 階梯邊緣式(Step-edge).......................................................2
圖1.2 階梯邊緣SNS結................................................................. .................................................7
圖1.3 薄膜遮蓋法蝕刻階梯............................................................................................................8
圖1.4 蝕刻速率對蝕刻角度變化圖,其中蝕刻速率已對90°之角度做正規化.........................9
圖1.5 以光阻遮蓋法製作斜坡.......................................................................................................10
圖2.1 釔鋇銅氧之電阻-溫度關係.................................................................................................13
圖2.2 理想第Ⅱ類超導體之渦旋線分佈.......................................................................................17
圖2.3 非理想第Ⅱ類超導體之渦旋線分佈...................................................................................17
圖2.4 (a) 外加均勻磁場、(b) 磁通線會束縛在此釘扎中心,形成磁通束、(c) 無外加電流時,磁通線陷在位能為U&;not;0之位能井中、(d) 當有外加電流J時,磁通束因受到洛侖茲力傾斜,而有一個向右之淨跳出頻率。[61].............................................................................19
圖2.5 釔鋇銅氧薄膜在不同低磁場下所出現之sign reversal及double sign reversal現象[64],inset可看到高磁場並無此兩種現象..................................................................................20
圖2.6 霍爾電導率(對磁場正規化)對溫度關係圖[64],由inset可看出σ_xy在正常態是不相依於磁場,而在臨界溫度附近大致呈σ_xy&;#8733;T^(-3)情形。到了磁場B< 3 T時,σ_xy出現了由正轉負的趨勢(sign reversal),而到了磁場B= 1 T以下時,σ_xy又出現往上轉折之情形(double sign reversal)。.........................................................................................................21
圖2.7 兩超導體間夾一極薄之絕緣層形成約瑟芬結...................................................................22
圖2.8 RSCJ model.........................................................................................................................24
圖2.9 直流超導量子干涉元件示意圖[51] ...................................................................................25
圖2.10 超導量子干涉元件之電壓-電流曲線圖及電壓-磁通曲線圖[52]..................................27
圖3.1 本研究架構流程圖...............................................................................................................28
圖3.2 本實驗所使用之磁控濺鍍系統示意圖...............................................................................31
圖3.3 本實驗使用之射頻磁控濺鍍系統外觀...............................................................................33
圖3.4 光阻塗佈機 ( 汎達科儀 ) .................................................................................................35
圖3.5 光罩對準曝光機(KarlSuss MJB-3) ...................................................................................35
圖3.6 畫面中央為蝕刻腔體,下方為冰水機,可通入-20°C之冰水(含己二醇) ........................37
圖3.7 X光繞射儀...........................................................................................................................37
圖3.8 四點量測法示意圖...............................................................................................................38
圖3.9 電阻-溫度量測系統.............................................................................................................40
圖3.10 超導量子干涉磁量儀 (Quantum Design, MPMS7) ..........................................................41
