(44.192.10.166) 您好!臺灣時間:2021/03/06 18:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉子寧
研究生(外文):Tzu-Ning Liu
論文名稱:腺酸活化蛋白激酶之泛素媒介調節影響酵母菌老老化之機制研究
論文名稱(外文):The Ubiquitin-mediated Regulation of AMPK in Chronological Aging
指導教授:羅翊禎
指導教授(外文):Yi-Chen Lo
口試委員:高承福董桂書謝淑貞
口試委員(外文):Cheng-Fu KaoKuei-Shu DongShu-Chen Hsieh
口試日期:2013-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:67
中文關鍵詞:Snf1AMPK複製存活壽命繼代存活壽命去泛素化酵素壓力力反應序列
外文關鍵詞:Snf1AMPKreplicative life span (RLS)chronological life span(CLS)Snf1deubiquitinases (DUBs)Stress responsive element (STRE)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
出芽酵母(Saccharomyces cerevisiae)為分子生物學中重要的模式生物之一。因其 生活史短,基因又具保守性,故適合進行行老老化機制之研究。本實驗以驗證 Ubp8 及 Ubp10 調控 Snf1 的蛋白質降降解並影響老老化性狀狀的路路徑為目標,進行行研究。根據遺 傳資料料庫分析的結果,推測與高等動物具高度度保守性之酵母菌腺&;#33527;酸活化蛋白激 &;#37238;(AMPK) Snf1 可能為 Ubp8 及 Ubp10 此兩兩個去泛素化酵素 (deubiquitinases, DUBs) 的目標蛋白質。Snf1/AMPK 在細胞中扮演能量量調控的主要角色。正常情況下,Snf1 並不不活化;當環境中葡萄糖糖耗盡,Snf1 被上游激&;#37238;活化,透過改變染色質結構、 轉錄錄因子活化、轉錄錄作用調控等方式,進而增加細胞對其他碳源的利利用及對逆境 的耐受性。由西方墨點法的結果,發現 ubp8Δubp10Δ 細胞中的 Snf1 總量量因為 DUBs 的缺乏而有明顯減少的現象,但其 mRNA 表現並無受到阻斷;而在兩兩個 DUBs中, 又以 Ubp8 為主要影響 Snf1 蛋白質穩定性的酵素;在老老化相關路路徑上,此調控主要影響對氧化壓力力以及繼代存活壽命(CLS)的性狀狀,在複製存活壽命(RLS)上則沒有明顯差異異;此外,此突變株的再生能力力異異於目前所知的由基因不不穩定造成的癌化突變。進一步探討 Snf1 的泛素化修飾影響其磷酸化的結果顯示:在 ubp8Δubp10Δ 突變細胞的 Snf1總量量雖然減少,但有高度度磷酸化的現象,而此現象可能導致 Snf1對於壓力力反應序列列(Stress responsive element, STRE)相關之轉錄錄作用的調控,增加 ubp8Δubp10Δ 突變細胞對於逆境的耐受性。透過已知的 Snf1 調控機制,我們歸納出數數個影響 Snf1 高度度磷酸化可能的機制,以及其下游調控的蛋白影響逆境耐受的可能性。

Ubiquitin is a small regulatory protein that is expressed ubiquitously in eukaryoticorganisms. Conjugation of ubiquitins to proteins directs them to compartments in the cell, including the proteasome, which destroys and recycles proteins. Based on the genetic interaction analysis, I purposed that Snf1, highly conserved yeast AMPK, may be a target by both of Ubp8 and Ubp10, two highly conserved ubiquitin-specific proteases (DUBs). Snf1 plays an important role in modulating energy status in the cell, which is usually inactive. Only when glucose depleted can Snf1 be activated by its upstream kinases. Via changing chromatin structures, activating transcription factors and modulating transcription, Snf1 enhances the abilities of the cell to use alternative carbon sources and resist stresses. In this study, I aimed to reveal the pathway of the ubiquitin-mediated Snf1 regulation. Western blot analyses demonstrated that the level of Snf1 was dramatically decreased in ubp8&;#8710;ubp10&;#8710; cells, but the mRNA level detection did not change significantly. Snf1 has been shown to be involved in aging processes; I first examined the possible roles of Ubp8 and Ubp10 in yeast aging. The deletion of UBP8 and UBP10 affected the cellular resistance to oxidative stresses and chronological life span (CLS) phenotype, possibly due to the decreased Snf1 protein level; while there was no significant change in replicative life span (RLS). In addition, the ubp8&;#8710;ubp10&;#8710; cells exhibited regrowth phenotype which is known to be induce accumulated ROS and mutagenesis; however, in those cells I found no evidence of ROS-mediated genome instabilities. Further investigation revealed that despite the protein level was decreased, Snf1 was hyperphosphorylated in ubp8&;#8710;ubp10&;#8710; cells. The ubp8&;#8710;ubp10&;#8710; cells was able to grow on non-fermentable carbon sources but was not the SNF1 deleted cells. Taken together, my results suggest that Snf1 is likely protected
by both Ubp8 and Ubp10 from proteasome-mediated degradation, which diminishes thecellular level of Snf1. Interestingly, the remaining Snf1 in in ubp8&;#8710;ubp10&;#8710; cells is hyperphosphorylated via an unknown mechanism. I propose that the hyperphosphorylated Snf1 in ubp8&;#8710;ubp10&;#8710; cells are able to activate the stress-responsive (STRE) transcription to maintain the cellular resistance to stresses. The potential pathways that may participate in the hyperphosphorylaiton of Snf1 are discussed.

