(3.239.33.139) 您好!臺灣時間:2021/03/02 16:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林奕廷
研究生(外文):Yi-Ting Lin
論文名稱:油脂對米飯理化特性及澱粉消化性之影響
論文名稱(外文):Effects of oils on physicochemical properties and starch digestibility of cooked rice
指導教授:葉安義葉安義引用關係
口試委員:盧訓張永和陳時欣楊嘉凌
口試日期:2014-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:84
中文關鍵詞:米飯三酸甘油酯直鏈澱粉-脂質複合物抗性澱粉預估升糖指數澱粉回凝
外文關鍵詞:cooked ricetriglycerideamylose-lipid complexresistant starchestimated glycemic indexstarch retrogradation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:2404
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的旨在探討油脂(三酸甘油酯),包括:棕櫚油、大豆油及亞麻仁油其不飽和程度,對米飯理化特性及澱粉消化性之影響。實驗選用台稉9號精白米,添加油脂烹煮之米飯穀粉,經示差熱掃描分析 (DSC) 可於90℃至115℃間,觀察到直鏈澱粉-脂質複合物 (ALC) 之解離吸熱峰,解離溫度以棕櫚油最高 (95.3℃),對照組白米飯則最低 (90.4℃),在X射線繞射 (XRD)下,米粒經烹煮後晶體圖譜由A-type 轉變為V-type,添加油脂後其特徵波峰強度間並無明顯差異;米飯體外澱粉消化性,隨油脂飽和程度增加,棕櫚油具有最低的預估升糖指數 (eGI) (85.6) 和含量最高的抗性澱粉 (RS) (11.2%),其次依序為大豆油 (87.1 和 8.5%)、亞麻仁油 (90.3 和 3.8%) 及白米飯 (92.4 和 0.8%),結果顯示棕櫚油可形成較穩定之複合物,對酵素水解抗性較佳。三酸甘油酯主要針對澱粉的短期回凝進行延緩,僅於4℃貯藏第一天回凝熱焓值 (ΔH) 有下降,但對於澱粉之長期回凝(3至5天)則無影響。回凝米飯之消化性隨米飯貯藏時間延長而降低,以亞麻仁油增加RS之量最多。於XRD之圖譜,可觀察到米飯澱粉於回凝過程中,由V-type 轉變成 B-type,經復熱後再次轉變為V-type,結構間具熱可逆之特性。米飯經回凝復熱後,ALC之解離溫度提高;復熱之米飯澱粉消化性與新鮮米飯比較,RS含量間並無顯著差異,顯示由於ALC熱可逆性,仍可保留複合物維持其酵素之抗性。經由實驗結果得知,不飽和程度越低之油脂,其形成ALC之結構也越安定,可顯著降低米飯澱粉之消化性,將有助餐後血糖之控制,並且獲得較多的RS,作為飲食之參考。

This study was to understand effects of oils with different unsaturation, including palm oil (PO), soybean oil (SO), and flax oil (FO), on physicochemical properties and starch digestibility of cooked rice. Polished rice grains of variety japonica, Taikeng 9, were used for the study. After cooking with the oils (10%, d. b.), there existed in DSC thermograms for cooked rice flours, amyplose-lipid complex (ALC) dissociation peaks from 90℃ to 115℃. Adding PO exhibited the highest dissociation temperature (95.3℃). The XRD patterns changed from A-type to V-type after cooking. In vitro starch digestibility and resistant starch (RS) contents were affected by oils. With increasing saturation of oils, PO yielded the least estimated glycemic index (eGI) of 85.6 and the greatest RS content of 11.2% among all samples. respectively. The results indicated PO could form stable ALC structure, which was resistant to enzymic hydrolysis. Triglycerides mainly retard the short-term 1 day storage starch retrogradation., but did not affect the long-term starch retrogradation (3-5 days storage). Digestibility of reotrograded rice decreased with the storage time, FO had increased the most RS content. In XRD patterns, it could be find structure between V-type and B-type is thermoreversible in the process of storage and reheating. After reheating of retrograded rice, the dissociation temperature of ALC increased. Because of thermal reversibility of ALC, RS contents of reheated rices compared with fresh rices did not have significant different. This study showed that the extend of unsaturation affected the stability of ALC. The less unsaturation, the more stable of ALC. With lower starch digestibility and higher RS content, rice cooking with oils would be a good way to control postprandial blood glucose and get more RS.