圖4.1 釹鋇銅氧靶材製作流程.......................................................................................................42
圖4.2 以高溫爐燒結之靶材電阻-溫度關係圖...........................................................................43
圖4.3 釹鋇銅氧塊材浸置於去離子水後之電阻-溫度變化關係圖.............................................44
圖4.4 釔鋇銅氧塊材浸置於去離子水後之電阻-溫度變化關係圖.............................................44
圖4.5 Tc隨浸泡時間變化圖...........................................................................................................45
圖4.6 不同粉末所做之X-ray繞射強度對水浸蝕時間關係圖(a)YBa2Cu3O7-δ、(b)NdBa2Cu3O7-δ、(c)Y0.6Ca0.4Ba1.6La0.4Cu3O7-δ、(d) EuBa2Cu3O7-δ.............................................................................46
圖4.7 水分子進入釔鋇銅氧&;釹鋇銅氧示意圖[56] .....................................................................46
圖4.8 (a)釹鋇銅氧塊材未浸泡去離子水、(b)釹鋇銅氧塊材浸泡去離子水9小時.....................47
圖4.9 釹鋇銅氧鍍於鈦酸鍶基板之電阻-溫度關係圖.................................................................48
圖4.10 不同磁場下之(a)橫向、(b)縱向霍耳電阻率對溫度變化關係圖......................................49
圖4.11 0.25 Tesla磁場下ln&;#12310;(ρ&;#12311;_xy)對ln&;#12310;(ρ&;#12311;_xx)作圖,fitting之斜率為1.49.......................................50
圖4.12 釹鋇銅氧薄膜在不同外加磁場下之ln(ρxx/ρ0)對1/T關係...............................................51
圖4.13 釘扎能對磁場關係圖,inset為lnU對lnH作圖並作線性fitting......................................52
圖4.14 鈦酸鍶薄膜/釹鋇銅氧薄膜成長於鈦酸鍶基板之X光繞射圖形...................................53
圖4.15 (a)以光阻定義斜坡位置/(b)離子蝕刻工作示意圖..........................................................54
圖4.16 (a)能量700 eV、離子束電流20 mA、蝕刻角度45°、斜坡角度8.1°(b)能量350 eV,離子束電流20mA,蝕刻角度45°、斜坡角度10.1°(c)能量100 eV,離子束電流20 mA,蝕刻角度45°、斜坡角度7.5°............................................................................................54
圖4.17 相同微影條件下,光阻之形狀有所差異...........................................................................56
圖4.18 超導量子干涉元件示意圖.................................................................................................57
圖4.19 斜坡式超導量子干涉元件製作流程圖[39]......................................................................58
圖4.20 SQUID圖形在微影製程後於光學顯微鏡下放大500倍之影像....................................59
圖4.21 SQUID之電流-電壓關係圖@77 K....................................................................................60
圖4.22 元件製作完成後以四點量測法測量上下電極之電阻-溫度關係圖...............................61
圖4.23 因離子蝕刻導致受損之超導薄膜以600°C通氧退火2小時之上下電極電阻-溫度關係圖。..................................................................................................................................62






















表目錄
表3.1 三種基板與釹鋇銅氧之晶體結構.......................................................................................32
表4.1 表面平整度、坡度與離子束能量之關係...........................................................................56


REFERENCE
[1] B.D.Josephson . PHYS.Lett.,1(1952),251
[2] Y.Zhang, H. Bousack, M. Bick, A. Montsch, H.Soltner, W. Wolf, U. Steinhoff, L. Trahms, and P. Endt, Appl. Supercond., 6, 705(1998)
[3] P. Seidel, R. Weidl, S. Brabetz, F. Schmidl, H. Nowak and U. Leder, Appl. Supercond., 6,309(1998)
[4] M. Haemaelaeinen, R. Hari, Risto J. Ilmoniemi, J. Kanuutila, and O.V. Lounasmaa, Rev. Mod. Phys.,65,413(1993)