口試委員審定書 ............................................................................................ i 謝誌 ............................................................................................................... ii 摘要 ..............................................................................................................iii
Abstract ....................................................................................................... iv Contents....................................................................................................... vi List of Figures ............................................................................................. ix List of Tables ................................................................................................ x
Chapter I: Introduction .............................................................................. 1
1.1 Budding yeast as a model organism.......... ..........................................1 1.2 Ubiquitin-mediated regulation .............................................................1 1.2.1 The ubiquitin-proteasome system...................... .............................1 1.2.2 Deubiquitinases: Ubp8 and Ubp10......................................................2 1.3 Structure and regulation of Snf1............................................................3 1.3.1 AMPK..................................................................................................3 1.3.2 Yeast AMPK: Snf1 complex..................................................................4 1.3.3 The regulation of Snf1 complex ....................................... ..................4 1.4 Aging in yeast ........................................................................................5 1.4.1 Replicative life span ............................................................................5 1.4.2 Chronological life span.......................................................................6
1.4.3 Adaptive regrowth .............................................................................7 1.4.4 The UPS in aging................................................................................7 1.4.5 The role of Snf1 complex in RLS.........................................................7 1.4.6 The role of Snf1 complex in CLS........................................................8
1.5 Objective of this study..........................................................................9
Chapter II: Materials and methods.........................................................10
2.1 Materials..........................................................................................10
2.1.1 Yeast strains .................................................................................10 2.1.2 Plasmids.........................................................................................10 2.1.3 Medium..........................................................................................11
2.2 Methods .............................................................................................13
2.2.1 The stability of Snf1-TAP at exponential stage ................................13 2.2.2 The mRNA expression levels of SNF1 in the mutants .......................14 2.2.3 The levels of FLAG-Snf1 protein turn-over .......................................14 2.2.4 The purification of Ub-conjugated proteins .....................................15 2.2.5 Spotting assay for alternative carbon sources and oxidative stresses.........15
2.2.6 Replicative lifespan measuremnt.......................................................15 2.2.7 Chronological lifespan measurement ..............................................16
Chapter III: Results .................................................................................. 17
3.1 Snf1 is the potential target of both Ubp8 and Ubp10...........................17 3.2 Functional interaction between Snf1 and Ubp8/Ubp10 .......................19
3.3 To determine the effect of decreased Snf1 on physiological functions...22
3.3.1 The ability of using alternative carbon sources ................................22 3.3.2 Replicative aging .............................................................................24 3.3.3 Chronological aging ........................................................................24
3.4 The role of Snf1 during aging ..............................................................25
3.4.1 The Snf1 protein levels during CLS ...................................................25 3.4.2 The effect of Snf1 on calorie restriction ............................................27 3.4.3 The stress resistance of aging cells in the absence of Ubp8/Ubp10 ..27 3.4.4 The regrowth phenotype .................... ...........................................28 3.4.5 The phosphorylation of Snf1 in DUB-deficient cells ................ .........31
Chapter IV: Discussion ............................................................................. 33
4.1 The decreased level of Snf1............................. ....................................33 4.2 The decreased Snf1 protein level and aging phenotype .......................34 4.3 AMPK activity in CR pathway.................. ..............................................35 4.4 Hyperphosphorylation of AMPK ...........................................................36 4.5 Furture work........................... ............................................................37
Chapter V: References .............................................................................. 39 Appendix ................................................................................................. 44

Al-Hakim, A. K.; Zagorska, A.; Chapman, L.; Deak, M.; Peggie, M.; Alessi, D. R., Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J. 2008, 411, 249-60.
