(18.210.12.229) 您好!臺灣時間:2021/03/01 06:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張家綺
研究生(外文):Jia-Ci Chang
論文名稱:TOR1基因調控錯誤配對修復缺陷細胞於老化期間的基因穩定性
論文名稱(外文):TOR1 Gene Regulates Genome Stability in Mismatch Repair Defected Cells during Chronological Aging in Saccharomyces cerevisiae
指導教授:羅翊禎
口試委員:謝淑貞董桂書高承福
口試日期:2014-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:53
中文關鍵詞:老化錯誤配對修復系統TOR1酵母菌熱量限制
外文關鍵詞:agingmismatch repairTOR1calorie restrictionSaccharomyces cerevisiae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
老化會伴隨著細胞DNA受損或突變並提高罹癌的風險。先前研究已發現,將培養液中的葡萄糖濃度度由2%降低至0.5%的熱量限制培養方式,能減少錯誤配對修復系統缺陷細胞 (Mismatch repair, MMR) 的突變率,增加 HOM3基因穩定性,使細胞壽命得以延長。但熱量限制是否透過抑制TOR (Target of rapamycin) 和RAS的訊息傳遞路徑,而調控細胞內基因表現,提升細胞對抗活性氧屬 (Reactive oxygen species, ROS) 和環境壓力的能力,影響細胞對於DNA修復能力的影響仍需深入探討。首先,本研究發現,2%葡萄糖濃度 (正常) 培養下,老化期間MMR缺陷的msh2&;#8710; 和msh3&;#8710; 細胞剔除TOR1基因後,可達到與熱量限制降低突變率維持細胞存活數,延長細胞壽命的成效,因此,我們推論熱量限制可透過TOR路徑延長msh2&;#8710;和msh3&;#8710;的細胞壽命並增加基因穩定性,但tor1&;#8710;msh2&;#8710;msh3&;#8710;在熱量限制仍比正常培養條件下有明顯降低老化期間的細胞突變率的效果。其次,我們發現熱量限制培養條件可以顯著的降低細胞中的 .O2-含量,且熱量限制能使SOD1、CTT1和TSA1等,與抗氧化相關的基因表現量增加。更詳細探討發現,培養一日後,正常培養條件下僅有ras2Δ .O2- 含量顯著高於熱量限制培養條件,推論在第一日的熱量限制可能藉由抑制RAS途徑降低 .O2-的產生,而培養至第五日時,正常培養條件下無論是否剔除TOR1或是RAS2基因,細胞的,.O2- 明顯均高於熱量限制組,顯示熱量限制可透過TOR和RAS以外的途徑減少ROS,影響細胞壽命。最後,雖然已知抑制TOR和RAS可活化的下游RIM15,但從我們的結果看來,在正常或熱量限制培養條件下僅ras2&;#8710;的RIM15基因表現量並無差異,顯示熱量限制主要抑制RAS途徑調控RIM15基因表現。然而老化期間的ROS變化、是否主要由RAS途徑調控,以及msh2&;#8710;msh3&;#8710;細胞是否須同時透過抑制TOR和RAS的訊息傳遞路徑來維持老化期間基因的穩定性有待更進一步的驗證。

Mismatch repair (MMR) is a DNA repair system which is critical for the maintenance of genome stability. Defects in mismatch repair have been linked to colorectal and sporadic cancers. Calorie restriction (CR) has been shown to extend life span and increases stress resistance via TOR/SCH9 and RAS signaling pathways in various organisms. We have found that CR containing 0.5% glucose compared to normal treatment (2.0% glucose) can extend life span and promote HOM3 gene stability in MMR-defected cells during aging process in yeast previously. Here, we demonstrate tor1&;#8710; can mimic CR condition and extend life span of msh2&;#8710; and msh3&;#8710; mutants with low mutation frequency. We also found the levels of reactive oxygen species (ROS) were significantly increased during aging and tor1&;#8710; dramatically reduced the levels of ROS. However, tor1&;#8710; could not completely reverse mutation rates in msh2&;#8710;msh3&;#8710; mutants. According to these, we believe TOR1 gene can only partially regulates genome stability in MMR defected cells during aging. Whether RAS also affects the genome stability in MMR defected cells during aging needs to be further investigated.