[5] J. Kim, J. Kang, E. Lee, I.H. Song, J. Gohng, and T. S. Hahn, IEEE. Trans. Appl. Supercond., 9, 4389(1999)
[6] N. Kasai, D. Suzuki, H. Takashima, and M. Koyanag, IEEE. Trans. Appl. Supercond.,9,4393(1999)
[7] C.C. Tsuei, and J. R. Kirley, Rev. Mod. Phys.,72, 969(2000)
[8] T.S. Lee, E. Danster, and J. Clarke, Rev. Sci. Instrum.,67, 4208(1996)
[9] H. Matz, D. Drung, S. Hartwig, H. Groβ, R. Kotitz, W. Muller, A. Vass, W. Weitschies, and T. Trahms, Appl. Supercond., 6, 577(1998)
[10] K. Char, M. S. Colclough, S. M. Garrison, N. Newman and G. Zaharchuk, Appl. Phys. Lett. 59, 733 (1991)
[11] K. Char, M. S. Colclough, L. P. Lee and G. Zaharchuk, Appl. Phys. Lett. 59, 2177 (1991)
[12] D. Winkler, Y. M. Zhang, P. A. Nilsson, E. A. Stepantsov, and T. Claeson, Phys. Rev. Lett. 72, 1260(1994)
[13] Z. G. Ivanov, E. A. Stepantsov, T. Claeson, F. Wenger, S. Y. Lin, N. Khare, and P. Chaudhari, Phys. Rev. B 57, 602(1998)
[14] J. Gao, Yu. M. Boguslavskij, B. B. G. Klopman, D. Terpstra1, R. Wijbrans,G. J. Gerritsma and H. Rogalla, J. Appl. Phys. 72, 575 (1992)
[15] Verhoeven, M.A.J, Gerritsma, G.J. ; Rogalla, H. ; Golubov, A.A., Applied Superconductivity, IEEE Transactions (Volume:5 , Issue: 2 )
[16] T. Umezawa1, D. J. Lew2, S. K. Streiffer3 and M. R. Beasley4, Appl. Phys. Lett. 63, 3221 (1993)
[17] N. Missert1, T. E. Harvey1, R. H. Ono1 and C. D. Reintsema1, , Appl. Phys. Lett. 63, 1690 (1993)
[18] K Herrmann, Y Zhang, H -M Muck, J Schubert, W Zander and A I Braginski, Supercond. Sci. Technol. 4 583 (1993)
[19] J. G. Bednorz and K. A. M uller, Z. Phys., B64 (1986),198
[20] Gross R, Alff L, Beck A et al. IEEE Trans. Appl Supercond.,1997,7:2929
[21] Gao Ji, MA Ping, DAI Yuan-Dong物理&;#23398;和高新技&;#26415;,2007,36(11):869~878.
[22] Pauza A J, Moore D F, Campbell A M et al. IEEE Trans. Appl Supercond.,1995,5:3410
[23] Liang W Y, Yuanh J, Yan Y et al. Mater, Sci. Eng. B, 1996, 41. 5
[24] Pauza A J, Booij W E, Herrmann K et al J. Appl. Phys.,1997,82:5612
[25] Dimos D, Chaudhari P, Mannhart J et al. Phys. Rev. Lett.,1988, 61:219
[26] M.Y.Li, H. L. Kao, W.J.Chang, C.L.Lin, C.H. Li, Yunhui Xu, C.C. Chi, Weiyan Guan, and M.K. Wu, Physica C., 235,589(1994)
[27] S.H.Tsai, C.C.Chi, and M.K.Wu, Physica C.,339,155(2000)
[28] Simon R W, Bulman J B, Burch J F et al. IEEE Trans. Magn., 1991, 27:3209
[29] DiIorio M S, Yoshizumi S, Yang K Y et al. IEEE Trans. Appl. Supercond., 1993, 3 : 2011
[30] Rosenthal P A, Grossman E N, Ono R H et al. Appl. Phys. Lett., 1993, 63:1984
[31] Reintsema C D, Ono R H, Barnes G et al. IEEE Trans. Appl. Supercond., 1995,5:3405
[32] Ono R H, Vale L R, Kimminau K R et al. IEEE Trans. Appl. Supercon., 1993, 3:2389
[33] Gao J, Aarnink W A M, Gerritsma G J et al. IEEE Trans. Magn., 1991, 27:3062
[34] Gao J, Aarnink W A M, Gerritsma G J et al Physica C, 1990, 171:126
[35] B. H. Moeckly and K. Char, Appl. Phys. Lett. 71, 2526 (1997)
[36] Y. Huang, K. L. Merkle, B.H. Moeckly, K. Char, Physica C: superconductivity Volume 314, Issues 1-2 (1999) pages 36-42