Amerik, A. Y.; Li, S. J.; Hochstrasser, M., Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Biol Chem. 2000, 381, 981-92.
Ashrafi, K.; Lin, S. S.; Manchester, J. K.; Gordon, J. I., Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes &; development 2000, 14, 1872-85.
Beall, C.; Piipari, K.; Al-Qassab, H.; Smith, M. A.; Parker, N.; Carling, D.; Viollet, B.; Withers, D. J.; Ashford, M. L., Loss of AMP-activated protein kinase alpha2 subunit in mouse beta-cells impairs glucose-stimulated insulin secretion and inhibits their sensitivity to hypoglycaemia. Biochem J. 2010, 429, 323-33.
Canto, C.; Auwerx, J., Calorie restriction: is AMPK a key sensor and effector? Physiology (Bethesda). 2011, 26, 214-24.
Dasuri, K.; Zhang, L.; Ebenezer, P.; Liu, Y.; Fernandez-Kim, S. O.; Keller, J. N., Aging and dietary restriction alter proteasome biogenesis and composition in the brain and liver. Mechanisms of ageing and development 2009, 130, 777-83.
Davies, S. P.; Helps, N. R.; Cohen, P. T.; Hardie, D. G., 5''-AMP inhibits
dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett. 1995, 377, 421-5.
De Wever, V.; Reiter, W.; Ballarini, A.; Ammerer, G.; Brocard, C., A dual role for PP1
in shaping the Msn2-dependent transcriptional response to glucose starvation.
EMBO J. 2005, 24, 4115-23.
Fabrizio, P.; Battistella, L.; Vardavas, R.; Gattazzo, C.; Liou, L. L.; Diaspro, A.; Dossen, J. W.; Gralla, E. B.; Longo, V. D., Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol. 2004, 166, 1055-67.
Fabrizio, P.; Gattazzo, C.; Battistella, L.; Wei, M.; Cheng, C.; McGrew, K.; Longo, V.
D., Sir2 blocks extreme life-span extension. Cell. 2005, 123, 655-67.
Finley, D., Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem. 2009, 78, 477-513.
Fontana, L.; Partridge, L.; Longo, V. D., Extending healthy life span--from yeast to humans. Science. 2010, 328, 321-6.
Forsburg, S. L., The art and design of genetic screens: yeast. Nat Rev Genet. 2001, 2, 659-68.
Fukuyama, M.; Sakuma, K.; Park, R.; Kasuga, H.; Nagaya, R.; Atsumi, Y.; Shimomura, Y.; Takahashi, S.; Kajiho, H.; Rougvie, A.; Kontani, K.; Katada, T., C. elegans AMPKs promote survival and arrest germline development during nutrient stress. Biol Open. 2012, 1, 929-36.
Funakoshi, M.; Tsuda, M.; Muramatsu, K.; Hatsuda, H.; Morishita, S.; Aigaki, T., A gain-of-function screen identifies wdb and lkb1 as lifespan-extending genes in Drosophila. Biochem Biophys Res Commun. 2011, 405, 667-72.
Guo, Z.; Adomas, A. B.; Jackson, E. D.; Qin, H.; Townsend, J. P., SIR2 and other genes are abundantly expressed in long-lived natural segregants for replicative aging of the budding yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2011, 11, 345-55.
Ha, C. W.; Huh, W. K., Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2011, 39, 1336-50.
Hardie, D. G., AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007, 8, 774-85.
Henry, K. W.; Wyce, A.; Lo, W. S.; Duggan, L. J.; Emre, N. C.; Kao, C. F.; Pillus, L.; Shilatifard, A.; Osley, M. A.; Berger, S. L., Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 2003, 17, 2648-63.
Hong, S. P.; Carlson, M., Regulation of snf1 protein kinase in response to environmental stress. J Biol Chem. 2007, 282, 16838-45.
Hong, S. P.; Leiper, F. C.; Woods, A.; Carling, D.; Carlson, M., Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A. 2003, 100, 8839-43.