口試委員會審定書 I
謝誌 II
中文摘要 III
Abstract IV
目次 V
圖表索引 VIII
圖次 VIII
表次 X
壹、研究目的 1
貳、文獻回顧 3
2.1稻米之簡介 3
2.1.1 稻米之分類 3
2.1.2 稻米之產量及概況 5
2.1.3 稻米之結構 7
2.1.4 稻米之組成 7
2.2 澱粉之結構及糊化特性 10
2.2.1 澱粉之結構 11
2.2.2 澱粉之糊化 11
2.3 米飯之老化 15
2.3.1 澱粉之回凝 15
2.3.2 澱粉回凝之測定方法 18
2.4 米飯之消化性 18
2.4.1 抗性澱粉 19
2.4.2 升糖指數 20
2.5 澱粉與脂質之交互作用 21
2.5.1 澱粉-脂質複合物 21
2.5.2 影響澱粉-脂質複合物形成之因子 23
2.5.3 脂質對澱粉回凝之影響 24
2.5.4 脂質對澱粉消化性之影響 25
參、實驗架構 26
肆、材料與方法 27
4.1 材料 27
4.2 方法 27
4.2.1 米粒組成分分析 27
4.2.2 直鏈澱粉含量 30
4.2.3 米粒浸漬過程之水分含量 31
4.2.4 米粒浸漬過程之糊化度 31
4.2.5 米飯烹煮之方式 34
4.2.6 回凝及復熱米飯之製備 34
4.2.7 質地分析 35
4.2.8 示差掃描熱分析 35
4.2.9 傅立葉轉換紅外線光譜 35
4.2.10 X-射線繞射分析 36
4.2.11體外澱粉消化性 36
4.2.12 統計分析 38
伍、結果與討論 39
5.1米粒基本組成分 39
5.2米粒於65℃浸漬過程之水分含量及糊化度變化 39
5.3 添加油脂對米飯理化特性及消化性之影響 41
5.3.1米飯穀粉之熱性質分析 41
5.3.2米飯穀粉之傅立葉轉紅外線光譜分析 44
5.3.3米飯穀粉之結晶型態分析 46
5.3.4米飯之體外澱粉消化性 46
5.4回凝米飯之理化特性及消化性 52
5.4.1回凝米飯之質地分析 52
5.4.2回凝米飯穀粉之熱性質分析 52
5.4.3回凝米飯之結晶型態分析 59
5.4.4回凝米飯之體外澱粉消化性 59
5.5回凝復熱米飯之理化特性及消化性 64
5.5.1回凝復熱米飯穀粉之熱性質分析 64
5.5.2回凝復熱米飯穀粉之結晶型態分析 64
5.5.3回凝復熱米飯之體外消澱粉化性 68
陸、結論 72
柒、參考文獻 73



宋勳、洪梅珠、許愛娜。1991。台灣稻米品質之研究。台灣省台中區農業改良場特刊第24號。

林素一、張欽宏、呂政義。2000。脂肪酸對米澱粉糊化之熱行為及其流變特性的影響。中華生質能源學會會誌,19(3, 4),63-77。

林穎聖。2002。米粒理化性質與烹煮性質之關係。國立中興大學食品科學研究所碩士論文。

陳衛億。1995。貯存溫度及添加物對米穀粉回凝速率的影響。靜宜大學食品營養學系碩士論文。

農糧統計。2014。臺灣地區稻作種植、收穫面積及產量 (102年報)。 http://www.afa.gov.tw/Public/GrainStatistics/20144241424285334.pdf

楊啟春、賴惠民、&;#63872;政義。1984。米澱粉分&;#63978;法之改進。食品科學,11(3, 4),158-162。

葉安義、須文宏、沈家緒、林子清。1989。溫度對米粒吸水分的影響。食品科學,4(16),319-327。

蔡玫琳、顏名聰、呂政義。1999。溫度對直鏈澱粉-脂肪酸複合物形成之影響。食品科學,26(6),539-551。

糧食供需年報。2013。Ⅲ、類別產品別統計表。http://agrstat.coa.gov.tw/sdweb/public/book/Book_File.ashx?chapter_id=176_10_2

蘇雲華。2012。浸泡、烹煮及儲存條件對糙米飯物化特性與消化性質的影響。國立台灣大學食品科技研究所碩士論文。

Ai, Y.; Hasjim, J.; Jane, J. L. Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohyd. Polym. 2013, 92, 120-127.

Atwell, W. A.; Hood, L. F.; Lineback, D. R.; Varriano-Marston, E.; Zobel, H. F. The terminology and methodology associated with basic starch phenomena. Cereal foods world 1988, 33, 306-311.

Baik, M. Y.; Kim, K. J.; Cheon, K. C.; Ha, Y. C.; Kim, W. S. Recrystallization kinetics and glass transition of rice starch gel system. J. Agric. Food Chem. 1997, 45(11), 4242-4248.

Becker, A.; Hill, S. E; Mitchell, J. R. Relevance of amylose-lipid complexes to the behaviour of thermally processed starches. Starch&;#8208;St&;auml;rke 2001, 53, 121-130

Bhatnagar, S.; Hanna, M. A. Amylose-lipid complex formation during single-screw extrusion of various corn starches. Cereal Chem. 1994, 71(6), 582-586.