[37] Katsuno, H. Inoue, S. Nagano, T. Yoshida, J. Applied Physics Letters (Volume:79 , Issue: 25 )
[38] H. Sato, F.J.G. Roesthuis, A.H. Sonnenberg, A.J.H.M. Rijnders, D.H.A. Blank, H. Rogalla, Proc. EUCAS,1999
[39]U. Schoop, M. Schonecke, S. Schymon, T. Bauch, A. Marx, B. Wiedenhorst, L. Alff, R. Gross, Supercond. Sci. Technol. 12(1999)1016
[40] D.H.A. Blank, H. Rogalla, J. Mater, J. Mater. Res. 12 (1997) 2952
[41] U. Schoop, M. Schonecke, S. Thienhaus, S. Schymon, L. Alff, R. Gross, Physica C 351 (2001) 200-214
[42] Y. Yang, J. Gao, J.L.Sun, T.C.Chui, L. Li, Physica C 300(1998)151
[43] B.D. Hunt, M.G. Forrester, J. Talvacchio, J.D. McCambridge, R.M. Young, Appl. Phys. Lett. 68(1996)3805
[44] H.K. Onnes, Leiden Comm., (1911), 122b, 122c
[45] J. Bardeen, L.N. Cooper and J. R. Schrieffer, Phys. Rev., 108(1957),1175
[46] C.W.Chu et al., Phys. Rev. Lett.,58 (1987),405
[47] D.J.Quinn J.Appl. Phys.,33(1962). 748
[48] W.Meissner and R.Ochsenfeld, Naturwiss, 21(1933),787
[49] F.London and H.London, Proc. Roy Soc.,(London) A155, (1935), 71
[50] C. P. Bean, Phys. Rev. Lett. 8, 250 (1962)
[51] retrieved July 22,2014, from http://www.geocities.ws/pranab_muduli/squid.html
[52] 楊鴻昌 ,物理; 24:5; 民91.10; 頁652-666
[53] 羅吉宗, 薄膜科技與應用
[54] W. C. Rontgen, Science 14 February 1896: Vol. 3 no. 59 pp. 227-231
[55] W. H. Bragg and W. L. Bragg, Proc. R. Soc. Lond. A 1913 88
[56] Steen B. Schougaard, Mehnaaz F. Ali, and John T. McDevitt, Appl. Phys. Lett volume84, number 7 (2004)
[57] 朱政偉, 國立台灣大學物理系碩士論文 (2013)
[58] Yang H C, Wang L M and Horng H E 1999 Phys. Rev. B 59 8956
[59] Zeldov E, Amer N M, Koren G, Gupta A, Gambino R J and McElfresh M W 1989 Phys. Rev. Lett. 62 3093
[60] Palstra T T M, Batlogg B, van Dover R B , Schneemeyer L F and Waszczak J V 1990 Phys. Rev. B 41 6621
[61] 張裕恆, 李玉芝 “超導物理”, p. 464 , (1992)
[62] P.W. Anderson, and Y. B. Kim, Rev. of Mod. Phys., 36, 39 (1964)
[63] E.H. Hall, Phil. Mag. 10, 301 (1880)
[64] W. Gob, W. Liebich, W. Lang, I. Puica, Roman Soboliwski et al, Phys. Rev. B vol.62, number 14
[65] A.G. Arrov and S. H. Kami, Phys. Rev. B 41, 9548 (1990)
[66] J. E. Hirsch and F. Marsiglo, Phys. Rev. B 43, 424 (1991)
[67] L. Lu, Ph.D. dissertation, Beijing University, China, 1992
[68] A. Freimuth , C. Hohn, and M. Galffy, Phys. Rev. B 44, 10396 (1991)
[69] J. L. Chen and T. J Yang, Phys. Rev. B 50,4064 (1994)
[70] J. Bardeen and M. J. Stefan, Phys. Rev. 140, A1197 (1965)
[71] P. Nozieres and W.F. Vinen, Philos. Mag. 14, 667 (1966)
[72] J. Luo, T.P. Orlando, J. M. Graybeal, X. D. Wu, and R. Muenchausen, Phys. Rev. Lett. 68, 690 (1992)
[73] Samoilov A V 1993 Phys. Rev. Lett. 71 617
[74] Wang Z D, Dong J and Ting C S 1994 Phys. Rev. Lett. 71 621
[75] 鍾建宇, 大葉大學電機工程學系碩士論文 (2008)
[76] L.M. Wang, Chih-Yi Wang, Un-Cheong Sou, H C Yang, L J Chang, Caleb Redding, Yu Song, Pengcheng Dai and Chenglin Zhang, J. Phys. Condens Matter 25 (2013)395702
[77] Y. Abulafia, A. Shaulov, Y. Wolfus, R. Prozorov, L. Burlachkov, and Y. Yeshurun, Phys. Rev. Lett. Volume 77, number 8 (1996)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