Hong, S. P.; Momcilovic, M.; Carlson, M., Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase alpha as Snf1-activating kinases in yeast. J Biol Chem. 2005, 280, 21804-9.
Hu, F.; Alcasabas, A. A.; Elledge, S. J., Asf1 links Rad53 to control of chromatin assembly. Genes Dev. 2001, 15, 1061-6.
Kaeberlein, M.; McVey, M.; Guarente, L., The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999, 13, 2570-80.
Kaeberlein, M.; Powers, R. W., 3rd; Steffen, K. K.; Westman, E. A.; Hu, D.; Dang, N.; Kerr, E. O.; Kirkland, K. T.; Fields, S.; Kennedy, B. K., Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 2005, 310, 1193-6.
Kahana, A.; Gottschling, D. E., DOT4 links silencing and cell growth in Saccharomyces cerevisiae. Mol Cell Biol. 1999, 19, 6608-20.
Katz, E. J.; Isasa, M.; Crosas, B., A new map to understand deubiquitination. Biochem Soc Trans. 2010, 38, 21-8.
Kruegel, U.; Robison, B.; Dange, T.; Kahlert, G.; Delaney, J. R.; Kotireddy, S.; Tsuchiya, M.; Tsuchiyama, S.; Murakami, C. J.; Schleit, J.; Sutphin, G.; Carr, D.; Tar, K.; Dittmar, G.; Kaeberlein, M.; Kennedy, B. K.; Schmidt, M., Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet. 2011, 7, e1002253.
Lin, S. J., Requirement of NAD and SIR2 for Life-Span Extension by Calorie Restriction in Saccharomyces cerevisiae. Science. 2000, 289, 2126-2128.
Lin, S. J.; Kaeberlein, M.; Andalis, A. A.; Sturtz, L. A.; Defossez, P. A.; Culotta, V. C.; Fink, G. R.; Guarente, L., Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature. 2002, 418, 344-8.
Lin, S. S.; Manchester, J. K.; Gordon, J. I., Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem. 2003, 278, 13390-7.
Longo, V. D.; Gralla, E. B.; Valentine, J. S., Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. The Journal of biological chemistry 1996, 271, 12275-80.
Longo, V. D.; Shadel, G. S.; Kaeberlein, M.; Kennedy, B., Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 2012, 16, 18-31.
Lorenz, D. R.; Cantor, C. R.; Collins, J. J., A network biology approach to aging in yeast. Proc Natl Acad Sci U S A. 2009, 106, 1145-50.
Lu, J. Y.; Lin, Y. Y.; Sheu, J. C.; Wu, J. T.; Lee, F. J.; Chen, Y.; Lin, M. I.; Chiang, F. T.; Tai, T. Y.; Berger, S. L.; Zhao, Y.; Tsai, K. S.; Zhu, H.; Chuang, L. M.; Boeke, J. D., Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell. 2011, 146, 969-79.
Madia, F.; Gattazzo, C.; Wei, M.; Fabrizio, P.; Burhans, W. C.; Weinberger, M.; Galbani, A.; Smith, J. R.; Nguyen, C.; Huey, S.; Comai, L.; Longo, V. D., Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. J Cell Biol. 2008, 180, 67-81.
Mair, W.; Morantte, I.; Rodrigues, A. P.; Manning, G.; Montminy, M.; Shaw, R. J.; Dillin, A., Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature. 2011, 470, 404-8.
Mayer, F. V.; Heath, R.; Underwood, E.; Sanders, M. J.; Carmena, D.; McCartney, R.
R.; Leiper, F. C.; Xiao, B.; Jing, C.; Walker, P. A.; Haire, L. F.; Ogrodowicz, R.;
Martin, S. R.; Schmidt, M. C.; Gamblin, S. J.; Carling, D., ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab. 2011, 14, 707-14.
Mersman, D. P.; Du, H. N.; Fingerman, I. M.; South, P. F.; Briggs, S. D., Polyubiquitination of the demethylase Jhd2 controls histone methylation and gene expression. Genes Dev. 2009, 23, 951-62.
Mitchelhill, K. I.; Stapleton, D.; Gao, G.; House, C.; Michell, B.; Katsis, F.; Witters, L. A.; Kemp, B. E., Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem. 1994, 269, 2361-4.

Nath, N.; McCartney, R. R.; Schmidt, M. C., Yeast Pak1 kinase associates with and activates Snf1. Mol Cell Biol. 2003, 23, 3909-17.
