跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃瀧毅
研究生(外文):Lung-I Huang
論文名稱:高溫超導體/石墨烯約瑟芬元件製作與傳輸特性研究
論文名稱(外文):Fabrication and transport properties in hybrid high-temperature superconductor/graphene Josephson junction
指導教授:梁啟德
指導教授(外文):Chi-Te Liang
口試委員:林立弘
口試委員(外文):Li-Hung Lin
口試日期:2013-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:57
中文關鍵詞:高溫超導體石墨烯
外文關鍵詞:high-temperature superconductorgraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主題是高溫超導體與石墨烯約瑟芬接面 (Josephson Junction) 的製作與其電子傳輸特性的研究。想法來源為低溫超導體與石墨烯之間的安德烈夫反射現象 (Andreev reflection) 與鄰近效應 (proximity effect),而我們則是選用高溫超導體 (EBCO) 與石墨烯製作出約瑟芬接面來試圖觀察上述的效應,並了解超導載子在接面中穿隧的物理機制,更希望能就藉由這個研究製作出更好的約瑟芬接面。

論文的另一個部分是研究外延石墨烯 (Epitaxial graphene) 的傳輸特性,我們觀察到絕緣態與量子霍爾態的相變與弱局部化 (Weak localization) 的效應。並且成功的將電子-電子散射 (electron-electron scattering) 、電子-聲子散射 (electron-phonon scattering)這兩種難以個別研究的散射機制藉由電子加熱效應 (current heating effect) 將其個別探討。

最後,我們的實驗成功製作出高溫超導與石墨烯的約瑟芬接面,而且觀察到在高溫超導體與石墨稀接面發生安德烈夫反射現象的證據。這是目前別人尚未做過的嘗試。期望在未來有更進一步的發展性,及前瞻性的應用。


In this thesis, the electron transport properties and the fabrication of Josephson junction in a hybrid high-temperature superconductor and graphene were investigated. The idea of adopting high-temperature superconductor, EuBaCuO (EBCO), and graphene derived from the Andreev reflection and proximity effect observed between the interface of the low-temperature superconductor and graphene; attempting to have a comprehensive picture of the aforementioned effects and the fundamental properties of the superconducting carriers in the Josephson junction in a variety of superconductors.

Besides what we mentioned in the previous paragraph, the rest of this thesis was dedicated to the study of the electrons transport properties in the epitaxial graphene. The behaviors of the insulator-quantum Hall transition and weak localization in the epitaxial graphene were observed in this study. Moreover, our experimental results suggested that the electron heating effect is a powerful tool for studying two scattering properties which are difficult to study independently and physical phenomena in two-dimensional systems or nanostructures.

Finally, we successfully demonstrated the fabrication of high-temperature superconducting/graphene Josephson junction and evidences responsible for Andreev reflection phenomenon observed in the high-temperature superconductors/graphene Josephson junction. The results of this unprecedented materials combination shed a light on the future development of its cutting-edge applications.


Chapter 1 Introduction 1
1.1 Superconductors 1
1.1.1 Meissner effect 3
1.1.2 Type-I and Type-II superconductors 4
1.2 Graphene 6
Chapter 2 Josephson effect 10
2.1 Macroscopic quantum model 10
2.2 Josephson equation 11
2.3 RCSJ model 14
2.4 Andreev reflection 16
Chapter 3 Experimental techniques and Sample fabrication 20
3.1 Fabrication of EBCO thin films 20
3.2 Fabrication of SNS devices 21
3.3 Fabrication of SGS devices 24
3.4 Four-terminal resistance measurement 25
3.5 Cryogenic system: Sorption pumping 3He cryostat 27

Chapter 4 Results of Epitaxial graphene 30
4.1 Characteristics of superconducting films 30
4.1.1 Weak localization 31
4.2 Insulator-quantum Hall transition in epitaxial graphene 33
4.3 Weak localization and electron heating in epitaxail graphene 36
Chapter 5 Results of SGS 49
5.1 Experimental results of EBCO thin films 49
5.2 Experimental results of SNS 51
5.3 Experimental results of SGS 53
Chapter 6 Conclusion 57