Biais, B.; Le Bail, P.; Robert, P.; Pontoire, B.; Bule&;acute;on, A. Structural and stoichiometric studies of complexes between aroma compounds and amylose. Polymorphic transitions and quantification in amorphous and crystalline areas. Carbohydr. Polym. 2006, 66, 306–315.

Biliaderis, C. G.; Page, C. N.; Slade, L.; Sirett, R. R. Thermal behaviour of amylose-lipid complexes. Carbohydr. Polym. 1985, 5, 367-389.

Biliaderis, C. G.; Page, C. M.; Maurice, T. J. Non-equilibrium melting of amylose-V complexes. Carbohydr. Polym. 1986, 6(4), 269-288.

Biliaderis, C. G.; Galloway, G. Crystallization behavior of amylose-V complexes: structure-property relationships. Carbohydr. Res. 1989, 189, 31-48.

Biliaderis, C. G.; Seneviratne, H. D. On the supermolecular structure and metastability of glycerol monostearate-amylose complex. Carbohydr. Polym. 1990, 13(2), 185-206.

Biliaderis, C. G. Structural Transitions and Related Physical Properties of Starch. In: Starch: Chemistry and Technology, Third Edition, BeMiller, J. N.; Whistler, R. L. (Eds.), Elsevier Inc., 2009; pp.323.

Bird, A. R.; Brown, I. L.; Topping, D. L. Starches, resistant starches, the gut microflora and human health. Curr. Iss. Intest. Microbiol. 2000, 1(1), 25-37.

Brouns, F.; Kettlitz, B.; Arrigoni, E. Resistant starch and “the butyrate revolution”. Trends Food Sci. Tech. 2002, 13(8), 251-261.

Bul&;eacute;on, A.; Colonna, P.; Planchot, V.; Ball, S. Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 1998, 23, 85–112.

Byrnes, S. E.; Miller, J. C.; Denyer, G. S. Amylopectin starch promotes the development of insulin resistance in rats. J. Nutr. 1995, 125(6), 1430-1437.

Cagampang, G. B.; Cruz, L. J.; Espiritu, S. G.; Santiago, R. G.; Juliano, B. O.; Upton, E. M.; Krober, O. A. Studies on the extraction and composition of rice proteins. Cereal chem. 1996, 43(2).

Carlson, T. G.; Larsson, K.; Dinh&;#8208;Nguyen, N.; Krog, N. A study of the amylose&;#8208;monoglyceride complex by Raman spectroscopy. Starch&;#8208;St&;auml;rke 1979, 31(7), 222-224.

Chang, F.; He, X.; Huang, Q. The physicochemical properties of swelled maize starch granules complexed with lauric acid. Food Hydrocolloid. 2013, 32(2), 365-372.

Chien, J. T.; Lien, Y. Y.; Shoemaker, C. F. Effect of polarity of complexing agents on thermal and rheological properties of rice starch gels. Cereal chem. 1999, 76(6), 837-842.

Choudhury, N. H.; Juliano, B.O. Effect of amylose content on the lipids of mature rice grain. Phytochemistry 1980, 19, 1385–1389.

Cui, R.; Oates, C. G. The effect of amylose–lipid complex formation on enzyme susceptibility of sago starch. Food Chem. 1999, 65(4), 417-425.

Cur&;aacute;, J. A.; Jansson, P. E.; Krisman, C. R. Amylose is not linear. Starch/ St&;auml;rke 1995, 47(6), 207-209.

D’Appolonia, B. L.; Morad, M. M. Bread staling. Cereal Chem. 1981, 58(3), 186-190.

De Pilli, T.; Jouppila, K.; Ikonen, J.; Kansikas, J.; Derossi, A.; Severini, C. Study on formation of starch–lipid complexes during extrusion-cooking of almond flour. J. Food Eng. 2008, 87(4), 495-504.

Derycke, V.; Vandeputte, G. E.; Vermeylen, R.; De Man, W.; Goderis, B.; Koch, M. H. J.; Delcour, J. A. Starch gelatinization and amylose–lipid interactions during rice parboiling investigated by temperature resolved wide angle X-ray scattering and differential scanning calorimetry. J. Cereal Sci. 2005, 42(3), 334-343.

Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28(3), 350-356.

Eliasson, A. C. Interactions between starch and lipids studied by DSC. Thermochimica Acta 1994, 246, 343–356.

Eliasson, A. C.; Ljunger, G. Interactions between amylopectin and lipid additives during retrogradation in a model system. J. Sci. Food Agri. 1988, 44(4), 353-361.

Eliasson, A. C.; Krog, N. Physical properties of amylose-monoglyceride complexes. J. Cereal Sci. 1985, 3, 239-248.

Englyst, H.; Wiggins, H. S.; Cummings, J. H. Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 1982, 107(1272), 307-318.

Englyst, H. N.; Kingman, S. M.; Cummings, J. H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33-S50.

