(34.236.244.39) 您好!臺灣時間:2021/03/09 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾銘綸
研究生(外文):Ming-Lun Tseng
論文名稱:超快雷射於電漿子超穎物質之製作與操控
論文名稱(外文):Fabrication and Active Control of Plasmonic Metamaterials Using Ultrafast Laser
指導教授:蔡定平
指導教授(外文):Din Ping Tsai
口試委員:孫剛任貽均張允崇江海邦
口試委員(外文):Greg Sun
口試日期:2014-06-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:90
中文關鍵詞:超穎物質奈米電漿子學侷域性表面電漿奈米光學三維結構超快雷射製程超快雷射光譜術
外文關鍵詞:Metamaterialnano-plasmonicsnanophotonicsultrafast laser fabricationultrafast laser spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電漿子超穎物質乃是一種人造次波長週期性結構所組成,其光學性質主要由組成之奈米結構之幾何參數所決定。藉由各種超穎物質的奇特電磁波共振性質近年來人們在光學領域已經實現許多重要且有趣的應用,例如負折射材料、隱形斗篷、電漿子奈米雷射、以及生醫感測晶片。本論文將研究利用超快雷射於多層電漿子超穎物質的製作以及主動式調控兩個應用。在多層超穎物質製作上採用接觸式超快雷射轉印術加工由金及介電質交疊之奈米薄膜來製作多層裂環共振器。利用傅立葉光譜以及數值計算證實此超穎物質具有良好的光學共振效應,也觀察到超穎物質裂環共振器層與層之間的近場耦合效應。在利用超快雷射主動式調控超穎物質的震盪方面,超快雷射脈衝可用來操控超穎物質之共振,兩道反向但同調之超快雷射脈衝可於空間中相距四分之一波長的位置分別形成電場之極大值及磁場之極大值。當超穎物質放製於此系統中時,超穎物質所具有之多極矩共振將會被選擇性的放大或是抑制,端看此時兩道脈衝之間的相位差在空間中形成之電磁場分佈。此外,亦可用此技術來探討超穎物質隱藏於電偶極矩下之複雜多極矩共振行為。此操控超穎物質的技術稱為同調性選擇激發光譜學。此技術可以用來作為主動式的光操控。超穎物質極薄且次波長的單位元,且不需要用到非線性效應便得以用光操縱光,因此具有很大的應用潛力。



Plasmonic metamaterials as a novel class of artificially engineered nanostructures exhibit unconventional optical responses and applications, such as negative refraction, super-resolution imaging, photonic nanolasers, chiral optics components, and biosensors. In this thesis an ultrafast laser is utilized in two applications - fabrication and active control of multilayered plasmonic metamaterials. Contact-mode laser induced forward transfer technique is employed to fabricate arrays of multilayered split ring resonators in which the layered structures are composed of gold/dielectric/gold thin films. Optical measurement reveals rich resonance properties and coupling between split ring resonators of the fabricated metamaterials.
The active control of the plasmonic metamaterials by ultrafast laser utilizes two counter-propagating ultrafast laser pulses that form local electric and magnetic field maxima in nearby free space. Under excitation of a particular condition, a certain group of multipolar resonances from the metamaterial are amplified while others are suppressed at the maximum of electric or magnetic field. Using this technique, we were able to reveal the hidden resonance modes of metamaterials which allowed us to gain understanding of these features that are otherwise difficult to study. This technique opens an important pathway for developing novel plasmonic metamaterials and exploring their associated properties.


