(3.235.11.178) 您好!臺灣時間:2021/03/05 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳奕男
研究生(外文):I-Nan Chen
論文名稱:利用射頻磁控濺鍍法製備P型鍺銻碲薄膜之熱電性質研究
論文名稱(外文):Thermoelectric Properties of RF Magnetron Sputtered P-Type Ge-Sb-Te Thin Films
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Yang-Fang Chen
口試委員:陳瑞山
口試委員(外文):Ruei-San Chen
口試日期:2014-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:60
中文關鍵詞:熱電薄膜鍺銻碲射頻磁控濺鍍功率因子
外文關鍵詞:thermoelectricthin filmgermanium antimony tellurideRF magnetron sputteringpower factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱電元件由於能直接將熱能與電能相互轉換,長久以來被視為有開發潛力的能量轉換元件。儘管如此,過低的轉換效率仍是阻礙其普遍化的原因之一。當前研究的重點包括如何提升其熱電優值 (ZT)。鍺銻碲合金長期以來被應用在相變記憶體材料當中,近年來的研究顯示該材料擁有合適的熱電特性,適合被使用在熱電發電/致冷的應用中。然而該材料在薄膜的熱電特性上還未被廣泛研究。在本論文中,我們利用射頻磁控濺鍍法沉積鍺銻碲薄膜材料於矽基板上,並利用退火處理增加薄膜的結晶性。藉由調整不同的濺鍍壓力及退火溫度,達到增進薄膜的熱電性質的目的。材料的分析包含晶體結構,成份分析,以及熱電特性。由霍爾量測的結果顯示出鍺銻碲薄膜材料為P型高摻雜半導體,其載子濃度約為1021/cm3。X光晶體繞射顯示出該材料退火後為多晶材料,類似氯化鈉的面心立方結構。隨著濺鍍壓力的降低,X光繞射圖譜中的(200)峰值強度明顯增強許多,表示(200)方向的晶粒分佈有增加的趨勢。此種現象結合晶粒邊界位能障的觀念,極有可能解釋在低壓的製程下,載子擁有較高的遷移率。另一方面,隨者退火溫度的增加,薄膜擁有較佳的結晶性,同時也觀察到當退火溫度高於攝氏350度時,碲元素有缺陷的情形發生。在退火攝氏350度以上的樣品中,席貝克係數擁有顯著的增加,主要原因是由於較低的載子濃度。載子濃度的降低與碲元素的缺陷有明顯的關聯,本論文試著以鍺元素空缺的角度去解釋該現象。在較低的濺鍍壓力(0.1mTorr)與較高的退火溫度(450oC)的情況下,鍺銻碲薄膜材料在量測溫度為623K時擁有最佳的功率因子(21uW/cmK2)。帶入塊材的晶格熱傳導係數值,此材料的熱電優值(ZT)可達到0.6,相較於塊材的ZT值有兩倍以上的增加。

Thermoelectric devices have long been regarded as potential energy converter owing to their ability to convert waste heat directly into useful electricity. Nevertheless, the low efficiency made it difficult to become widely used. Current research is focused on finding thermoelectric materials with high ZT value. Pseudo-binary GeTe-Sb2Te3 compounds have long been used for phase-change memory (PCM) applications. It has been shown that GeTe-rich phases exhibit interesting thermoelectric properties, which can be applied to thermoelectric generator/cooler (TEG/TEC). However, the research on thin film case has not been widely explored. In this work, Ge-Sb-Te thin films were deposited on Si substrate using radio-frequency (RF) magnetron sputtering at room temperature with stoichiometric Ge19Sb2Te22 compound as the sputtering target. The as-deposited amorphous thin films were annealed in Ar atmosphere for 30 minutes to increase the crystallinity. Various deposition working pressures and post-annealing temperatures were used to improve thermoelectric properties. The films were analyzed in terms of their crystalline structure, composition, Seebeck coefficient, electrical properties, and thermal properties.