FAOSTAT 2013. Database of Food and Agricultural Organization, Available from: http://www.faostat.fao.org. Accessed May 15, 2013.

Flores-Morales, A.; Jim&;eacute;nez-Estrada, M.; Mora-Escobedo, R. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr. Polym. 2012, 87(1), 61-68.

Frei, M.; Siddhuraju, P.; Becker, K. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chem. 2003, 83(3), 395-402.

Galloway, G. I.; Biliaderis, C. G.; Stanley, D. W. Properties and structure of amylose&;#8208;glyceryl monostearate complexes formed in solution or on extrusion of wheat flour. J. Food Sci. 1989, 54(4), 950-957.

Gallant, D. J.; Bouchet, B.; Baldwin, P. M. Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 1997, 32(3), 177-191.

Gelders, G. G.; Vanderstukken, T. C.; Goesaert, H.; Delcour, J. A. Amylose–lipid complexation: a new fractionation method. Carbohydr. Polym. 2004, 56(4), 447-458.

Godet, M. C.; Tran, V.; Delage, M. M.; Bul&;eacute;on, A. Molecular modelling of the specific interactions involved in the amylose complexation by fatty acids. Int. J. Biol. Macromol. 1993, 15(1), 11-16.

Godet, M. C.; Bouchet, B.; Colonna, P.; Gallant, D. J.; Bul&;eacute;on, A. Crystalline amylose&;#8208;fatty acid complexes: morphology and crystal thickness. J. Food Sci. 1996, 61(6), 1196-1201.

Goesaert, H.; Brijs, K.; Veraverbeke, W. S.; Courtin, C.M. Gebruers, K.; Delcour, J. A. Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci. Tech. 2005, 16, 12–30.

Go&;ntilde;i, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17(3), 427–437.

Granfeldt, Y.; Bj&;ouml;rck, I.; Drews, A.; Tovar, J. An in vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. Eur. J. Clin. Nutr. 1992, 46(9), 649.

Gudmundsson, M.; Eliasson, A.C. Retrogradation of amylopectin and the effects of amylose and added surfactants emulsifiers. Carbohydr. Polym. 1990, 13, 295-315.

Gudmundsson, M. Effects of an added inclusion-amylose complex on the retrogradation of some starches and amylopectin. Carbohydr. Polym. 1992, 17(4), 299-304.

Guill&;eacute;n, M. D.; Ruiz, A.; Cabo, N. Study of the oxidative degradation of farmed salmon lipids by means of Fourier transform infrared spectroscopy. Influence of salting. J. Sci. Food Agric. 2004, 84(12), 1528-1534.

Gunstone, F. D. Vegetable oils in food technology: composition, properties and uses. Oxford: Blackwell; 2002.

Guraya, H. S.; Kadan, R. S.; Champagne, E. T. Effect of rice starch–lipid complexes in vitro digestibility, complexing index, and viscosity. Cereal Chem. 1997, 74, 561-565.

Hamaker, B. R.; Griffin, V. K.; Moldenhauer, K. A. K. Potential influence of a starch granule&;#8208;associated protein on cooked rice stickiness. J. Food Sci. 1991, 56(5), 1327-1329.

Hamaker, B. R.; Griffin, V. K. Effect of disulfide bond-containing protein on rice starch gelatinization and pasting. Cereal Chem. 1993, 70, 377-380.

Hasjim, J.; Lee, S. O.; Hendrich, S.; Setiawan, S.; Ai, Y.; Jane, J. L. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses. Cereal Chem. 2010, 87(4), 257-262.

Hayakawa, T.; Seo, S. W.; Igaue, I. Electron microscopic observation of rice grain. I. Morphology of rice starch. J. Jpn. Soc. Starch Sci. 1980, 27, 173-179.

Hibi, Y.; Kitamura, S.; Kuge, T. Effect of lipids on the retrogradation of cooked rice. Cereal Chem. 1990, 67(1), 7-10.

Hinton, J. J. C.; Shaw, B. The distribution of nicotinic acid in the rice grain. Brit. J. Nutr. 1954, 8(1), 65–71.

Huang, J. J.; White, P. J. Waxy corn starch monoglyceride interaction in a model system. Cereal Chem. 1993, 70, 42-47.

International Rice Commission. Food Balance Sheet, Rome, FAO, 2000.

Ito, S.; Sato, S.; Fujino, Y. Internal lipid in rice starch. Starch&;#8208;St&;auml;rke 1979, 31(7), 217-221.

Jane, J. L.; Robyt, J. F. Structure studies of amylose-V complexes and retrograded amylose by action of alpha amylases, and a new method for preparing amylodextrins. Carbohydr. Res. 1984, 132, 105–118.

Jenkins, D. J. A.; Wolever, T. M. S.; Taylor, R. H.; Ghafari, H.; Barker, H. M. Glycemic index of foods: a physiological basis for carbohydrate exchange, Am. J. Clin. Nutr. 1981, 34, 362, 1981.

