跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:卓禹丞
研究生(外文):Yu-Cheng Cho
論文名稱:以甲基偶氮於銅(111、110、100)表面成長石墨烯之掃描顯微研究
論文名稱(外文):Investigating CVD Graphene Grown by Azomethane on Cu(111), Cu(110) and Cu(100) with Scanning Tunneling Microscopy
指導教授:白偉武
指導教授(外文):Woei-Wu Pai
口試委員:林倫年蘇清源
口試委員(外文):Michitoshi HayashiChing-Yuan Su
口試日期:2014-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:55
中文關鍵詞:石墨烯甲基偶氮銅單晶掃描式穿隧電子顯微鏡化學氣相沉積
外文關鍵詞:GrapheneAzomethaneCopper Single CrystalSTMCVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據文獻我們知道甲基是(CH3&;#903;)石墨烯生長過程中一樣重要的中間產物,在實驗中我們嘗試直接用甲基(CH3&;#903;)在銅單晶上生長石墨烯並與甲烷做比較,我們所用的甲基是由甲基偶氮分子裂解而來,當甲基偶氮分子在接近1000度高溫裂解時會產生許多小分子,包含甲基、氮氣、NCH3與其他少量的分子,我們發現如果用甲基當作前驅物,石墨烯在600~700度的低溫下就可以在(111)、(110)、(100)這幾個常見晶面上長出很好的品質,我們發現這些石墨烯的形狀與其生長的銅基質結構有非常大的相關性,並且藉由這些NCH3分子,我們發現生長出來的石墨烯具有~0.05%的氮參雜。另外,不同與甲烷我們發現以甲基為前驅物時,石墨烯的生長速率並不會隨著銅的晶面不同而改變,這可能是因為甲基與甲烷在不同晶面上脫氫效率不同的影響,所以當我們直接用甲基為前驅物時,石墨烯的生長速度不會隨著晶面不同而有所改變。最後,我們在用甲基生長石墨烯的實驗中觀察到,石墨烯的生長伴隨著「銅基質的移除」,這些石墨烯在生長的過程中能夠將其下的銅移除,導致看起來石墨烯是陷於兩旁的銅之下,我們認為這是因為銅原子在生長過程中很可能會與甲基鍵結形成類似CH3-M或CH3-MH的結構(M為金屬原子,例如:銅),進而造成銅原子被帶離金屬表面。

Methyl group (CH3&;#903;) is an important intermediate specie in the growth of graphene when using hydrocarbon as precursors. In this work, we demonstrate a one-shot synthesis method of high-quality nitrogen-doped graphene on copper substrates by using methyl from pyrolysis of azomethane, and discuss an observation about the growth of graphene. Pyrolysis of azomethane gas at ~1000oC generates mainly methyl, methylnitrene, nitrogen and a few other minor species. We discovered that, with methyl, graphene can readily grow at a low temperature of 600~700°C with a high probability, on all major Cu orientations. Though the islands’ shape and nucleation density of graphene are affected by the crystal orientations, graphene has a uniform growing rate on Cu(111), Cu(110) and Cu(100). Nitrogen doping density with N/C ratio of ~ 0.05% is observed. The dopants are generated due to the incorporation of methylnitrene during growth. Though having a low doping density, evidence shows that the synthesis of highly doped graphene can be achieved. Furthermore, when using methyl group as precursor, a “copper etching effect” is observed. Graphene islands are discovered to be capable to “dig a hole” on copper surface. We surmise that this is due to the reaction between copper atoms and methyl which forms intermediate species such as CHx-Cu. Thus, copper atoms at surface can be carried away in this structure.

1. Introduction...1
1.1 Introduction of graphene...1
1.2 Motivation...3

2. Apparatus and Methodology...4
2.1 Experimental environment and apparatus...4
2.1.1 Ultra-high vacuum system...5
2.1.2 Scanning tunneling microscopy...7
2.1.3 Residue gas analyzer...13
2.2 Preparation of single crystal copper substrate...15
2.3 Preparation of methyl source...16
2.3.1 Introduction to azomethane...16
2.3.2 Synthesis of azomethane...17
2.3.3 Design of methyl source...19
2.3.4 Characterization of methyl source...20
2.4 Growing parameter of graphene on copper substrate...23

3. Graphene grown on Cu(111)/Cu(110)/Cu(100)...26
3.1 Graphene grown on Cu(111)...26
3.1.1 Identification of graphene on Cu surface by scanning tunneling microscopy - using Cu(111) as an example...27
3.2 Graphene grown on Cu(110)...30
3.3 Graphene grown on Cu(100)...32
3.4 Discussion of graphene on Cu(111)/Cu(110)/Cu(100)...34

4. Study of graphene grown by azomethane...37
4.1 Copper etching effect during graphene growth...37
4.2 Direct nitrogen doping...44