目錄
圖目錄 iii
中文摘要 vi
Abstract vii
第一章 緒論 1
侷域性表面電漿共振之介紹 1
侷域性表面電漿共振之應用 4
a. 表面增強拉曼散射 5
b. 於光收穫之應用 8
超穎物質之介紹 10
a. 裂環共振器 11
b. 具人造磁矩特性之多層結構 16
c. 狹縫型超穎物質以及巴比內原理 19
本章參考文獻: 22
第二章 利用雷射轉印術製作多層超穎物質 29
前言 29
研究動機 32
實驗流程以及結構設計 33
多層超穎物質製作結果 36
光學量測與數值模擬分析 39
本章總結 42
本章參考文獻: 43
第三章 利用同調性選擇激發光譜儀控制超穎物質 50
前言 50
研究動機 55
實驗流程以及結構設計 57
a. 樣品製作與量測系統 57
b. 數值模擬 65
實驗結果與分析 67
本章總結 76
本章參考文獻: 77
第四章 結論 84
附 錄 85

圖目錄

圖1-1:侷域性表面電漿共振。 3
圖1-2:金屬奈米顆粒間之耦合。 4
圖1-3:巴黎聖禮拜教堂(La Sainte Chapelle)牆上裝飾之琉璃。 5
圖1-4:利用金顆粒來量測單一分子之拉曼光譜。 6
圖1-5:表面增強拉曼效應之應用。 7
圖1-6:電漿子電學(Plasmons to electricity)。 9
圖1-7:自然界中材料以及超穎物質之比較圖。 10
圖1-7:(a) 裂環共振器示意圖。 12
圖1-8:垂直排列之裂環共振器。 13
圖1-9:非對稱式裂環共振器。 14
圖1-10:同調與非同調之超穎物質的比較。 15
圖1-11:直立式裂環共振器。 16
圖1-12:漁網結構之示意圖。 17
圖1-13:由銀/氧化鋁/銀三層奈米線所組成之超穎分子。 18
圖1-14:多層漁網結構稜鏡。 18
圖1-15:巴比內原理於超穎物質中之應證。 20
圖1-16:互補結構之同調震盪。 21
圖2-1:三種基礎之雷射轉印術。 30
圖 2 2:史上第一篇雷射轉印術論文。 30
圖 2 3:各種雷射轉印術的應用。 31
圖 2 4:接觸式以及非接觸式之雷射轉印術比較圖。 32
圖 2 5:各種多層超穎物質。 33
圖 2 6:多層超穎物質製作流程。 34
圖 2 7:超快雷射加工系統。 34
圖 2 8:製作超穎物質之流程圖以及超穎分子之結構尺寸。 36
圖 2 9:製作超穎物質之流程圖以及超穎分子之結構尺寸 37
圖 2 10:不同雷射加工條件下製作出之多層結構測試。 38
圖 2 11:多層超穎物質的光學量測與模擬光譜。 40
圖 2 12:多層超穎物質的不同共振模態。 41
圖 3-1:超穎物質在駐波中的兩種情況。 51
圖 3 2:利用超穎物質之震盪來達到光控制光之目的。 52
圖 3 3:利用超穎物質在超快雷射領域中達到光控制光之概念。 53
圖 3 4:幾種同調控制技術之應用。 54
圖 3 5:同調性選擇激發光譜儀示意圖。 55
圖 3 6:各種多極矩震盪之示意圖以及其對應之輻射圖形(Radiation patterns)。 56
圖 3 7:懸空氮化矽薄膜之(a)掃描式電子顯微鏡影像以及(b)光學影像。 57
圖 3 8:FEI Helios 600 NanoLab聚焦離子束系統。 58
圖 3 9: 利用不同劑量所製作之金狹縫測試結構。 59
圖 3-10:自氮化矽表面用聚焦離子束蝕刻製作之超穎物質非對稱裂環共振器陣列。 60
圖 3-11:狹縫奈米天線之設計圖。 62
圖 3 12:UV-visible-NIR microspectrophotomete。 63
圖 3 13:同調性選擇激發光譜儀。 64
圖 3-14:Comsol模擬中之設定。 66
圖 3-15:對超穎物質的電偶極矩震盪進行同調控制。 68
圖3-16:對超穎物質的磁偶極矩震盪進行同調控制。 69
圖 3 17:於多層漁網結構上x方向之表面電流模擬。 70
圖 3 18:對超穎物質的磁偶極矩以及電偶極矩選擇性激發。 72
圖 3 20:超穎分子在不同激發條件下之吸收光譜比較。 74
圖 3 21:超穎分子在不同激發條件下之輻射強度計算結果。 75



Chapter 1
1.K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
2.D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994).
