劉秀琴 2012 能量限制對DNA修復缺陷細胞基因穩定性之影響 國立台灣大學食品科技研究所碩士論文。台北。羅云君 2013 熱量限制增加錯誤配對修復缺陷細胞於老化期間基因的穩定性 國立台灣大學食品科技研究所碩士論文。台北。Andersen, P. L.; Xu, F.; Ziola, B.; McGregor, W. G.; Xiao, W. Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites. Mol. Cell. Biol.2011, 22, 2373-2383.
Andziak, B.; O''Connor, T. P.; Qi, W.; DeWaal, E. M.; Pierce, A.; Chaudhuri, A. R.; Van Remmen, H.; Buffenstein, R. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging cell 2006, 5, 463-471.
Aparicio, O. M.; Billington, B. L.; Gottschling, D. E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 1991, 66, 1279-1287.
Boland, C. R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073-2087 e2073.
Botstein, D.; Chervitz, S. A.; Cherry, J. M. Yeast as a model organism. Science 1997, 277, 1259-1260.
Broach, J. R. Ras-regulated signaling processes in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 1991, 1, 370-377.
Cabelof, D. C.; Yanamadala, S.; Raffoul, J. J.; Guo, Z.; Soofi, A.; Heydari, A. R. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA repair 2003, 2, 295-307.
Chen, C.; Kolodner, R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 1999, 23, 81-85.
Colman, R. J.; Anderson, R. M.; Johnson, S. C.; Kastman, E. K.; Kosmatka, K. J.; Beasley, T. M.; Allison, D. B.; Cruzen, C.; Simmons, H. A.; Kemnitz, J. W.; Weindruch, R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009, 325, 201-204.
Cooke, M. S.; Evans, M. D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003, 17, 1195-1214.
Costanzo, M.; Baryshnikova, A.; Bellay, J.; Kim, Y.; Spear, E. D.; Sevier, C. S.; Ding, H.; Koh, J. L.; Toufighi, K.; Mostafavi, S.; Prinz, J.; St Onge, R. P.; VanderSluis, B.; Makhnevych, T.; Vizeacoumar, F. J.; Alizadeh, S.; Bahr, S.; Brost, R. L.; Chen, Y.; Cokol, M.; Deshpande, R.; Li, Z.; Lin, Z. Y.; Liang, W.; Marback, M.; Paw, J.; San Luis, B. J.; Shuteriqi, E.; Tong, A. H.; van Dyk, N.; Wallace, I. M.; Whitney, J. A.; Weirauch, M. T.; Zhong, G.; Zhu, H.; Houry, W. A.; Brudno, M.; Ragibizadeh, S.; Papp, B.; Pal, C.; Roth, F. P.; Giaever, G.; Nislow, C.; Troyanskaya, O. G.; Bussey, H.; Bader, G. D.; Gingras, A. C.; Morris, Q. D.; Kim, P. M.; Kaiser, C. A.; Myers, C. L.; Andrews, B. J.; Boone, C. The genetic landscape of a cell. Science 2010, 327, 425-431.
Cybulski, N.; Hall, M. N. TOR complex 2: a signaling pathway of its own. Trends. Biochem. Sci. 2009, 34, 620-627.
De Virgilio, C.; Loewith, R. The TOR signalling network from yeast to man. Int. J. Biochem. Cell Biol. 2006, 38, 1476-1481.
Fabrizio, P.; Longo, V. D. The chronological life span of Saccharomyces cerevisiae. Methods Mol. Biol. 2007, 371, 89-95.
Fink, D.; Nebel, S.; Aebi, S.; Zheng, H.; Cenni, B.; Nehme, A.; Christen, R. D.; Howell, S. B. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 1996, 56, 4881-4886.
Fishel, R.; Lescoe, M. K.; Rao, M. R.; Copeland, N. G.; Jenkins, N. A.; Garber, J.; Kane, M.; Kolodner, R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993, 75, 1027-1038.
Fontana, L.; Partridge, L.; Longo, V. D. Extending healthy life span--from yeast to humans. Science 2010, 328, 321-326.
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol.1956, 11, 298-300.
Heilbronn, L. K.; Ravussin, E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am. J. Clin. Nutr. 2003, 78, 361-369.
Hong, Z.; Jiang, J.; Hashiguchi, K.; Hoshi, M.; Lan, L.; Yasui, A. Recruitment of mismatch repair proteins to the site of DNA damage in human cells. J. Cell Sci. 2008, 121, 3146-3154.
Johnson, R. E.; Kovvali, G. K.; Guzder, S. N.; Amin, N. S.; Holm, C.; Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J. Biol. Chem. 1996, 271, 27987-27990.