[1]B. D. Josephson, Proceedings of the IEEE 62, 6, 838 - 841, (1974).
[2]B. D.J osephson, Phys. Lett 1, 7, 251-253 (1962).
[3]H. K. Onnes, Commun. Phys. Lab. Univ. Leiden 12, 120, (1911).
[4]Charles P. Poole, Jr., Horacio A. Farach, Richard J. Creswick, “Superconductivity”, (Academic Press, 1995).
[5]Nao Takeshita, Ayako Yamamoto, Akira Iyo, and Hiroshi Eisaki, J. Phys. Soc. Jpn. 82, 023711 (2013).
[6]J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Physical Review 108, 1175 (1957).
[7]Webpage” Lecture 8: Perfect Diamagnetism”, Terry P. Orlando, Massachusetts Institute of Technology, 2003, Retrieved April 11, (2012).
http://web.mit.edu/6.763/www/FT03/Lectures/Lecture8.pdf
[8]Allister M Forrest, Eur J. Phys. 4, 17 (1983).
[9]Webpage” Fichier: Magnetisation_and_superconductors.png”, Retrieved April 11, (2012). http://fr.wikipedia.org/wiki/Fichier:Magnetisation_and_superconductors.png
[10]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
[11]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[12]Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
[13]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni,I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
[14]Johannes Jobst, Daniel Waldmann, Florian Speck, Roland Hirner, Duncan K. Maude, Thomas Seyller, and Heiko B. Weber1, Phys. Rev. B 81, 195434 (2010).
[15]C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337-1354 (2008).
[16]A. K. Geim, K. S. Novoselov, Nature Materials 6, 183 (2007).
[17]Gregory M. Rutter, Nathan P. Guisinger, Jason N. Crain, Phillip N. First, and Joseph A. Stroscio, Phys. Rev. B 81, 245408 (2010).
[18]Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, Ph. Avouris, Science 327, 5966 (2010).
[19]Andrei Marouchkine, “Room-Temperature Superconductivity,” (Cambridge International Science Publishing, (2004).
[20]Katsuyoshi Komatsu, Chuan Li, S. Autier-Laurent, H. Bouchiat, and S. Gueron, Phys. Rev. B 86, 115412 (2012)
[21]Pablo Burset Atienza, Superconducting proximity e&;#64256;ect and nonlocal transport in graphene and carbon nanotubes (April 2012).
[22]Xing Lan Liu, Quantum Dots and Andreev Reflections in Graphene (August 2010).
[23]M. de Llano, F. J. Sevilla and S. Tapia, Int. J. Mod. Phys. B 20, 2931 (2006).
[24]S. H. N. Lim, D. R. McKenzie, and M. M. M. Bilek, Rev. Sci. Instrum. 80, 075109 (2009).
[25]Jheng-Cyuan Lin, Master thesis, National Taiwan University (2012).
[26]Jyun-Ying Lin, Master thesis, National Taiwan University (2006).
[27]Tzu-Lun Lin, Master thesis, National Taiwan University (2009).
[28]Wataru Norimatsu, Juji Takada, and Michiko Kusunoki, Phys. Rev. B 84, 035424 (2011)
[29]Wataru Norimatsu, Michiko Kusunoki, Chem. Phys. Lett. 468 52–56 (2009).
[30]H. MorkoG, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).
[31]N. Srivastava, Guowei He, Luxmi, P. C. Mende, and R. M. Feenstra, J. Phys. D: Appl. Phys. 45, 154001 (2012).
[32]P. M. Mensz and R. G. Wheeler, Phys. Rev. B 35, 2844 (1987).
[33]Tzu-Lun Lin, Master thesis, National Taiwan University (2009).
[34]Kuang Yao Chen, Doctoral dissertation, National Taiwan University (2010).
[35]Chiashain Chuang, Li-Hung Lin, Nobuyuki Aoki, Takahiro Ouchi, Akram M Mahjoub, Tak-Pong Woo, Jonathan P Bird, Yuichi Ochiai, Shun-Tsung Lo and Chi-Te Liang, Nanoscale Res. Lett. 8, 214 (2013).
[36]C. F. Huang, Y. H. Chang, C. H. Lee, H. T. Chou, H. D. Yeh, C.-T. Liang, Y. F. Chen, H. H. Lin, H. H. Cheng, and G. J. Hwang, Phys. Rev. B 65, 045303 (2002).
[37]H. P. Wei, S. W. Hwang, D. C. Tsui, and A. M. M. Pruisken, Surf. Sci. 229, 34 (1990).
[38]A. Mittal, R. G. Wheeler, M. W. Keller, D. E. Prober, and R. N. Sacks, Surf. Sci. 361/362 537-541 (1996)
[39]H. Scherer, L. Schweitzer, F. J. Ahlers, L. Bliek, R. Losch, and W. Schlapp, Semicond. Sci. Technol. 10, 963 (1995).
[40]H. P. Wei, L. W. Engel and D. C. Tsui, Phys. Rev. B 50, 14609 (1994)

[41]S Koch, R J Haug, K von Klitzing and K Ploog, Semicond. Sci. Technol. 10, 209 (1995).
[42]E. McCann, K. Kechedzhi, Vladimir I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).
[43]K. K. Choi, D. C. Tsui, and K. Alavi, Phys. Rev. B 36, 7751 (1987).
[44]Peter Rickhaus, Markus Weiss, Laurent Marot, and Christian Scho&;#776;nenberger, Nano Lett. 12, 1942&;#8722;1945 2012.
[45]Dongchan Jeong, Jae-Hyun Choi, Gil-Ho Lee, Sanghyun Jo, Yong-Joo Doh, and Hu-Jong Lee, Phys. Rev. B 83, 094503 (2011)



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top