口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
縮寫對照表 x
第一章 前言 1
第二章 文獻回顧 2
2.1 熱量限制與老化 2
2.2 老化與基因不穩定 4
2.3 延緩老化相關之訊息路徑 9
2.3.1 TOR1/SCH9訊息路徑 9
2.3.2 RAS/PKA訊息路徑 10
2.4 出芽酵母菌的老化模式 11
第三章 實驗設計 12
第四章 材料與方法 13
4.1 材料 13
4.1.1 實驗所使用的酵母菌株 13
4.1.2 培養基 15
4.2 實驗方法 20
第五章 結果與討論 22
5.1 MMR基因和TOR1基因之交互作用 22
5.2 剔除TOR1基因可延長正常細胞和MMR缺陷細胞壽命 31
5.3 剔除TOR1基因增加MMR缺陷細胞於老化期間基因的穩定性 34
5.4 MMR缺陷細胞在老化期間ROS的含量 39
5.5 熱量限制與剔除TOR1基因可提升RIM15和SOD1基因表現量 45
第六章 結論 47
參考文獻 48


劉秀琴 2012 能量限制對DNA修復缺陷細胞基因穩定性之影響 國立台灣大學食品科技研究所碩士論文。台北。
羅云君 2013 熱量限制增加錯誤配對修復缺陷細胞於老化期間基因的穩定性 國立台灣大學食品科技研究所碩士論文。台北。
Andersen, P. L.; Xu, F.; Ziola, B.; McGregor, W. G.; Xiao, W. Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites. Mol. Cell. Biol.2011, 22, 2373-2383.
Andziak, B.; O''Connor, T. P.; Qi, W.; DeWaal, E. M.; Pierce, A.; Chaudhuri, A. R.; Van Remmen, H.; Buffenstein, R. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging cell 2006, 5, 463-471.
Aparicio, O. M.; Billington, B. L.; Gottschling, D. E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 1991, 66, 1279-1287.
Boland, C. R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073-2087 e2073.
Botstein, D.; Chervitz, S. A.; Cherry, J. M. Yeast as a model organism. Science 1997, 277, 1259-1260.
Broach, J. R. Ras-regulated signaling processes in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 1991, 1, 370-377.
Cabelof, D. C.; Yanamadala, S.; Raffoul, J. J.; Guo, Z.; Soofi, A.; Heydari, A. R. Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA repair 2003, 2, 295-307.
Chen, C.; Kolodner, R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 1999, 23, 81-85.
Colman, R. J.; Anderson, R. M.; Johnson, S. C.; Kastman, E. K.; Kosmatka, K. J.; Beasley, T. M.; Allison, D. B.; Cruzen, C.; Simmons, H. A.; Kemnitz, J. W.; Weindruch, R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009, 325, 201-204.
Cooke, M. S.; Evans, M. D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003, 17, 1195-1214.
Costanzo, M.; Baryshnikova, A.; Bellay, J.; Kim, Y.; Spear, E. D.; Sevier, C. S.; Ding, H.; Koh, J. L.; Toufighi, K.; Mostafavi, S.; Prinz, J.; St Onge, R. P.; VanderSluis, B.; Makhnevych, T.; Vizeacoumar, F. J.; Alizadeh, S.; Bahr, S.; Brost, R. L.; Chen, Y.; Cokol, M.; Deshpande, R.; Li, Z.; Lin, Z. Y.; Liang, W.; Marback, M.; Paw, J.; San Luis, B. J.; Shuteriqi, E.; Tong, A. H.; van Dyk, N.; Wallace, I. M.; Whitney, J. A.; Weirauch, M. T.; Zhong, G.; Zhu, H.; Houry, W. A.; Brudno, M.; Ragibizadeh, S.; Papp, B.; Pal, C.; Roth, F. P.; Giaever, G.; Nislow, C.; Troyanskaya, O. G.; Bussey, H.; Bader, G. D.; Gingras, A. C.; Morris, Q. D.; Kim, P. M.; Kaiser, C. A.; Myers, C. L.; Andrews, B. J.; Boone, C. The genetic landscape of a cell. Science 2010, 327, 425-431.