Palacios, O. M.; Carmona, J. J.; Michan, S.; Chen, K. Y.; Manabe, Y.; Ward, J. L., 3rd; Goodyear, L. J.; Tong, Q., Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY). 2009, 1, 771-83.
Portillo, F.; Mulet, J. M.; Serrano, R., A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett. 2005, 579, 512-6.
Ptacek, J.; Devgan, G.; Michaud, G.; Zhu, H.; Zhu, X.; Fasolo, J.; Guo, H.; Jona, G.; Breitkreutz, A.; Sopko, R.; McCartney, R. R.; Schmidt, M. C.; Rachidi, N.; Lee, S. J.; Mah, A. S.; Meng, L.; Stark, M. J.; Stern, D. F.; De Virgilio, C.; Tyers, M.; Andrews, B.; Gerstein, M.; Schweitzer, B.; Predki, P. F.; Snyder, M., Global analysis of protein phosphorylation in yeast. Nature 2005, 438, 679-84.
Rubenstein, E. M.; McCartney, R. R.; Zhang, C.; Shokat, K. M.; Shirra, M. K.; Arndt, K. M.; Schmidt, M. C., Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem. 2008, 283, 222-30.
Sanders, M. J.; Grondin, P. O.; Hegarty, B. D.; Snowden, M. A.; Carling, D., Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J. 2007, 403, 139-48.
Santangelo, G. M., Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006, 70, 253-82.
Schmidt, M. C.; McCartney, R. R., beta-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J. 2000, 19, 4936-43.
Schulze, J. M.; Hentrich, T.; Nakanishi, S.; Gupta, A.; Emberly, E.; Shilatifard, A.; Kobor, M. S., Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123. Genes Dev. 2011, 25, 2242-7.
Steffen, K. K.; Kennedy, B. K.; Kaeberlein, M., Measuring replicative life span in the budding yeast. J Vis Exp. 2009.
Steffen, K. K.; MacKay, V. L.; Kerr, E. O.; Tsuchiya, M.; Hu, D.; Fox, L. A.; Dang, N.; Johnston, E. D.; Oakes, J. A.; Tchao, B. N.; Pak, D. N.; Fields, S.; Kennedy, B. K.; Kaeberlein, M., Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell. 2008, 133, 292-302.
Sutherland, C. M.; Hawley, S. A.; McCartney, R. R.; Leech, A.; Stark, M. J.; Schmidt, M. C.; Hardie, D. G., Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol. 2003, 13, 1299-305.
Tabba, S.; Mangat, S.; McCartney, R.; Schmidt, M. C., PP1 phosphatase-binding motif in Reg1 protein of Saccharomyces cerevisiae is required for interaction with both the PP1 phosphatase Glc7 and the Snf1 protein kinase. Cell Signal. 2010, 22, 1013-21.
Vernace, V. A.; Arnaud, L.; Schmidt-Glenewinkel, T.; Figueiredo-Pereira, M. E., Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J. 2007, 21, 2672-82.
Vincent, O.; Townley, R.; Kuchin, S.; Carlson, M., Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev. 2001, 15, 1104-14.
Weinberger M, M. A., Caroll T, Marks L, Yang H, Zhang Z, Ludovico P, Burhans WC., Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging. 2010, 2.
Williams, D. S.; Cash, A.; Hamadani, L.; Diemer, T., Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell. 2009, 8, 765-8.
Wilson, M. A.; Koutelou, E.; Hirsch, C.; Akdemir, K.; Schibler, A.; Barton, M. C.; Dent, S. Y., Ubp8 and SAGA regulate Snf1 AMP kinase activity. Mol Cell Biol. 2011, 31, 3126-35.
Yaglom, J.; Linskens, M. H.; Sadis, S.; Rubin, D. M.; Futcher, B.; Finley, D., p34Cdc28-mediated control of Cln3 cyclin degradation. Mol Cell Biol. 1995, 15, 731-41.
Young, E. T.; Zhang, C.; Shokat, K. M.; Parua, P. K.; Braun, K. A., The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA Polymerase II activity and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J Biol Chem. 2012.
Zungu, M.; Schisler, J. C.; Essop, M. F.; McCudden, C.; Patterson, C.; Willis, M. S., Regulation of AMPK by the ubiquitin proteasome system. Am J Pathol. 2011, 178, 4-11.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