|
Non-cytotoxic Nanomaterials Enhance Antimicrobial Activities of Cefmetazole against Multidrug-Resistant Neisseria Gonorrhoeae 1.Patel AL, Chaudhry U, Sachdev D, Sachdeva PN, Bala M, et al. (2011) An insight into the drug resistance profile &; mechanism of drug resistance in Neisseria gonorrhoeae. Indian J Med Res 134: 419-31. 2.Wang CC, Celum CL (1999) Global risk of sexually transmitted diseases. Med Clin North Am 83: 975-995. 3.http://nidss.cdc.gov.tw/SingleDisease.aspx?dc=1&;dt=3&;disease=098 4.Workowski KA, Berman SM, Douglas JJM (2008) Emerging antimicrobial resistance in Neisseria gonorrhoeae: urgent need to strengthen prevention strategies. Ann Intern Med 148(8): 606-613. 5.Rennie RP (2012) Current and future challenges in the development of antimicrobial agents. Handb Exp Pharmacol 211: 45-65. 6.Lewis DA (2014) Global resistance of Neisseria gonorrhoeae: when theory becomes reality. Curr Opin Infect Dis 27(1): 62-7. 7.Centers for Disease Control and Prevention. Sexually Transmitted Diseases Treatment Guidelines. MMWR 2006; 55(RR-11): 42-48. 8.Centers for Disease Control and Prevention. Sexually Transmitted Diseases Treatment Guidelines. MMWR 2010; 59(RR-12): 49-55. 9.Ohnishi M, Saika T, Hoshina S, Iwasaku K, Nakayama SI, et al. (2011) Ceftriaxone-Resistant Neisseria gonorrhoeae, Japan. Emerg Infect Dis 17(1): 148-149. 10.Engel LS (2009) Multidrug-Resistant Gram-Negative Bacteria: Trends, Risk Factors, and Treatments. Emerg Med 41(11): 18-27. 11.World Health Organization Department of Reproductive Health and Research. Emergence of multi-drug resistant Neisseria gonorrhoeae – Threat of global rise in untreatable sexually transmitted infections. 2011; WHO/RHR/11.14. 12.Murugan K, Senthilkumar B, Senbagam D, Al-Sohaibani S (2014) Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int J Nanomedicine 9: 2431-8. 13.Song J, Jang J (2014) Antimicrobial polymer nanostructures: synthetic route, mechanism of action and perspective. Adv Colloid Interface Sci 203: 37-50. 14.Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, et al. (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10): 499-511. 15.Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virulence 2(5): 395-401. 16.Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7: 2767-81. 17.Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, et al. (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18): 4591-4602. 18.Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9(10): 2677-2681. 19.Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Nineteenth Informational Supplement M100-S19. CLSI, Wayne, PA, USA, 2009. 20.Yang CY, Meng CL (1994) Regulation of PG Synthase by EGF and PDGF in Human Oral, Breast, Stomach, and Fibrosarcoma Cancer Cell Lines. J Dent Res 73: 1407-1415. 21.National Committee for Clinical Laboratory Standards. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria-Sixth Edition; Approved Standard M11-A6, NCCLS, Wayne, PA, 2004. 22.Kim ES, Jeong SI, Kim JH, Park C, Kim SM, et al. (2009) Synergistic Effects of the Combination of 20-Hydroxyecdysone with Ampicillin and Gentamicin Against Methicillin-Resistant Staphylococcus aureus. J Microbiol Biotechnol 19(12): 1576-1581. 23.You C, Han C, Wang X, Zheng Y, et al. (2009) The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39(9): 9193-201. 24.Lara HH, Ayala-Nu&;#241;ez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology 8: 1. 25.Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3: 168-171. 26.Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275: 177-182. 27.Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, et al. (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85: 1115-1122. 