The Hall measurement results indicated that the GST films were heavily doped p-type semiconductors with carrier concentration around 1021/cm3. The p-type behavior was confirmed by the positive Seebeck coefficient. X-ray diffraction (XRD) revealed that the annealed films were polycrystalline in nature, which crystallized in NaCl-type fcc structure that resembled the pure GeTe. With the decreasing working pressure, preferred orientation of (200) grain was observed from XRD patterns, which could possibly explain the higher mobility obtained at lower working pressure. On the other hand, the crystalline quality was found enhanced with increasing annealing temperatures. More severe Te-deficient was also observed from energy dispersion spectroscopy (EDS) at high annealing temperatures (>=350oC). As the annealing temperature increased above 350oC, the Seebeck coefficient was significantly improved due to the lower carrier concentration, which was assumed to be caused by the Te-deficient. Optimized thermoelectric power factor (21uW/cmK2) measured at 623K was obtained for thin film deposited at lowest working pressure (0.1mTorr) and annealed at highest temperature (450oC). The estimated ZT value could achieve to 0.6 using kL of the corresponding bulk materials.

誌謝 I
中文摘要 II
Abstract III
Chapter 1 Introduction 1
1.1 Thermoelectricity and its applications 1
1.2 Challenges in thermoelectric energy conversion 2
1.3 Advantages of thin film thermoelectric materials 3
1.4 GST thin film as promising p-type thermoelectric material 5
Chapter 2 Background Theory and Literature Review 6
2.1 Thermoelectric effects and thermoelectric coefficients28 6
2.2 Thermoelectric devices and dimensionless figure of merit 8
2.3 Strategies toward high ZT 10
2.3.1 Optimizing carrier concentration 10
2.3.2 Achieving low lattice thermal conductivity 11
2.3.3 Low-dimensional thermoelectricity 11
2.4 (GeTe)n(Sb2Te3) pseudo-binary compounds 13
Chapter 3 Experimental and Analysis Techniques 16
3.1 Sample Preparation 17
3.1.1 Substrate Preparation 17
3.1.2 Radio Frequency (RF) Magnetron Sputtering 18
3.1.3 Post annealing 20
3.2 Sample characterization 22
3.2.1 X ray diffraction 22
3.2.2 Scanning electron microscopy and Energy dispersive X-ray spectroscopy 24
3.3 Thermoelectric properties measurements 25
3.3.1 Hall measurement 25
3.3.2 Seebeck coefficient and electric resistance measurement50 27
Chapter 4 Results and discussion 28
4.1 Effects of working pressure 28
4.2 Effects of post annealing temperature 41
Chapter 5 Conclusions 56
Reference 57


1.Alam, H.; Ramakrishna, S., A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2013, 2 (2), 190-212.
2.DiSalvo; F. J., Thermoelectric Cooling and Power Generation. Science 1999, 285 (5428), 703-706.
3.https://solarsystem.nasa.gov/rps/rtg.cfm. (accessed 2014 July).
4.G.JeffreySnyder, TheElectrochemicalSocietyInterface 2008, 54–56.
5.Kordas, K.; Toth, G.; Moilanen, P.; Kumpumaki, M.; Vahakangas, J.; Uusimaki, A.; Vajtai, R.; Ajayan, Chip cooling with integrated carbon nanotube microfin architectures. Applied Physics Letters 2007, 90 (12), 123105.
6.L.T.Yeh, Review of Heat Transfer Technologies in Electronic Equipment. JournalofElectronicPackaging 1996, 117, 333–339.
7.http://www.koolatron.com/. (accessed 2014 July).
8.Bell, Cooling, Heating, Generating Power,and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457.
9.Labudovic, Modeling of TE Cooling of Pump Lasers. IEEE Transactions On Components And Packaging Technologies 2004, 27, 724.
10.TaweePogfai, International Journal of Appled Biomedical Engineering 2008.