Jenkins, D. J. A.; Wolever, T. M. S.; Jenkins, A. L.; Thorne, M. J.; Lee, R. The glycemic index of foods tested in diabetic patients: a new basis for carbohydrate exchange favouring the use of legumes. Diabetologia 1983, 24(4), 257-264.

Jenkins, D. J.; Cuff, D.; Wolever, T. M.; Knowland, D.; Thompson, L.; Cohen, Z.; Prokipchuk, E. Digestibility of carbohydrate foods in an ileostomate: relationship to dietary fiber, in vitro digestibility, and glycemic response. Am. J. Gastroenterol. 1987, 82(8), 709-717.

Jovanovich, G.; A&;ntilde;&;oacute;n, M. C. Amylose–lipid complex dissociation. A study of the kinetic parameters. Biopolymers 1999, 49(1), 81-89.

Juliano, B. O.; Pascual, C. G. Quality characteristics of milled rice grown in different countries. IRRI Research Paper Series 1980, 48, 5-9.

Juliano, B. O. Polysaccharides, proteins, and lipids of rice. In: Rice Chemistry and Technology, Juliano, B. O. (Ed.), American Association of Cereal Chemists: St. Paul, Minnesota, 1985; pp. 59–174.

Juliano, B. O.; Bechtel, D. O. The rice grain and its gross composition. In Rice: Chemistry and Technology, Juliano, B. O. (Ed.), American Association of Cereal Chemists: St. Paul, Minnesota, 1985; pp.17-57.

Juliano, B. O.; Goddard, M. S. Cause of varietal difference in insulin and glucose responses to ingested rice. Qualitas plantarum. Plant Foods Hum. Nutr. 1986, 36(1), 35-41.

Juliano, B. O. Varietal impact on rice quality. Cereal Foods World 1998, 43, 207–222.

Juliano, B. O. Asian perspective on rice sensory quality. Cereal Foods World 2001, 46, 531–535.

Kainuma, K.; Matsunaga, A.; Itagawa, M.; Kobayashi, S. New enzyme system- beta-amylase-pullulanase- to determine the degree of gelatinization and retrogradation of starch or starch products. J. Jpn. Soc. Starch Sci. 1981, 28, 235-240.

Karkalas, J.; Raphaelides, S. Quantitative aspects of amylose-lipid interactions. Carbohydr. Res. 1986, 157, 215–234.

Karkalas, J.; Ma, S.; Morrison, W. R.; Pethrick, R. A. Some factors determining the thermal properties of amylose inclusion complexes with fatty acids. Carbohydr. Res. 1995, 268(2), 233-247.

Kawai, K.; Takato, S.; Sasaki, T.; Kajiwara, K. Complex formation, thermal properties, and in-vitro digestibility of gelatinized potato starch–fatty acid mixtures. Food Hydrocolloid. 2012, 27(1), 228-234.

Keetels, C. J. A. M.; van Vliet, T.; Jurgens, A.; Walstra, P. Effects of lipid surfactants on the structure and mechanics of concentrated starch gels and starch bread. J. Cereal Sci. 1996, 24(1), 33-45.

Kim, J. C.; Kim, J. I.; Kong, B. W.; Kang, M. J.; Kim, M. J.; Cha, I. J. Influence of the physical form of processed rice products on the enzymatic hydrolysis of rice starch in vitro and on the postprandial glucose and insulin responses in patients with type 2 diabetes mellitus. Biosci. Biotechnol. Biochem. 2004, 68(9), 1831-1836.

Kitahara, K.; Tanaka, T.; Suganuma, T.; Nagahama, T. Release of bound lipids in cereal starches upon hydrolysis by glucoamylase. Cereal Chem. 1997, 74(1), 1-6.

Kohlwey, D. E.; Kendall, J. H.; Mohindra, R. B. Using the physical properties of rice as a guide to formulation. Cereal Foods World 1995, 40, 728–32.

Krog, N.; Jensen, B. Interaction of monoglycerides in different physical states with amylose and their anti&;#8208;firming effects in bread. International. J. Food Sci. Technol. 1970, 5(1), 77-87.

Krog, N. Amylose complexing effect of food grade emulsifiers. Starch&;#8208;St&;auml;rke 1971, 23(6), 206-210.

Lagendijk, J.; Pennings, H. J. Relation between complex formation of starch with monoglycerides and the firmness of bread. Cereal Sci. Today 1970,15, 354-365.

Lamberts, L.; Gomand, S. V.; Derycke, V.; Delcour, J. A. Presence of amylose crystallites in parboiled rice. J. Agric. Food Chem. 2009, 57(8), 3210-3216.

Lebail, P.; Buleon, A.; Shiftan, D.; Marchessault, R. H. Mobility of lipid in complexes of amylose–fatty acids by deuterium and 13C solid state NMR. Carbohydr. Polym. 2000, 43(4), 317-326.