28.Danilczuk M, Lund A, Sadlo J (2006) Conduction electron spin resonance of small silver particles. Spectrochim Acta A Mol Biomol Spectrosc 63: 189-191. 29.dos Santos CA, Jozala AF, Pessoa A Jr, Seckler MM (2012) Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68. J Nanobiotechnology 10: 43. 30.Ge L, Li Q, Wang M, Ouyang J, et al. (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine 9: 2399-407. 31.Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, et al. (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3: 95-101. 32.Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, et al. (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4): 662-668. 33.Liu W, Wu Y, Wang C, Li HC, Wang T, et al. (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3): 319-330. 34.EI Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, et al. (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1): 283-287. 35.Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkin TA (2011) Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating, and composition. Environ Health Perspect 119(1): 37-44. 36.Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 27(6): 1712-1720. 37.Tian J, Wong KK, Ho CM, Lok CN, Yu WY, et al. (2007) Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2(1): 129-136. 38.Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA (2013) Toxicity of Silver Nanoparticles in Macrophages. Small [Epub ahead of print] 39.Sotiriou G, Pratsinis A (2010) Antibacterial Activity of Nanosilver Ions and Particles. Environ Sci Technol 44: 5649–5654. 40.Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS (2009) Synergistic Interaction between Silver Nanoparticles and Membrane-Permeabilizing Antimicrobial Peptides. Antimicrob Agents Chemother 53(8): 3538-3540. 41.Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, et al. (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179: 130-139. 42.Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24: 872-878. 43.Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390: 733-737. 44.Vlachou E, Chipp E, Shale E, Wilson YT, Papini R (2007) The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption. Burns 33(8): 979-985. 45.Trop M, Novak M, Rodl S, Hellbom B, Kroell W, et al. (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 60(3): 648-652. 46.Hyun JS, Lee BS, Ryu HY, Christodoulides M (2008) Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol Lett 179: 130-139. 47.Morones JR, Elechiguerra JL, Camacho A, Ramirez JT (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353. 48.Lara HH, Garza-Trevi&;#241;o EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology 9: 30. 49.Chen M, Yang Z, Wu H, Pan X, Xie X, et al. (2011) Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int J Nanomedicine 6: 2873–2877. 50.Cortivo R, Vindigni V, Iacobellis L, Abatangelo G, Pinton P, et al. (2010) Nanoscale particle therapies for wounds and ulcers. Nanomedicine (Lond) 5: 641-656. 51.Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, et al. (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388-1401. 52.Kurek A, Grudniak AM, Kraczkiewicz-Dowjat A, Wolska KI (2011) New antibacterial therapeutics and strategies. Pol J Microbiol 60: 3-12. 53.Mohammed Fayaz A, Ao Z, Girilal M, Chen L, Xiao X, et al. (2012) Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection. Int J Nanomedicine 7: 5007-5018. 54.Abdel-Mohsen AM, Abdel-Rahman RM, Hrdina R, Imramovsk&;#253; A, Burgert L, et al. (2012) Antibacterial cotton fabrics treated with core-shell nanoparticles. Int J Biol Macromol 50:1245-1253. 55.Makepeace BL, Watt PJ, Heckels JE, Christodoulides M (2001) Interactions of Neisseria gonorrhoeae with mature human macrophage opacity proteins influence production of proinflammatory cytokines. Infect Immun 69: 1909-1913.