Cybulski, N.; Hall, M. N. TOR complex 2: a signaling pathway of its own. Trends. Biochem. Sci. 2009, 34, 620-627.
De Virgilio, C.; Loewith, R. The TOR signalling network from yeast to man. Int. J. Biochem. Cell Biol. 2006, 38, 1476-1481.
Fabrizio, P.; Longo, V. D. The chronological life span of Saccharomyces cerevisiae. Methods Mol. Biol. 2007, 371, 89-95.
Fink, D.; Nebel, S.; Aebi, S.; Zheng, H.; Cenni, B.; Nehme, A.; Christen, R. D.; Howell, S. B. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 1996, 56, 4881-4886.
Fishel, R.; Lescoe, M. K.; Rao, M. R.; Copeland, N. G.; Jenkins, N. A.; Garber, J.; Kane, M.; Kolodner, R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993, 75, 1027-1038.
Fontana, L.; Partridge, L.; Longo, V. D. Extending healthy life span--from yeast to humans. Science 2010, 328, 321-326.
Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol.1956, 11, 298-300.
Heilbronn, L. K.; Ravussin, E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am. J. Clin. Nutr. 2003, 78, 361-369.
Hong, Z.; Jiang, J.; Hashiguchi, K.; Hoshi, M.; Lan, L.; Yasui, A. Recruitment of mismatch repair proteins to the site of DNA damage in human cells. J. Cell Sci. 2008, 121, 3146-3154.
Johnson, R. E.; Kovvali, G. K.; Guzder, S. N.; Amin, N. S.; Holm, C.; Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J. Biol. Chem. 1996, 271, 27987-27990.
Jones-Engel, L.; May, C. C.; Engel, G. A.; Steinkraus, K. A.; Schillaci, M. A.; Fuentes, A.; Rompis, A.; Chalise, M. K.; Aggimarangsee, N.; Feeroz, M. M.; Grant, R.; Allan, J. S.; Putra, A.; Wandia, I. N.; Watanabe, R.; Kuller, L.; Thongsawat, S.; Chaiwarith, R.; Kyes, R. C.; Linial, M. L. Diverse contexts of zoonotic transmission of simian foamy viruses in Asia. Emerg. Infect. Dis. 2008, 14, 1200-1208.
Kaeberlein, M. Lessons on longevity from budding yeast. Nature 2010, 464, 513-519.
Kaeberlein, M.; Powers, R. W., 3rd; Steffen, K. K.; Westman, E. A.; Hu, D.; Dang, N.; Kerr, E. O.; Kirkland, K. T.; Fields, S.; Kennedy, B. K. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 2005, 310, 1193-1196.
Karathia, H.; Vilaprinyo, E.; Sorribas, A.; Alves, R. Saccharomyces cerevisiae as a model organism: a comparative study. PloS one 2011, 6, e16015.
Koltin, Y.; Faucette, L.; Bergsma, D. J.; Levy, M. A.; Cafferkey, R.; Koser, P. L.; Johnson, R. K.; Livi, G. P. Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol. cellular Biol. 1991, 11, 1718-1723.
Lambert, A. J.; Merry, B. J. Effect of caloric restriction on mitochondrial reactive oxygen species production and bioenergetics: reversal by insulin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R71-79.
Lehner, K.; Jinks-Robertson, S. The mismatch repair system promotes DNA polymerase zeta-dependent translesion synthesis in yeast. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 5749-5754.