3.M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
4.K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
5.K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267-297 (2007).
6.H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Letters 6, 827–832 (2006).
7.Guedje, F. K.; Giloan, M.; Potara, M.; Hounkonnou, M. N.; Astilean, S. “Optical Properties of Single Silver Triangular Nanoprism “ Phys. Scr., 86, 1– 6 (2012).
8.R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001).
9.P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75, 024402 (2012).
10.N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
11.A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
12.B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
13.C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005).
14.K. Li, M. I. Stockman, and D. J. Bergman, ”Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens,” Phys. Rev. Lett. 91 227402 (2003).
15.L. S. Slaughter, Y. Wu, B. A. Willingham, P. Nordlander, and S. Link, “Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers,” ACS Nano 4(8), 4657–4666 (2010).
16.R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photonics Rev. 7, 141-169 (2012).
17.P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
18.H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
19.M. I. Stockman, “Dark-hot resonances,” Nature 467, 541–542 (2010).
20.M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
21.X.-M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Rev. Mod. Phys. Chem. Soc. Rev., 37, 912–920 (2008).
22.S. M. Nie and S. R. Emory, ” Surface-enhanced Raman scattering panoparticles” Science, 275, 1102–1106 (1997).
23.K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari and M. S. Feld, ”Single molecule detection using surface-enhanced Raman scattering (SERS), ” Phys. Rev. Lett., 78, 1667–1670 (1997).
24.W.-C. Lin, H.-C. Jen, C.-L. Chen, D.-F. Hwang, R. Chang, J.-S. Hwang, and H.-P. Chiang, “SERS study of tetrodotoxin (TTX) by using silver nanoparticle arrays, ” Plasmonics 4, 187–192 (2009).
25.T.-Y. Liu, K.-T. Tsai, H.-H. Wang, Y. Chen, Y.-H. Chen, Y.-C. Chao, H.-H. Chang, C.-H. Lin, J.-K. Wang, Y.-L. Wang, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Nat. Commun. 2, 538 (2011).
26.Gi. Xue , Q. Dai , S. Jiang, “Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques,” J. Am. Chem. Soc., 110 (8), 2393–2395(1988).
27.A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E. L. Izake, and P. M. Fredericks, “SERS substrate for detection of explosives,” Nanoscale 4(23), 7419–7424 (2012).
28.X. Qian, X.-H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags,” Nat. Biotechnol.26(1), 83–90 (2008).
29.K. R. Catchpole and A. Polman, "Plasmonic solar cells," Opt. Express 16, 21793-21800 (2008).
30.Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
31.H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
32.K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 517 (2011)
33.N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008).
34.P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, “Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure,” Opt. Express 19, 7633–7639 (2011).
35.K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20(2), 1308–1319 (2012).
36.M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332, 702–704 (2011).
37.M. Moskovits, “Hot electrons cross boundaries,” Science 332, 676 (2011).
38.C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nature Photonics 8, 95–103 (2014).
39.H. M. Chen, C. K. Chen, C.-J. Chen, L.-C. Cheng, P. C. Wu, B. H. Cheng, Y. Z. Ho, M. L. Tseng, Y. Y. Hsu, T. S. Chan, J. F. Lee, R. S. Liu, and D. P. Tsai, “Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures,” ACS Nano 6(8), 7362–7372 (2012).
40.X. M. Zhang, Y. L. Chen, R. S. Liu, and D. P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys. 76(4), 046401 (2013).
41.W. Cai, V. Shalaev, “Optical Metamaterials: Fundamentals and Applications” Springer (2009).
42.感謝台大物理系黃耀緯同學提供圖片。
43.V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509 (1968).
44.J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
45.D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314, 977 (2006).
46.S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111, 026803 (2013).