11.Shakouri, A., Recent Developments in Semiconductor Thermoelectric Physics and Materials. Annual Review of Materials Research 2011, 41 (1), 399-431.
12.Harald Bottner; Gang Chen; Rama Venkatasubramanian, Aspects of Thin-Film Superlattice Thermoelectric Materials, Devices, and Applications. MRS BULLETIN 2006, 31.
13.D. W. Song, Thermal conductivity of skutterudite thin films and superlattices. Applied Physics Letters 2000, 77.
14.Rama Venkatasubramanian; E. S.; Thomas Colpitts; Brooks O''Quinn, Thin-flm thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597-602.
15.Marko Labudovic; M., IEEE; Jin Li, Member, IEEE, Thin Film Thermoelectric Handbook. Technologies, L., Ed. 2012.
16.Lee, S. Thermoelectric Cooling and Power Generation.
17.J. Dheepa; Velumani, Characterization of Bismuth Telluride thin films — Flash evaporation method. Materials Characterization 2007, 58, 782–785.
18.Dong-Ho Kim; Gun-Hwan Lee; Sunglae Cho, Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering. Thin Solid Films 2006, 510, 148–153.
19.H. Noro; K. S.; H. Kagechika, The thermoelectric properties and crystallography of Bi&;#8208;Sb&;#8208;Te&;#8208;Se thin films grown by ion beam sputtering. Journal of Applied Physics 1993, 73.
20.Cisse, Properties of thin film thermoelectric materials: application to sensors using the Seebeck effect Materials Science and Engineering 1992, B13, 103-111
21.A. Dauscher; A. T.; H. Scherrer, Pulsed laser deposition of Bi2Te3 thin films Thin Solid Films 1996, 280, 61--66
22.A. Giani ; F. P.-D.; A. Boyer; A. Foucaran; M. Gschwind; P. Ancey, Elaboration of Bi2Te3 by metal organic chemical vapor deposition Thin Solid Films 1997, 303, 1-3.
23.Wulf Glatz; L. D.; Etienne Schwyter; Christofer Hierold, Novel mixed method for the electrochemical deposition of thick layers of Bi2+xTe3&;#8722;x with controlled stoichiometry. Electrochimica Acta 2008, 54, 755–762.
24.Tritt, T. M., Thermoelectric Phenomena, Materials, and Applications. Annual Review of Materials Research 2011, 41 (1), 433-448.
25.Yamada, M. W. a. N., Phase-change materials for rewriteable data storage. Nature materials 2007, 6, 824.
26.Rosenthal, T.; Schneider, M. N.; Stiewe, C.; Doblinger, M.; Oeckler, O., Real Structure and Thermoelectric Properties of GeTe-Rich Germanium Antimony Tellurides. Chemistry of Materials 2011, 23 (19), 4349-4356.
27.Tobias Rosenthal; M. N. S.; Christian Stiewe; Markus Doblinger; Oliver Oeckler, Real Structure and Thermoelectric Properties of GeTe-Rich Germanium Antimony Tellurides. Chemistry of Materials 2011, 23, 4349–4356.
28.H.J.Goldsmid, Thermoelectrics. Springer-Verlag: Berlin, 2001.
29.Toberer, Complex thermoelectric materials. Nature materials 2008, 7, 105.
30.Altenkirch, E., Physikalische Zeitschrift 1911, 12, 920.
31.Chen, G., Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons. Oxford University Press: New York, 2005.
32.Cutler, M.; Leavy, J. F.; Fitzpatrick; R. L., Electronic transport in semimetallic cerium sulfide. Phys. Rev. 1964, 133, A1143–A1152.
33.GA, S., CRC Handbook of Thermoelectrics. CRC Press: 1995.
34.George S. Nolas; J. P.; Mercouri Kanatzidis, Recent Developments in Bulk Thermoelectric Materials. MRS BULLETIN 2006, 31.