Hinokitiol Induces DNA Damage and Autophagy Followed by Cell Cycle Arrest and Senescence in Gefitinib-Resistant Lung Adenocarcinoma Cells
1.Liu F, Yu G, Wang G, Liu H, Wu X, et al. (2012) An NQO1-initiated and p53-independent apoptotic pathway determines the anti-tumor effect of tanshinone IIA against non-small cell lung cancer. PLoS One 7(7): e42138. 2.Ma L, Wen ZS, Liu Z, Hu Z, Ma J, et al. (2011) Overexpression and small molecule-triggered downregulation of CIP2A in lung cancer. PLoS One 6(5): e20159. 3.Roberts PJ, Stinchcombe TE (2013) KRAS mutation: should we test for it, and does it matter? J Clin Oncol 31(8): 1112-1121. 4.Wang J, Li ZH, White J, Zhang LB (2014) Lung cancer stem cells and implications for future therapeutics. Cell Biochem Biophys 69(3): 389-98. 5.Chen WJ, Ho CC, Chang YL, Chen HY, et al. (2014) Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun5: 3472. 6.Fukumasu H, Rochetti AL, Pires PR, Silva ER, et al. (2014) Constitutive androstane receptor ligands modulate the anti-tumor efficacy of Paclitaxel in non-small cell lung cancer cells. PLoS One 9(6): e99484. 7.Broet P, Dalmasso C, Tan EH, Alifano M, Zhang S, et al. (2011) Genomic profiles specific to patient ethnicity in lung adenocarcinoma. Clin Cancer Res 17(11): 3542-3550. 8.Lee H, Kim SJ, Jung KH, Son MK, Yan HH, et al. (2013) A novel imidazopyridine PI3K inhibitor with anticancer activity in non-small cell lung cancer cells. Oncol Rep 30(2): 863-869. 9.Brand TM, Iida M, Luthar N, Starr MM, Huppert EJ, et al. (2013) Nuclear EGFR as a molecular target in cancer. Radiother Oncol 108(3): 370-377. 10.Zhang W, Lei P, Dong X, Xu C (2014) The new concepts on overcoming drug resistance in lung cancer. Drug Des Devel Ther 8: 735-744. 11.Rogerio AP, Andrade EL, Leite DF, Figueiredo CP, Calixto JB (2009) Preventive and therapeutic anti-inflammatory properties of the sesquiterpene alpha-humulene in experimental airways allergic inflammation. Br J Pharmacol 158(4): 1074-1087. 12.Darmanin S, Wismayer PS, Camilleri Podesta MT, Micallef MJ, Buhagiar JA (2009) An extract from Ricinus communis L. leaves possesses cytotoxic properties and induces apoptosis in SK-MEL-28 human melanoma cells. Nat Prod Res 23(6): 561-571. 13.Bhalla Y, Gupta VK, Jaitak V (2013) Anticancer activity of essential oils: a review. J Sci Food Agric 93(15): 3643-53. 14.da Silva EB, Matsuo AL, Figueiredo CR, Chaves MH, Sartorelli P, et al. (2013) Chemical constituents and cytotoxic evaluation of essential oils from leaves of Porcelia macrocarpa (Annonaceae). Nat Prod Commun 8(2): 277-279. 15.Cai L, Ye H, Li X, Lin Y, Yu F, et al. (2013) Chemical constituents of volatile oil from Pyrolae herba and antiproliferative activity against SW1353 human chondrosarcoma cells. Int J Oncol 42(4): 1452-1458. 16.Su YC, Hsu KP, Wang EI, Ho CL (2012) Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. konishii from Taiwan. Nat Prod Commun 7(9): 1245-1247. 17.Seal S, Chatterjee P, Bhattacharya S, Pal D, Dasgupta S, et al. (2012) Vapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cells. PLoS One 7(10): e47014. 18.Liu CC, Lin CC, Chen WS, Chen HY, Chang PC, et al. (2006) CRSD: a comprehensive web server for composite regulatory signature discovery. Nucleic Acids Res 34(Web Server issue): W571-577. 19.Yen TB, Chang HT, Hsieh CC, Chang ST (2008) Antifungal properties of ethanolic extract and its active compounds from Calocedrus macrolepis var. formosana (Florin) heartwood. Bioresour Technol 99(11): 4871-7. 20.Sudo M, Chin TM, Mori S, Doan NB, Said JW, et al. (2013) Inhibiting proliferation of gefitinib-resistant, non-small cell lung cancer. Cancer Chemother Pharmacol 71(5): 1325-1334. 21.Chang TH, Tsai MF, Su KY, Wu SG, Huang CP, et al. (2011) Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. Am J Respir Crit Care Med 183(8): 1071-1079. 