47.X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
48.C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, H. Giessen, T. Pertsch, and F. Lederer, "The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach," Opt. Express 15,8871-8883 (2007).
49.N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009).
50.N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
51.N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351– 354 (2008).
52.V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99, 147401–1–4 (2007).
53.V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
54.K. Fan, A. C. Strikwerda, H. Tao, X. Zhang, and R. D. Averitt, “Stand-up magnetic metamaterials at terahertz frequencies,” Opt. Express19(13), 12619–12627 (2011).
55.C.C. Chen, C.T. Hsiao, S. Sun, K.-Y. Yang, P.C. Wu, W.T. Chen, Y.H. Tang, Y.-F. Chau, E. Plum, G.-Y. Guo, N.I. Zheludev, and D.P. Tsai, “Fabrication of three dimensional split ring resonators by stress-driven assembly method,” Opt. Express 20, 9415–9420 (2012).
56.W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
57.C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
58.J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
59.V. M. Shalaev, “Optical negative-index metamaterials,” Nat. photonics 1, 41 - 48 (2007).
60.W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Metamagnetics with rainbow colors," Opt. Express 15, 3333-3341 (2007).
61.F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
62.T. Zentgraf, C. Rockstuhl, T. P. Meyrath, A. Seidel, S. Kaiser, F. Lederer, and H. Giessen, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B 76,033407 (2007).
63.N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules,” Adv. Mater. 20(23), 4521–4525 (2008).

Chapter 2
1.J. Bohandy, B. F. Kim, and F. J. Adrian, "Metal deposition from a supported metal film using an excimer laser," J. Appl. Phys. 60, 1538-1540 (1986).
2.F. J. Adrian, J. Bohandy, B. F. Kim, A. N. Jette, and P. Thompson, "A study of the mechanism of metal deposition by the laser-induced forward transfer process," Journal of Vacuum Science &; Technology B 5, 1490-1494 (1987).
3.H. Shin, H. Kim, H. Lee, H. Yoo, J. Kim, H. Kim, and M. Lee, "Photoresist-Free Lithographic Patterning of Solution-Processed Nanostructured Metal Thin Films," Adv. Mater. 20, 3457-3461 (2008).
4.D. A. Willis, and V. Grosu, "Microdroplet deposition by laser-induced forward transfer," Appl. Phys. Lett. 86, 244103 (2005).
5.Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, "Microprinting and microetching of diffractive structures using ultrashort laser pulse," Appl. Surf. Sci. 138, 82-86 (1999).
6.D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, "Nanodroplets de-posited in microarrays by femtosecond Ti:sapphire laser induced forward transfer,"Appl. Phys. Lett. 89, 193107 (2006).
7.Kuznetsov, R. Kiyan, B. N. Chichkov, "Laser fabrication of 2D and 3D metal nanoparticle structures and arrays," Opt. Express 18, 21198 (2010).
8.M. Colina, M. Duocastella, J. M. Fernandez-Pradas, P. Serra, and J. L. Morenza, "Laser-induced forward transfer of liquids: Study of the droplet ejection process," J. Appl. Phys. 99, 084909 (2006).
9.P. Serra, M. Duocastella, J. M. Fernandez-Pradas, and J. L. Morenza, "Liquids microprinting through laser-induced forward transfer," Appl. Surf. Sci. 255, 5342-5345 (2009).
10.C. B. Arnold, P. Serra, and A. Pique, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32, 23 (2007).
11.M. Colina, P. Serra, J. M. Fernandez-Pradas, L. Sevilla, and J. L. Morenza, "DNA deposition through laser induced forward transfer," Biosens. Bioelectron. 20, 1638-1642 (2005).
12.P. Serra, M. Colina, J. Fernandez-Pradas, L. Sevilla, and J. Morenza, "Preparation of functional dna microarrays through laser-induced forward transfer," Appl. Phys. Lett. 85, 1639 - 41 (2004).