Le Leu, R. K.; Brown, I. L.; Hu, Y.; Esterman, A.; Young, G. P. Suppression of azoxymethane-induced colon cancer development in rats by dietary resistant starch. Cancer Biol. Ther. 2007, 6(10), 1621-1626.

Le Leu, R. K.; Hu, Y.; Brown, I. L.; Woodman, R. J.; Young, G. P. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis 2010, 31(2), 246-251.

Lee, K. Y., Yoo, S. H., &; Lee, H. G. The effect of chemically&;#8208;modified resistant starch, RS type&;#8208;4, on body weight and blood lipid profiles of high fat diet&;#8208;induced obese mice. Starch&;#8208;St&;auml;rke 2012, 64(1), 78-85.

Liang, X.; King, J. M.; Shih, F. F. Pasting property differences of commercial and isolated rice starch with added lipids and β-cyclodextrin. Cereal Chem. 2002, 79(6), 812-818.

Lii, C. Y.; Lai, V. M. F.; Shen, M. C. Changes in retrogradation properties of rice starches with amylose content and molecular properties. Cereal Chem. 2004, 81(3), 392-398.

Lima, I.; Singh, R. P. Objective measurement of retrogradation in cooked rice during storage. J. Food Qual. 1993, 16, 321–37.

Lin, Y. S.; Yeh, A. I.; Lii, C. Y. Correlation between starch retrogradation and water mobility as determined by differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR). Cereal Chem. 2001, 78(6), 647-653.

Little, R. R.; Dawson, E. H. Histology and histochemistry of raw and cooked rice kernels. J. Food Sci. 1960, 25(5), 611-622.

Ludwig, D. S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. J. Am. Med. Assoc. 2002, 287, 2414-2423.

Lundqvist, H.; Eliasson, A. C.; Olofsson, G. Binding of hexadecyltrimethyl ammonium bromide (CTAB) to starch polysaccharides. Part I. Surface tension measurements. Carbohydr. Polym. 2002, 49, 43-55.

McCleary, B. V.; McNally, M.; Rossiter, P. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study. J. AOAC Int. 2002, 85(5), 1103-1111.

Meng, S.; Ma, Y.; Sun, D. W.; Wang, L.; Liu, T. Properties of starch-palmitic acid complexes prepared by high pressure homogenization. J. Cereal Sci. 2014, 59, 25-32.

Mikus, F. F.; Hixon, R. M.; Rundle, R. E. The complex of fatty acids with amylose. J. Am. Chem. Soc. 1946, 68, 1115-1123.

Miles, M. J.; Morris, V. J.; Orford, P. D.; Ring, S. G. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 1985, 135, 271-278.

Mitsuda, H. Retrogradation of cooked rice. J. Food Qual. 1993, 16, 321–325.

Monro, J. A.; Mishra, S.; Venn, B. Baselines representing blood glucose clearance improve in vitro prediction of the glycaemic impact of customarily consumed food quantities. Br. J. Nutr. 2010, 103(2), 295–305.

Morris, D. H. Flax: A health and nutrition primer. Flax Council of Canada, 2007.

Morrison, W. R. Lipids in cereal starches: a review. J. Cereal Sci. 1988, 8(1), 1-15.

Morrison, W. R.; Law, R. V.; Snape, C. E. Evidence for inclusion complexes of lipids with V-amylose in maize, rice and oat starches. J. Cereal Sci. 1993, 18(2), 107-109.

Morrison, W. R. Starch lipids and how they relate to starch granule structure and functionality. Cereal Foods World 1995, 40, 437-446.

Muir, J. G.; Birkett, A.; Brown, I.; Jones, G.; O''Dea, K. Food processing and maize variety affects amounts of starch escaping digestion in the small intestine. Am. J. Clin. Nutr. 1995, 61(1), 82-89.

Navarro, A. S.; Martino, M. N.; Zaritzky, N. E. Modelling of rheological behaviour in starch–lipid systems. LWT-Food Sci. Technol. 1996, 29(7), 632-639.

Nelson, N. A photometric adaption of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375-380.

Ott, M.; Hester, E. E. Gel formation as related to concentration of amylose and degree of starch swelling. Cereal Chem. 1965, 42, 476-484.

Perdon, A. A.; Siebenmorgen, T. J.; Buescher, R. W.; Gbur, E. E. Starch retrogradation and texture of cooked milled rice during storage. J. Food Sci. 1999, 64(5), 828-832.

Perez, C. M.; Juliano, B. O.; BournE, M. C.; Morales, A. A. Hardness of cooked milled rice by instrumental and sensory methods. J. Texture Stud. 1993, 24(1), 81-94.

Polaczek, E.; Starzyk, F.; Malenki, K.; Tomasik, P. Inclusion complexes of starches with hydrocarbons. Carbohydr. Polym. 2000, 43(13), 291–297.