35.Hicks, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.
36.Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J. P.; Gogna, P., New Directions for Low-Dimensional Thermoelectric Materials. Advanced Materials 2007, 19 (8), 1043-1053.
37.A V Dmitriev; I. P. Z., Current trends in the physics of thermoelectric materials. Physics - Uspekhi 2010, 53, 789 - 803.
38.A. J. Minnich; M. S. D.; Z. F. Ren; G. Chen Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2009, 2, 466-479.
39.Dominic Lencer; M. S.; Blazej Grabowski; Tilmann Hickel; Jorg Neugebauer, Mattihias Wuttig, A map for phase-change materials. Nature materials 2008, 7, 972.
40.G. Bruns, P. M., C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund Nanosecond switching in GeTe phase change memory cells. Applied Physics Letters 2009, 95, 043108.
41.W. J. Wang; L. P. S.; R. Zhao; K. G. Lim; H. K. Lee; T. C. Chong; Y. H. Wu, Fast phase transitions induced by picosecond electrical pulses on phase change memory cells. Applied Physics Letters 2008, 93, 043121.
42.Schneider; M. N., Real structure - property relationships of metastable ternary antimony tellurides and related compounds. 2011.
43.Yamada, Erasable phase-change optical materials. Mater. Res. Soc. Bull 1996, 21, 48-50.
44.Ho-Ki Lyeo; D. G. C.; Bong-Sub Lee; John R. Abelson; Min-Ho Kwon; Ki-Bum Kim; Stephen G. Bishop; Cheong, Thermal conductivity of phase-change material Ge 2 Sb 2 Te 5. Applied Physics Letters 2006, 89, 151904.
45.Sittner; Siegert, K. S.; Jost, P.; Schlockermann, C.; Lange, F. R. L.; Wuttig, M., (GeTe)x-(Sb2Te3)1-xphase-change thin films as potential thermoelectric materials. physica status solidi (a) 2013, 210 (1), 147-152.
46.Ravi Sharma1; D. P. B.; Usha Shukla; B.G. Sharma, X-ray diffraction: a powerful method of characterizing nanomaterials. Recent Research in Science and Technology 2012, 4, 77-79.
47.http://surfgroup.be/semedx. (accessed 2014 July).
48.http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy. (accessed 2014 July).
49.Hall, E., On a New Action of the Magnet on Electric Currents. American Journal of Mathematics 1879, 2, 287–92.
50.http://www.ulvac.com/oem/technology.cfm?iid=22&;tid=129&;eid=78. (accessed 2014 July).
51.Snyder, Introduction to X-ray Powder Diffractometry. John Wiley &; Sons Inc: 1996.
52.S.A Nasser, Structural and physical properties of sprayed copper–zinc oxide films. Thin Solid Films 1998, 315, 327-335.
53.A.K. Kulkarni, Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques. Thin Solid Films 1999, 345, 273-277.
54.Sadahiro Tsurekawa; Tadao Watanabe, Interfacial state and potential barrier height associated with grain boundaries in polycrystalline silicon. Materials Science and Engineering A 2007, 462, 61-67.
55.Matsunaga, T.; Morita, H.; Kojima, R.; Yamada, N.; Kifune, K.; Kubota, Y.; Tabata, Y.; Kim, J. J.; Kobata, M.; Ikenaga, E.; Kobayashi, K., Structural characteristics of GeTe-rich GeTe–Sb2Te3 pseudobinary metastable crystals. Journal of Applied Physics 2008, 103 (9), 093511.
56.Abrikosov, N. K., Semiconducting II-VI, IV-VI, and V-VI compounds Plenum Press: 1969.
57.Sun, Z.; Pan, Y.; Zhou, J.; Sa, B.; Ahuja, R., Origin of p-type conductivity in layered nGeTe‧mSb2Te3 chalcogenide semiconductors. Physical Review B 2011, 83 (11).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