13.A. Karaiskou, I. Zergioti, C. Fotakis, M. Kapsetaki,and D. Kafetzopoulos, " Microfabrication of biomaterials by the sub-ps laser-induced forward transfer process,"Appl. Surf. Sci. 208–209, 245 (2003).
14.T. V. Kononenko, P. Alloncle, V. I. Konov, M. Sentis, "Laser transfer of diamond nanopowder induced by metal film blistering," Appl. Phys. A 94, 531-536 (2009).
15.E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, "Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films," J. Appl. Phys. 66, 457(1989).
16.S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, and C. Fotakis, "Etching and Printing of Diffractive Optical Microstructures by a Femtosecond Excimer Laser, " Appl. Opt. 38, 2301 (1999).
17.M. C. Suh, B. D. Chin, M. –H. Kim, T. M. Kang, and S. T. Lee, "Enhanced Luminance of Blue Light-Emitting Polymers by Blending with Hole-Transporting Materials," Adv. Mater. 15, 1254 (2003).
18.S. Chang-Jian, J. Ho, J. Cheng, and C. Sung, “Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method,” Nanotechnology 17, 1184-1187(2006).
19.J. Shaw-Stewart, T. Lippert, M. Nagel, F. Nuesch,and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100, 203303 (2012).
20.A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov, “Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,” J. Opt. Soc. Am. B 26(12), B130–B138 (2009).
21.J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M.B. Hoppenbrouwers, and R. W. Eason, "Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment," Opt. Mater. Express 3, 747-754 (2013)
22.M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
23.J . Xu, J. Liu, D. Cui, M. Gerhold, A. Y. Wang, M. Nagel, and T. K. Lippert, "Laser-assisted forward transfer of multi-spectral nanocrystal quantum dot emitters," Nanotechnology 18, 025403 (2007).
24.M. L. Tseng, C. M. Chang, B. H. Chen, Y.-W. Huang, C. H. Chu, K. S. Chung, Y. J. Liu, H. G. Tsai, N.-N. Chu, D.-W. Huang, H.-P. Chiang, and D. P. Tsai, “Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique,” Nanotechnology 23(44), 444013 (2012).
25.W. T. Chen, M. L. Tseng, C. Y. Liao, P. C. Wu, S. Sun, Y.-W. Huang, C. M. Chang, C. H. Lu, L. Zhou, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer,” Opt. Express 21(1), 618–625 (2013).
26.D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
27.C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
28.N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nat. Mater. 7, 31-37 (2008).
29.G. Dolling, W. Wegener, C. M. Soukoulis and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
30.J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
31.B. Kante, Y. S. Park, K. O’Brien, D. Shuldman, N. D. Lanzillotti-Kimura, Z. J. Wong, X. Yin, and X. Zhang, “Symmetry breaking and optical negative index of closed nanorings,” Nat. Commun.3, 1180 (2012).
32.X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photon. 6, 450–454 (2012).
33.A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
34.N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332, 1407–1410 (2011).
35.R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photonics Rev. 7, 141 (2013).
36.Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6(4), 3390–3396 (2012).
37.A. Boltasseva, and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1-17 (2008).
38.I. Bergmair, B. Dastmalchi, M. Bergmair, A. Saeed, W. Hilber, G. Hesser, C. Helgert, E. Pshenay-Severin, T. Pertsch, E. B. Kley, U. Hubner, N. H. Shen, R. Penciu, M. Kafesaki, C. M. Soukoulis, K. Hingerl, M. Muehlberger, and R. Schoeftner, “Single and multilayer metamaterials fabricated by nanoimprint lithography,” Nanotechnology 22(32), 325301 (2011).
39.D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A. J. Baca, G. R. Bogart, P. Braun, and J. A. Rogers, “Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing,” Nat. Nanotechnol. 6(7), 402–407 (2011).
40.T. W. H. Oates, B. Dastmalchi, G. Isic, S. Tollabimazraehno, C. Helgert, T. Pertsch, E. B. Kley, M. A. Verschuuren, I. Bergmair, K. Hingerl, and K. Hinrichs, “Oblique incidence ellipsometric characterization and the substrate dependence of visible frequency fishnet metamaterials,” Opt. Express 20(10), 11166–11177 (2012).