Jones-Engel, L.; May, C. C.; Engel, G. A.; Steinkraus, K. A.; Schillaci, M. A.; Fuentes, A.; Rompis, A.; Chalise, M. K.; Aggimarangsee, N.; Feeroz, M. M.; Grant, R.; Allan, J. S.; Putra, A.; Wandia, I. N.; Watanabe, R.; Kuller, L.; Thongsawat, S.; Chaiwarith, R.; Kyes, R. C.; Linial, M. L. Diverse contexts of zoonotic transmission of simian foamy viruses in Asia. Emerg. Infect. Dis. 2008, 14, 1200-1208.
Kaeberlein, M. Lessons on longevity from budding yeast. Nature 2010, 464, 513-519.
Kaeberlein, M.; Powers, R. W., 3rd; Steffen, K. K.; Westman, E. A.; Hu, D.; Dang, N.; Kerr, E. O.; Kirkland, K. T.; Fields, S.; Kennedy, B. K. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 2005, 310, 1193-1196.
Karathia, H.; Vilaprinyo, E.; Sorribas, A.; Alves, R. Saccharomyces cerevisiae as a model organism: a comparative study. PloS one 2011, 6, e16015.
Koltin, Y.; Faucette, L.; Bergsma, D. J.; Levy, M. A.; Cafferkey, R.; Koser, P. L.; Johnson, R. K.; Livi, G. P. Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol. cellular Biol. 1991, 11, 1718-1723.
Lambert, A. J.; Merry, B. J. Effect of caloric restriction on mitochondrial reactive oxygen species production and bioenergetics: reversal by insulin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R71-79.
Lehner, K.; Jinks-Robertson, S. The mismatch repair system promotes DNA polymerase zeta-dependent translesion synthesis in yeast. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 5749-5754.
Li, G. M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008, 18, 85-98.
Linnane, A. W.; Kios, M.; Vitetta, L. Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology 2007, 8, 445-467.
Lisanti, M. P.; Martinez-Outschoorn, U. E.; Lin, Z.; Pavlides, S.; Whitaker-Menezes, D.; Pestell, R. G.; Howell, A.; Sotgia, F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer". Cell cycle 2011, 10, 2440-2449.
Loewith, R.; Jacinto, E.; Wullschleger, S.; Lorberg, A.; Crespo, J. L.; Bonenfant, D.; Oppliger, W.; Jenoe, P.; Hall, M. N. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 2002, 10, 457-468.
Lorenz, M. C.; Heitman, J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J. Biol. Chem. 1995, 270, 27531-27537.
Lu, J. Y.; Lin, Y. Y.; Sheu, J. C.; Wu, J. T.; Lee, F. J.; Chen, Y.; Lin, M. I.; Chiang, F. T.; Tai, T. Y.; Berger, S. L.; Zhao, Y.; Tsai, K. S.; Zhu, H.; Chuang, L. M.; Boeke, J. D. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 2011, 146, 969-979.
Lynch, H. T.; Smyrk, T. C.; Cavalieri, J.; Lynch, J. F. Identification of an HNPCC family. Am. J. Gastroenterol. 1994, 89, 605-609.
Madia, F.; Gattazzo, C.; Wei, M.; Fabrizio, P.; Burhans, W. C.; Weinberger, M.; Galbani, A.; Smith, J. R.; Nguyen, C.; Huey, S.; Comai, L.; Longo, V. D. Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. J. Cell Biol. 2008, 180, 67-81.
McCay, C. M.; Crowell, M. F.; Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 1989, 5, 155-171; discussion 172.
Mesquita, A.; Weinberger, M.; Silva, A.; Sampaio-Marques, B.; Almeida, B.; Leao, C.; Costa, V.; Rodrigues, F.; Burhans, W. C.; Ludovico, P. Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 15123-15128.
Miyaki, M.; Konishi, M.; Muraoka, M.; Kikuchi-Yanoshita, R.; Tanaka, K.; Iwama, T.; Mori, T.; Koike, M.; Ushio, K.; Chiba, M.; et al. Germ line mutations of hMSH2 and hMLH1 genes in Japanese families with hereditary nonpolyposis colorectal cancer (HNPCC): usefulness of DNA analysis for screening and diagnosis of HNPCC patients. J. Mol. Med. 1995, 73, 515-520.
Modrich, P. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 1991, 25, 229-253.
Molin, M.; Yang, J.; Hanzen, S.; Toledano, M. B.; Labarre, J.; Nystrom, T. Life span extension and H2O2 resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Mol. Cell 2011, 43, 823-833.
Ni, T. T.; Marsischky, G. T.; Kolodner, R. D. MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol. Cell 1999, 4, 439-444.