Putseys, J. A.; Lamberts, L.; Delcour, J. A. Amylose-inclusion complexes: formation, identity and physico-chemical properties. J. Cereal Sci. 2010, 51(3), 238-247.

Ranhotra, G. Resistant starch: health aspects and food uses, In: Advanced Dietary Fibre Technology, McCleary, B.V.; Prosky, L. (Eds.), Blackwell Science Ltd., Oxford; 2001, pp. 424.

Raphaelides, S.; Karkalas, J. Thermal dissociation of amylose-fatty acid complexes. Carbohydr. Res. 1988, 172(1), 65-82.

Reed, M. O.; Ai, Y.; Leutcher, J. L.; Jane, J. L. Effects of cooking methods and starch structures on starch hydrolysis rates of rice. J. Food Sci. 2013, 78, 1076-1081.

Ring, S. R.; Colonna, P.; I''Anson, K. J.; Kalichevsky, M. T.; Miles, M. J.; Morris, V. J.; Orford, P. D. The gelation and crystallization of amylopectin. Carbohydr. Res. 1987, 162, 277-293.

Ring, S. G.; Gee, J. M.; Whittam, M.; Orford, P.; Johnson, I. Resistant starch. Its chemical form in foodstuffs and effect on digestibility in vitro. Food Chem. 1988, 28, 97–109.

Riva, M.; Schiraldi, A.; Piazza, L. Characterization of rice cooking: isothermal differential scanning calorimetry investigations. Thermochimica Acta 1994, 246(2), 317-328.

Russell, P. L. The aging of gels from starches of different amylose/amylopectin content studied by differential scanning calorimetry. J. Cereal Sci. 1987, 6, 147, 1987.

Somogyi, M. A new reagent for the determination of sugars. J. Biol. Chem. 1945, 160, 61-68.

Somogyi, M. Note on sugar determination. J. Biol. Chem. 1952, 195, 19-25.

Stampfli, L.; Nersten, B. Emulsifiers in bread making. Food Chem. 1995, 52(4), 353-360.

Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Infrared Spectrometry, in Spectrometric Identification of Organic Compounds, John Wiley &; Sons, New York, 1991, pp. 102-132.

Singh, H.; Lin, J. H.; Huang, W. H.; Chang, Y. H. Influence of amylopectin structure on rheological and retrogradation properties of waxy rice starches. J. Cereal Sci. 2012, 56(2), 367-373.

Siswoyo, T. A.; Morita, N. Physicochemical studies of defatted wheat starch complexes with mono and diacyl-sn-glycerophosphatidylcholine of varying fatty acid chain lengths. Food Res. Int. 2003, 36(7), 729-737.

Svensson, E.; Gudmundsson, M.; Eliasson, A. C. Binding of sodium dodecyl sulphate to starch polysaccharides quantified by surface tension measurements. Colloid and Interfaces B: Biointerfaces 1996, 6, 227-233.

Tang, M.; Hong, Y.; Gu, Z.; Zhang, Y.; Cai, X. The effect of xanthan on short and long&;#8208;term retrogradation of rice starch. Starch&;#8208;St&;auml;rke. 2013, 0, 1-7.

Tapanapunnitikul, O.; Chaiseri, S.; Peterson, D. G.; Thompson, D. B. Water solubility of flavor compounds influences formation of flavor inclusion complexes from dispersed high-amylose maize starch. J. Agric. Food Chem. 2008, 56(1), 220-226.

Tenyang, N.; Womeni, H. M.; Tiencheu, B.; Foka, N. H. T.; Mbiapo, F. T.; Villeneuve, P.; Linder, M. Lipid oxidation of catfish (Arius maculatus) after cooking and smoking by different methods applied in cameroon. Food Nutr. Sci. 2013, 4, 176.

Tian, Y., Zhan, J., Zhao, J., Xie, Z., Xu, X., &; Jin, Z. Preparation of products rich in slowly digestible starch (SDS) from rice starch by a dual-retrogradation treatment. Food Hydrocolloid. 2013, 31(1), 1-4.

Topping, D. L.; Fukushima, M.; Bird, A. R.. Resistant starch as a prebiotic and synbiotic: state of the art. Proc. Nutr. Soc. 2003, 62, 171-176.

Tsuge, H.; Hishida, M.; Iwasaki, H.; Watanabe, S.; Goshima, G. Enzymatic evaluation for the degree of starch retrogradation in foods and foodstuffs. Starch&;#8208;St&;auml;rke 1990, 42(6), 213-216.

Tufvesson, F.; Wahlgren, M.; Eliasson, A. C. Formation of amylose&;#8208;lipid complexes and effects of temperature treatment. part 1. monoglycerides. Starch&;#8208;St&;auml;rke 2003a, 55(2), 61-71.

Tufvesson, F.; Wahlgren, M.; Eliasson, A. C. Formation of amylose-lipid complexes and effects of temperature treatment. part 2. fatty acids. Starch/St&;auml;erke 2003b, 55(2), 138-149.