41.Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast laser induced parallel phase change nanolithography,” Appl. Phys. Lett. 89(4), 041108 (2006).
42.T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: From microfabrication to nanoprocessing,” Laser Photonics Rev. 4(1), 123–143 (2010).
43.T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
44.J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett. 95, 223902 (2005).
45.W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19(13), 12837–12842 (2011).
46.S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111, 026803 (2013).
47.D. Diessel, M. Decker, S. Linden, and M. Wegener, “Near-field optical experiments on low-symmetry split-ring-resonator arrays,” Opt. Lett. 35(21), 3661–3663 (2010).
48.E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt. 13(5), 055102 (2011).
49.D. M. Sullivan, “Electromagnetic simulation using the FDTD method,” (Wiley-IEEE, Berlin, 2000).
50.A. Taflove, and S. C. Hagness, “Computational Electrodynamics: The finite-difference time-domain method, Third Edition,” (Artech House, USA, 2005).
51.Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008).
52.SOPRA N&;K Database, www.refractiveindex.info.
53.D. P. Banks, K. S. Kaur, and R. W. Eason, “Etching and forward transfer of fused silica in solid-phase by femtosecond laser-induced solid etching (LISE)”Appl. Surf. Sci. 255, 8343–8351 (2008).
54.S. Zhang, W. Fan, K. J. MalloyS. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," J. Opt. Soc. Am. B 23, 434-438 (2006).
55.Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulses”Appl. Surf. Sci. 138-139, 82-86 (1999).
56.H. Shin, H. Kim, H. Lee, H. Yoo, J. Kim, H. Kim, and M. Lee, “Photoresist-free lithographic patterning of solution-processed nanostructured metal thin films,” Adv. Mater. 20(18), 3457–3461 (2008).

Chapter 3
1.Huygens C, Lommel E, Mewes R. Abhandlung U‥ ber Das Licht: Worin Die Ursachen Der Vorga‥nge Bei Seiner Zuru‥ ckwerfung Und Brechung Und Besonders Bei Der Eigenthu‥mlichen Brechung Des Isla‥ndischen Spathes Dargelegt Sind. Charleston, SC: BiblioBazaar; 2010 [reprint].
2.Gibbs HM. Optical Bistability. Controlling Light with Light. Orlando, FL: Academic Press; 1985.
3.J. Zhang, K. MacDonald, and N. Zheludev, “Controlling light-with-light without nonlinearity,” Light: Science &; Appl. 1, e18 (2012).
4.E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009).
5.K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105(22), 227403 (2010).
6.V. A. Fedotov, N. Papasimakis, E. Plum, A. Bitzer, M. Walther, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Spectral collapse in ensembles of metamolecules,” Phys. Rev. Lett. 104(22), 223901 (2010).
7.N. Papasimakis, Z. Luo, Z. X. Shen, F. De Angelis, E. Di Fabrizio, A. E. Nikolaenko, and N. I. Zheludev, “Graphene in a photonic metamaterial,” Opt. Express 18(8), 8353–8359 (2010)
8.J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces,” Phys. Rev. B 85(20), 205123 (2012).
9.X. Fang, M. L. Tseng, J. Y. Ou, K. F. MacDonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett., 104, 141102 (2014).
10.T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, “Coherent control of nanoscale light localization in metamaterial: Creating and positioning isolated subwavelength energy hot spots,” Phys. Rev. Lett. 106, 085501–1–4 (2011).
11.T. S. Kao, E. T. F. Rogers, J. Y. Ou, and N. I. Zheludev, ““Digitally” Addressable Focusing of Light into a Subwavelength Hot Spots,” Nano Lett. 12, 2728 (2012).
12.J. M. Hao, J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
13.R. Santbergen, H. Tan, M. Zeman, and A. H. M. Smets, "Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells," Opt. Express 22, A1023-A1028 (2014).