22.Schnekenburger M, Grandjenette C, Ghelfi J, Karius T, Foliguet B, et al. (2011) Sustained exposure to the DNA demethylating agent, 2''-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloid leukemia by promoting differentiation, senescence, and autophagy. Biochem Pharmacol 81(3): 364-378. 23.Gonz&;#225;lez-Rodr&;#237;guez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, et al. (2014) Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 17(5): e1179. 24.Lee J, Ryu SH, Kang SM, Chung WC, Gold KA, et al. (2011) Prevention of bronchial hyperplasia by EGFR pathway inhibitors in an organotypic culture model. Cancer Prev Res (Phila) 4(8): 1306-15. 25.Shih YH, Chang KW, Hsia SM, Yu CC, Fuh LJ, et al. (2013) In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Microbiol Res 168(5): 254-262. 26.Shih MF, Chen LY, Tsai PJ, Cherng JY (2012) In vitro and in vivo therapeutics of beta-thujaplicin on LPS-induced inflammation in macrophages and septic shock in mice. Int J Immunopathol Pharmacol 25(1): 39-48. 27.Morita Y, Matsumura E, Okabe T, Fukui T, Shibata M, et al. (2004) Biological activity of alpha-thujaplicin, the isomer of hinokitiol. Biol Pharm Bull 27(6): 899-902. 28.Komaki N, Watanabe T, Ogasawara A, Sato N, Mikami T, et al. (2008) Antifungal mechanism of hinokitiol against Candida albicans. Biol Pharm Bull 31(4): 735-737. 29.Budihas SR, Gorshkova I, Gaidamakov S, Wamiru A, Bona MK, et al. (2005) Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones. Nucleic Acids Res 33(4): 1249-1256. 30.Liu S, Yamauchi H (2009) p27-Associated G1 arrest induced by hinokitiol in human malignant melanoma cells is mediated via down-regulation of pRb, Skp2 ubiquitin ligase, and impairment of Cdk2 function. Cancer Lett 286(2): 240-249. 31.Liu S, Yamauchi H (2006) Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines. Biochem Biophys Res Commun 351(1): 26-32. 32.Lee YS, Choi KM, Kim W, Jeon YS, Lee YM, et al. (2013) Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment. J Nat Prod 76(12): 2195-202. 33.Shih YH, Chang KW, Hsia SM, Yu CC, Fuh LJ, et al. (2013) In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Microbiol Res 168(5): 254-62. 34.Huang MH, Lee JH, Chang YJ, Tsai HH, Lin YL, et al. (2013) MEK inhibitors reverse resistance in epidermal growth factor receptor mutation lung cancer cells with acquired resistance to gefitinib. Mol Oncol 7(1): 112-20. 35.La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Ardizzoni A, et al. (2009) Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines. Biochem Pharmacol 78(5):460-8. 36.Calderon-Montano JM, Burgos-Moron E, Orta ML, Pastor N, Perez-Guerrero C, et al. (2012) Guanidine-reactive agent phenylglyoxal induces DNA damage and cancer cell death. Pharmacol Rep 64(6): 1515-1525. 37.Hisatomi T, Sueoka-Aragane N, Sato A, Tomimasu R, Ide M, et al. (2011) NK314 potentiates antitumor activity with adult T-cell leukemia-lymphoma cells by inhibition of dual targets on topoisomerase II{alpha} and DNA-dependent protein kinase. Blood 117(13): 3575-3584. 38.Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, et al. (2008) GammaH2AX and cancer. Nat Rev Cancer 8(12): 957-967. 39.Podhorecka M, Skladanowski A, Bozko P (2010) H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. J Nucleic Acids 2010: 9. 40.Watrin E, Peters JM (2009) The cohesin complex is required for the DNA damage-induced G2/M checkpoint in mammalian cells. EMBO J 28(17): 2625-35. 41.Caron P, Aymard F, Iacovoni JS, Briois S, Canitrot Y, et al. (2012) Cohesin Protects Genes against cH2AX Induced by DNA Double-Strand Breaks. PLoS Genetics 8(1): e1002460. 42.Mah LJ, El-Osta AKaragiannis TC (2010) gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24(4): 679-686. 43.Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, et al. (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8(3): 311-23. 