Onoda, F.; Seki, M.; Wang, W.; Enomoto, T. The hyper unequal sister chromatid recombination in an sgs1 mutant of budding yeast requires MSH2. DNA repair 2004, 3, 1355-1362.
Pan, Y.; Schroeder, E. A.; Ocampo, A.; Barrientos, A.; Shadel, G. S. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab. 2011, 13, 668-678.
Pan, Y.; Shadel, G. S. Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 2009, 1, 131-145.
Pedruzzi, I.; Dubouloz, F.; Cameroni, E.; Wanke, V.; Roosen, J.; Winderickx, J.; De Virgilio, C. TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol. Cell 2003, 12, 1607-1613.
Percesepe, A.; Anti, M.; Marra, G.; Roncucci, L.; Pahor, M.; Coco, C.; Armelao, F.; Gasbarrini, G.; Ponz de Leon, M. Role of clinical criteria in the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC): results of a multivariate analysis. International journal of cancer. Int. J. Cancer 1994, 58, 799-802.
Reinke, A.; Chen, J. C.; Aronova, S.; Powers, T. Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J. Biol. Chem. 2006, 281, 31616-31626.
Rohde, J. R.; Bastidas, R.; Puria, R.; Cardenas, M. E. Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr. Opin. Microbiol. 2008, 11, 153-160.
Schulz, T. J.; Zarse, K.; Voigt, A.; Urban, N.; Birringer, M.; Ristow, M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell metabolism 2007, 6, 280-293.
Sharifpoor, S.; van Dyk, D.; Costanzo, M.; Baryshnikova, A.; Friesen, H.; Douglas, A. C.; Youn, J. Y.; VanderSluis, B.; Myers, C. L.; Papp, B.; Boone, C.; Andrews, B. J. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res. 2012, 22, 791-801.
Shen, Z.; Denison, K.; Lobb, R.; Gatewood, J. M.; Chen, D. J. The human and mouse homologs of the yeast RAD52 gene: cDNA cloning, sequence analysis, assignment to human chromosome 12p12.2-p13, and mRNA expression in mouse tissues. Genomics 1995, 25, 199-206.
Sinicrope, F. A.; Sargent, D. J. Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clin. Cancer Res. 2012, 18, 1506-1512.
Spell, R. M.; Jinks-Robertson, S. Role of mismatch repair in the fidelity of RAD51- and RAD59-dependent recombination in Saccharomyces cerevisiae. Genetics 2003, 165, 1733-1744.
Steinkraus, K. A.; Kaeberlein, M.; Kennedy, B. K. Replicative aging in yeast: the means to the end. Annu. Rev. Cell Dev. Biol. 2008, 24, 29-54.
Storchova, Z.; Vondrejs, V. Starvation-associated mutagenesis in yeast Saccharomyces cerevisiae is affected by Ras2/cAMP signaling pathway. Mutat. Res. 1999, 431, 59-67.
Swinnen, E.; Wanke, V.; Roosen, J.; Smets, B.; Dubouloz, F.; Pedruzzi, I.; Cameroni, E.; De Virgilio, C.; Winderickx, J. Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div. 2006, 1, 3.
Tamanoi, F. Ras signaling in yeast. Genes &; cancer 2011, 2, 210-215.
Tay, Y. D.; Sidebotham, J. M.; Wu, L. Mph1 requires mismatch repair-independent and -dependent functions of MutSalpha to regulate crossover formation during homologous recombination repair. Nucleic Acids Rese. 2010, 38, 1889-1901.
Vijg, J.; Dolle, M. E. Large genome rearrangements as a primary cause of aging. Mech. Ageing Dev. 2002, 123, 907-915.
Von Borstel, R. Measuring spontaneous mutation rates in yeast. Methods Cell. Biol. 1978, 20, 1-24.
Wei, M.; Fabrizio, P.; Hu, J.; Ge, H.; Cheng, C.; Li, L.; Longo, V. D. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. 2008, 4, e13.
Wei, M.; Fabrizio, P.; Madia, F.; Hu, J.; Ge, H.; Li, L. M.; Longo, V. D. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet. 2009, 5, e1000467.
Weinberger, M.; Mesquita, A.; Caroll, T.; Marks, L.; Yang, H.; Zhang, Z.; Ludovico, P.; Burhans, W. C. Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging 2010, 2, 709-726.
Weindruch, R.; Walford, R. L.; Fligiel, S.; Guthrie, D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J. Nutr.1986, 116, 641-654.
Wullschleger, S.; Loewith, R.; Hall, M. N. TOR signaling in growth and metabolism. Cell 2006, 124, 471-484.
Yancik, R.; Ries, L. A. Aging and cancer in America. Demographic and epidemiologic perspectives. Hematol. Oncol. Clin. North Am. 2000, 14, 17-23.