14.R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photonics Rev. 7, 141-169 (2013).
15.P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys.75, 024402 (2012).
16.X. Ren, W. E. I. Sha, and W. C. H. Choy, "Tuning optical responses of metallic dipole nanoantenna using graphene," Opt. Express 21, 31824-31829 (2013).
17.H. J. Chen, L. Shao, Q. Li, and J. F. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev.42(7), 2679–2724 (2013).
18.Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20(10), 11466–11477 (2012).
19.P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005).
20.F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74,153411 (2006).
21.F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
22.W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Metamagnetics with rainbow colors," Opt. Express 15, 3333 (2007).
23.S. Zhang, W. Fan, K. J. MalloyS. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," J. Opt. Soc. Am. B 23, 434-438 (2006).
24.V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
25.W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19(13), 12837–12842 (2011).
26.S. M. Hein and H. Giessen, “Tailoring magnetic dipole emission with plasmonic split-ring resonators,” Phys. Rev. Lett. 111, 026803 (2013).
27.N. Liu, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional metamaterials," Adv. Mater. 20, 3859-3865 (2008).
28.K. Marinov, A. D. Boardman, V. A. Fedotov, and N. Zheludev, “Toroidal metamaterial,” New J. Phys. 9(9), 324 (2007).
29.T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
30.Y.-W. Huang, W. T. Chen, P. C. Wu, V. Fedotov, V. Savinov, Y. Z. Ho, Y.-F. Chau, N. I. Zheludev, and D. P. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20(2), 1760–1768 (2012).
31.Ogut, B., Talebi, N., Vogelgesang, R., Sigle, W. &; van Aken, P. A. Toroidal plasmonic eigenmodes in oligomer nanocavities for the visible. Nano Lett. 12, 5239–5244 (2012).
32.Y. Fan, Z. Wei, H. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87, 115417 (2013).
33.Z. G. Dong, J. Zhu, J. Rho, J. Q. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101, 144015 (2012).
34.V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B, 89, 205112 (2014)
35.G. Dolling, W. Wegener, C. M. Soukoulis and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007).
36.J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
37.C. Garcia-Meca, J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 083104 (2011).
38.S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010).
39.圖片來源: http://www.2spi.com/catalog/grids/silicon-nitride.php
40.J. Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
41.J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
42.圖片來源: http://palaios.sepmonline.org/content/24/9/616/F1.expansion.html
43.J. B. Leen, P. Hansen, Y.-T. Cheng, and L. Hesselink, “Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane,” Opt. Lett. 33(23), 2827–2829 (2008).
44.圖片來源: http://www.microspectra.com/index.php
45.O. C. Zienkiewicz, , "The finite element method (3rd ed.)," New York (1977)
46.COMSOL Multiphysics, "RF module user’s guide."
47.Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Plasmonic nanoantenna arrays for the visible," Metamaterials 2, 45-51 (2008).
48.P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
49.N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
50.J. Kim, Y. -G. Roh, K. Kim, and C.-W. Lee, “Babinet-Inverted Optical Yagi–Uda Antenna for Unidirectional Radiation to Free Space,” Nano Lett. In press. Doi: 10.1021/nl500062f
51.X. J. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light: Sci. Appl. 2,e72 (2013).
52.F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. A. de Dood, G. W. ’t Hooft, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett.110, 206802 (2013).
53.J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagoini, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nature Commun. 1, 150 (2010).
54.Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
55.V. A. Fedotov, T. Uchino, and J. Y. Ou, “Low-loss plasmonic metamaterial based on epitaxial gold monocrystal film,” Opt. Express 20(9), 9545–9550 (2012).
56.T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013).
57.B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010)
58.E. Plum, K. Tanaka, W. T. Chen, V. A. Fedotov, D. P. Tsai, and N. I. Zheludev, “A combinatorial approach to metamaterials discovery,” J. Opt. 13(5), 055102 (2011).
59.E. E. Radescu, G. Vaman, Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys. Rev. E 65, 046609 (2002).




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