Li, G. M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008, 18, 85-98.
Linnane, A. W.; Kios, M.; Vitetta, L. Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology 2007, 8, 445-467.
Lisanti, M. P.; Martinez-Outschoorn, U. E.; Lin, Z.; Pavlides, S.; Whitaker-Menezes, D.; Pestell, R. G.; Howell, A.; Sotgia, F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer". Cell cycle 2011, 10, 2440-2449.
Loewith, R.; Jacinto, E.; Wullschleger, S.; Lorberg, A.; Crespo, J. L.; Bonenfant, D.; Oppliger, W.; Jenoe, P.; Hall, M. N. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 2002, 10, 457-468.
Lorenz, M. C.; Heitman, J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J. Biol. Chem. 1995, 270, 27531-27537.
Lu, J. Y.; Lin, Y. Y.; Sheu, J. C.; Wu, J. T.; Lee, F. J.; Chen, Y.; Lin, M. I.; Chiang, F. T.; Tai, T. Y.; Berger, S. L.; Zhao, Y.; Tsai, K. S.; Zhu, H.; Chuang, L. M.; Boeke, J. D. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 2011, 146, 969-979.
Lynch, H. T.; Smyrk, T. C.; Cavalieri, J.; Lynch, J. F. Identification of an HNPCC family. Am. J. Gastroenterol. 1994, 89, 605-609.
Madia, F.; Gattazzo, C.; Wei, M.; Fabrizio, P.; Burhans, W. C.; Weinberger, M.; Galbani, A.; Smith, J. R.; Nguyen, C.; Huey, S.; Comai, L.; Longo, V. D. Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. J. Cell Biol. 2008, 180, 67-81.
McCay, C. M.; Crowell, M. F.; Maynard, L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 1989, 5, 155-171; discussion 172.
Mesquita, A.; Weinberger, M.; Silva, A.; Sampaio-Marques, B.; Almeida, B.; Leao, C.; Costa, V.; Rodrigues, F.; Burhans, W. C.; Ludovico, P. Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 15123-15128.
Miyaki, M.; Konishi, M.; Muraoka, M.; Kikuchi-Yanoshita, R.; Tanaka, K.; Iwama, T.; Mori, T.; Koike, M.; Ushio, K.; Chiba, M.; et al. Germ line mutations of hMSH2 and hMLH1 genes in Japanese families with hereditary nonpolyposis colorectal cancer (HNPCC): usefulness of DNA analysis for screening and diagnosis of HNPCC patients. J. Mol. Med. 1995, 73, 515-520.
Modrich, P. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 1991, 25, 229-253.
Molin, M.; Yang, J.; Hanzen, S.; Toledano, M. B.; Labarre, J.; Nystrom, T. Life span extension and H2O2 resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Mol. Cell 2011, 43, 823-833.
Ni, T. T.; Marsischky, G. T.; Kolodner, R. D. MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol. Cell 1999, 4, 439-444.
Onoda, F.; Seki, M.; Wang, W.; Enomoto, T. The hyper unequal sister chromatid recombination in an sgs1 mutant of budding yeast requires MSH2. DNA repair 2004, 3, 1355-1362.
Pan, Y.; Schroeder, E. A.; Ocampo, A.; Barrientos, A.; Shadel, G. S. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab. 2011, 13, 668-678.
Pan, Y.; Shadel, G. S. Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging 2009, 1, 131-145.
Pedruzzi, I.; Dubouloz, F.; Cameroni, E.; Wanke, V.; Roosen, J.; Winderickx, J.; De Virgilio, C. TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol. Cell 2003, 12, 1607-1613.
Percesepe, A.; Anti, M.; Marra, G.; Roncucci, L.; Pahor, M.; Coco, C.; Armelao, F.; Gasbarrini, G.; Ponz de Leon, M. Role of clinical criteria in the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC): results of a multivariate analysis. International journal of cancer. Int. J. Cancer 1994, 58, 799-802.