44.Shamim U, Hanif S, Albanyan A, Beck FW, Bao B, et al. (2012) Resveratrol-induced apoptosis is enhanced in low pH environments associated with cancer. J Cell Physiol 227(4): 1493-1500. 45.Chiu SJ, Lee YJ, Hsu TS, Chen WS (2009) Oxaliplatin-induced gamma-H2AX activation via both p53-dependent and -independent pathways but is not associated with cell cycle arrest in human colorectal cancer cells. Chem Biol Interact 182(2-3): 173-182. 46.Hebar A, Rutgen BC, Selzer E (2012) NVX-412, a new oncology drug candidate, induces S-phase arrest and DNA damage in cancer cells in a p53-independent manner. PLoS One 7(9): e45015. 47.Lam M, Carmichael AR, Griffiths HR (2012) An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression. PLoS One 7(6): e40152. 48.Rodriguez-Rocha H, Garcia-Garcia A, Panayiotidis MI, Franco R (2011) DNA damage and autophagy. Mutat Res 711(1-2): 158-166. 49.Polewska J, Skwarska A, Augustin E, Konopa J (2013) DNA-damaging imidazoacridinone C-1311 induces autophagy followed by irreversible growth arrest and senescence in human lung cancer cells. J Pharmacol Exp Ther 346(3): 393-405. 50.Young AR, Narita M, Ferreira M, Kirschner K, Sadaie M, et al. (2009) Autophagy mediates the mitotic senescence transition. Genes Dev 23(7): 798-803. 51.Luo Y, Zou P, Zou J, Wang J, Zhou D, et al. (2011) Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKα dependent manner. Exp Gerontol 46(11): 860-7. 52.Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24(22): 2463-79. 53.Szmulewitz RZ, Clark R, Lotan T, Otto K, Taylor Veneris J, et al. (2012) MKK4 suppresses metastatic colonization by multiple highly metastatic prostate cancer cell lines through a transient impairment in cell cycle progression. Int J Cancer 130(3): 509-20. 54.Kitagawa M, Niisato N, Shiozaki A, Ohta-Fujimoto M, Hosogi S, et al. (2013) A regulatory role of K(+)-Cl(-) cotransporter in the cell cycle progression of breast cancer MDA-MB-231 cells. Arch Biochem Biophys 539(1): 92-8. 55.Tang YC, Williams BR, Siegel JJ, Amon A (2011) Identification of aneuploidy-selective antiproliferation compounds. Cell 144(4): 499-512. 56.Cho JY, Kim AR, Jung JH, Chun T, Rhee MH, et al. (2004) Cytotoxic and pro-apoptotic activities of cynaropicrin, a sesquiterpene lactone, on the viability of leukocyte cancer cell lines. Eur J Pharmacol 492(2-3): 85-94. 57.Chowdhury G, Junnotula V, Daniels JS, Greenberg MM, Gates KS (2007) DNA strand damage product analysis provides evidence that the tumor cell-specific cytotoxin tirapazamine produces hydroxyl radical and acts as a surrogate for O(2). J Am Chem Soc 129(42): 12870-12877. 58.Weeks LD, Fu P, Gerson SL (2013) Uracil-DNA glycosylase expression determines human lung cancer cell sensitivity to pemetrexed. Mol Cancer Ther 12(10): 2248-60. 59.Chen HW, Lee JY, Huang JY, Wang CC, Chen WJ, et al. (2008) Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res 68(18): 7428-38. 60.Sugiyama A, Miyagi Y, Komiya Y, Kurabe N, Kitanaka C, et al. (2003) Forced expression of antisense 14-3-3beta RNA suppresses tumor cell growth in vitro and in vivo. Carcinogenesis 24(9): 1549-59. 61.Patan&;#232; S, Avnet S, Coltella N, Costa B, Sponza S, et al. (2006) MET overexpression turns human primary osteoblasts into osteosarcomas. Cancer Res 66(9): 4750-7. 62.White E, Lowe SW (2009) Eating to exit: autophagy-enabled senescence revealed. Genes Dev 23(7): 784-7. 63.Hiyoshi H, Abdelhady S, Segerstr&;#246;m L, Sveinbj&;#246;rnsson B, Nuriya M, et al. (2012) Quiescence and γH2AX in neuroblastoma are regulated by ouabain/Na,K-ATPase. Br J Cancer 106(11): 1807-15. 64.Shimizu M, Noda T, Yamano T, Yamada A, Morita, S (1993) Acute Oral Toxicity of Natural Food Additives in Mice and Rats. Seikatsu Eisei 37: 215-220. (Japanese) 65.Imai N, Doi Y, Nabae K, Tamano S, Hagiwara A, et al. (2006) Lack of hinokitiol (beta-thujaplicin) carcinogenicity in F344/DuCrj rats. J Toxicol Sci 31(4): 357-370.
|