5. Conclusion...49

Reference...51

1 J. Slonczewski and P. Weiss, Physical Review 109 (2), 272 (1958).
2 P. Wallace, Physical Review 71 (9), 622 (1947).
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306 (5696), 666 (2004).
4 Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, and Philip Kim, Nature 438 (7065), 201 (2005).
5 Claire Berger, Zhimin Song, Tianbo Li, Xuebin Li, Asmerom Y. Ogbazghi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, and Walt A. de Heer, The Journal of Physical Chemistry B 108 (52), 19912 (2004).
6 A. K. Geim and K. S. Novoselov, Nat Mater 6 (3), 183 (2007).
7 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438 (7065), 197 (2005).
8 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Reviews of Modern Physics 81 (1), 109 (2009).
9 Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi, and Byung Hee Hong, Nature 457 (7230), 706 (2009).
10 Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau, Nano Letters 8 (3), 902 (2008).
11 Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone, Science 321 (5887), 385 (2008).
12 Liangti Qu, Yong Liu, Jong-Beom Baek, and Liming Dai, ACS Nano 4 (3), 1321 (2010).
13 Yuyan Shao, Jun Wang, Hong Wu, Jun Liu, Ilhan A Aksay, and Yuehe Lin, Electroanalysis 22 (10), 1027 (2010).
14 Ying Wang, Yuyan Shao, Dean W. Matson, Jinghong Li, and Yuehe Lin, ACS Nano 4 (4), 1790 (2010).
15 Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, and Rodney S. Ruoff, Science 324 (5932), 1312 (2009).
16 Yanwu Zhu, Shanthi Murali, Weiwei Cai, Xuesong Li, Ji Won Suk, Jeffrey R. Potts, and Rodney S. Ruoff, Advanced Materials 22 (35), 3906 (2010).
17 Albert Dato, Velimir Radmilovic, Zonghoon Lee, Jonathan Phillips, and Michael Frenklach, Nano Letters 8 (7), 2012 (2008).
18 Jurgen Kraus, Sebastian Bocklein, Robert Reichelt, Sebastian Gunther, Benito Santos, Tevfik O. Mente&;#351;, and Andrea Locatelli, Carbon 64, 377 (2013).
19 Yi Zhang, Luyao Zhang, and Chongwu Zhou, Accounts of Chemical Research 46 (10), 2329 (2013).
20 Maria Losurdo, Maria Michela Giangregorio, Pio Capezzuto, and Giovanni Bruno, Phys. Chem. Chem. Phys. (2011).
21 J. Wintterlin and M. L. Bocquet, Surface Science 603 (10–12), 1841 (2009).
22 L. Gao, J. R. Guest, and N. P. Guisinger, Nano Letters 10 (9), 3512 (2010).
23 L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy, Solid State Communications 151 (7), 509 (2011).
24 H. I. Rasool, E. B. Song, M. Mecklenburg, B. C. Regan, K. L. Wang, B. H. Weiller, and J. K. Gimzewski, J Am Chem Soc 133 (32), 12536 (2011).
25 G. Binnig and H. Rohrer, IBM JOURNAL OF RESEARCH AND DEVELOPMENT 30 (4), 355 (1986).
26 K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface science: an introduction. (Berlin: Springer-Verlag., 2003).
27 Xiang&;#8208;Dong Peng, Rama Viswanathan, George H. Smudde, and Peter C. Stair, Review of Scientific Instruments 63 (8), 3930 (1992).
28 Ping Chuang, Y. L. Chan, Shu-Hua Chien, K. J. Song, Ruth Klauser, and T. J. Chuang, Langmuir 18 (12), 4549 (2002).
29 Woei Wu Pai, Yuet Loy Chan, and Tung J. Chuang, CHINESE JOURNAL OF PHYSICS (2005).
30 R. Renaud and L. C. Leitch, Canadian Journal of Chemistry 32 (5), 545 (1954).
31 Chiang Chao-Ming and Brian E. Bent, Surface Science 279 (1–2), 79 (1992).
32 T. J. Chuang, Y. L. Chan, Ping Chuang, and Ruth Klauser, Journal of Electron Spectroscopy and Related Phenomena 98–99 (0), 149 (1999).
33 高旭昇, 國立台灣大學 碩士論文 (2000).
34 莊平, 國立台灣大學 碩士論文 (2001).
35 J. D. Wood, S. W. Schmucker, A. S. Lyons, E. Pop, and J. W. Lyding, Nano Letters 11 (11), 4547 (2011).
36 Masatou Ishihara, Yoshinori Koga, Jaeho Kim, Kazuo Tsugawa, and Masataka Hasegawa, Materials Letters 65 (19–20), 2864 (2011).
37 P. T. Chen, W. W. Pai, and M. Hayashi, Journal of Physical Chemistry C 118 (18), 9443 (2014).
38 Han-Gook Cho and Lester Andrews, Dalton Transactions 40 (42), 11115 (2011).
39 J. Mark Parnis, Steven A. Mitchell, Jaimie Garcia-Prieto, and Geoffrey A. Ozin, Journal of the American Chemical Society 107 (26), 8169 (1985).
40 A. Zabet-Khosousi, L. Zhao, L. Palova, M. S. Hybertsen, D. R. Reichman, A. N. Pasupathy, and G. W. Flynn, J Am Chem Soc 136 (4), 1391 (2014).
41 R. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elias, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J. C. Charlier, M. Pan, and M. Terrones, Scientific reports 2, 586 (2012).
42 L. Zhao, R. He, K. T. Rim, T. Schiros, K. S. Kim, H. Zhou, C. Gutierrez, S. P. Chockalingam, C. J. Arguello, L. Palova, D. Nordlund, M. S. Hybertsen, D. R. Reichman, T. F. Heinz, P. Kim, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy, Science 333 (6045), 999 (2011).
43 Takahiro Kondo, Simone Casolo, Tetsuya Suzuki, Taishi Shikano, Masataka Sakurai, Yoshihisa Harada, Makoto Saito, Masaharu Oshima, Mario Italo Trioni, Gian Franco Tantardini, and Junji Nakamura, Physical Review B 86 (3), 035436 (2012).
44 Haibo Wang, Thandavarayan Maiyalagan, and Xin Wang, ACS Catalysis 2 (5), 781 (2012).
45 Y. Xue, B. Wu, L. Jiang, Y. Guo, L. Huang, J. Chen, J. Tan, D. Geng, B. Luo, W. Hu, G. Yu, and Y. Liu, J Am Chem Soc 134 (27), 11060 (2012).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