Reinke, A.; Chen, J. C.; Aronova, S.; Powers, T. Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J. Biol. Chem. 2006, 281, 31616-31626.
Rohde, J. R.; Bastidas, R.; Puria, R.; Cardenas, M. E. Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr. Opin. Microbiol. 2008, 11, 153-160.
Schulz, T. J.; Zarse, K.; Voigt, A.; Urban, N.; Birringer, M.; Ristow, M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell metabolism 2007, 6, 280-293.
Sharifpoor, S.; van Dyk, D.; Costanzo, M.; Baryshnikova, A.; Friesen, H.; Douglas, A. C.; Youn, J. Y.; VanderSluis, B.; Myers, C. L.; Papp, B.; Boone, C.; Andrews, B. J. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res. 2012, 22, 791-801.
Shen, Z.; Denison, K.; Lobb, R.; Gatewood, J. M.; Chen, D. J. The human and mouse homologs of the yeast RAD52 gene: cDNA cloning, sequence analysis, assignment to human chromosome 12p12.2-p13, and mRNA expression in mouse tissues. Genomics 1995, 25, 199-206.
Sinicrope, F. A.; Sargent, D. J. Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clin. Cancer Res. 2012, 18, 1506-1512.
Spell, R. M.; Jinks-Robertson, S. Role of mismatch repair in the fidelity of RAD51- and RAD59-dependent recombination in Saccharomyces cerevisiae. Genetics 2003, 165, 1733-1744.
Steinkraus, K. A.; Kaeberlein, M.; Kennedy, B. K. Replicative aging in yeast: the means to the end. Annu. Rev. Cell Dev. Biol. 2008, 24, 29-54.
Storchova, Z.; Vondrejs, V. Starvation-associated mutagenesis in yeast Saccharomyces cerevisiae is affected by Ras2/cAMP signaling pathway. Mutat. Res. 1999, 431, 59-67.
Swinnen, E.; Wanke, V.; Roosen, J.; Smets, B.; Dubouloz, F.; Pedruzzi, I.; Cameroni, E.; De Virgilio, C.; Winderickx, J. Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div. 2006, 1, 3.
Tamanoi, F. Ras signaling in yeast. Genes &; cancer 2011, 2, 210-215.
Tay, Y. D.; Sidebotham, J. M.; Wu, L. Mph1 requires mismatch repair-independent and -dependent functions of MutSalpha to regulate crossover formation during homologous recombination repair. Nucleic Acids Rese. 2010, 38, 1889-1901.
Vijg, J.; Dolle, M. E. Large genome rearrangements as a primary cause of aging. Mech. Ageing Dev. 2002, 123, 907-915.
Von Borstel, R. Measuring spontaneous mutation rates in yeast. Methods Cell. Biol. 1978, 20, 1-24.
Wei, M.; Fabrizio, P.; Hu, J.; Ge, H.; Cheng, C.; Li, L.; Longo, V. D. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet. 2008, 4, e13.
Wei, M.; Fabrizio, P.; Madia, F.; Hu, J.; Ge, H.; Li, L. M.; Longo, V. D. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet. 2009, 5, e1000467.
Weinberger, M.; Mesquita, A.; Caroll, T.; Marks, L.; Yang, H.; Zhang, Z.; Ludovico, P.; Burhans, W. C. Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging 2010, 2, 709-726.
Weindruch, R.; Walford, R. L.; Fligiel, S.; Guthrie, D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J. Nutr.1986, 116, 641-654.
Wullschleger, S.; Loewith, R.; Hall, M. N. TOR signaling in growth and metabolism. Cell 2006, 124, 471-484.
Yancik, R.; Ries, L. A. Aging and cancer in America. Demographic and epidemiologic perspectives. Hematol. Oncol. Clin. North Am. 2000, 14, 17-23.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