Umekuni, T.; Kainuma, K.; Takahashi, S. Correlation between taste of cooked rice and properties of gelatinization and retrogradation. J. Appl. Glycosci. 2003, 50(3), 395-404.

Utrilla&;#8208;Coello, R. G.; Bello&;#8208;Perez, L. A.; Lara, V. H.; Vernon&;#8208;Carter, E. J.; Alvarez&;#8208;Ramirez, J. A fractal analysis approach for predicting starch retrogradation from X&;#8208;ray diffractograms. Starch&;#8208;St&;auml;rke 2013, 65, 1-9.

Vandeputte, G. E.; Vermeylen, R.; Geeroms, J.; Delcour, J. A. Rice starches, I. Structural aspects provide insight into crystallinity characteristics and gelatinisation behaviour of granular starch. J. Cereal Sci. 2003a, 38(1): 43-52.

Vandeputte, G. E.; Delcour, J. A. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydr. Polym. 2004, 58(3), 245-266.

Varavinit, S.; Shobsngob, S.; Varanyanond, W.; Chinachoti, P.; Naivikul, O. Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice. Starch&;#8208;St&;auml;rke 2003, 55(9), 410-415.

Villareal, C. P.; Juliano, B. O. Comparative levels of waxy gene product of endospermstarch granules of different rice ecotypes. Starch&;#8208;St&;auml;rke 1989, 41, 369–373.

Vlachos, N.; Skopelitis, Y.; Psaroudaki, M.; Konstantinidou, V.; Chatzilazarou, A.; Tegou, E. Applications of fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta. 2006, 573, 459-465.

Whistler, R. L.; BeMiller, J. N. Carbohydrate Chemistry for Food Scientists, Eagan Press, St. Paul, 1997.

Wong, J. M.; de Souza, R.; Kendall, C. W.; Emam, A.; Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40(3), 235-243.

Woolnough, J. W.; Monro, J. A.; Brennan, C. S.; Bird, A. R. Simulating human carbohydrate digestion in vitro: a review of methods and the need for standardisation. Int. J. Food Sci. Technol. 2008, 43(12), 2245–2256.

Wulff, G.; Avgenaki, G.; Guzmann, M. S. Molecular encapsulation of flavours as helical inclusion complexes of amylose. J. Cereal Sci. 2005, 41(3), 239-249.

Yang, Y.; Gu, Z.; Zhang, G. Delivery of bioactive conjugated linoleic acid with self-assembled amylose-CLA complex. J. Agric. Food Chem. 2009, 57(15), 7125-7130.

Yao, Y.; Zhang, J.; Ding, X. Structure-retrogradation relationship of rice starch in purified starches and cooked rice grains: a statistical investigation. J. Agric. Food Chemi. 2002, 50(25), 7420-7425.

Yu, S.; Ma, Y.; Sun, D. W. Impact of amylose content on starch retrogradation and texture of cooked milled rice during storage. J. Cereal Sci. 2009, 50(2), 139-144.

Yeh, A. I.; Li, J. Y. Kinetics of phase transition of native, cross&;#8208;linked, and hydroxypropylated rice starches. Starch&;#8208;St&;auml;rke 1996, 48(1), 17-21.

Yeh, A. I.; Li, J. Y. A continuous measurement of swelling of rice starch during heating. J. Cereal Sci. 1996, 23(3), 277-283.

Yu, S.; Ma, Y.; Liu, T.; Menager, L.; Sun, D. W. Impact of cooling rates on the staling behavior of cooked rice during storage. J. Food Eng. 2010, 96, 416-420.

Zabar, S.; Lesmes, U.; Katz, I.; Shimoni, E.; Bianco-Peled, H. Studying different dimensions of amylose–long chain fatty acid complexes: Molecular, nano and micro level characteristics. Food Hydrocolloid. 2009, 23(7), 1918-1925.

Zhang, Z.H.; Sun, D. W. Effects of cooling methods on the cooling efficiency and quality of cooked rice. J. Food Eng. 2006, 77, 269–274.

Zhang, P.; Hamaker, B. R. Banana starch structure and digestibility. Carbohydr. Polym. 2012, 87(2), 1552-1558.

Zhang, B.; Huang, Q.; Luo, F.; Fu, X. Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid. Food Hydrocolloid. 2012, 28, 74-81.

Zhou, Z.; Robards, K.; Helliwell, S.; Blanchard, C. Composition and functional properties of rice. Int. J. Food Sci. Technol. 2002, 37(8), 849-868.

Zhou, Z.; Robards, K.; Helliwell, S.; Blanchard, C. Effect of the addition of fatty acids on rice starch properties. Food Res. Int. 2007, 40(2), 209-214.

Zobel, H. F. X-ray Analysis of Starch Granules. Methods in Carbohydrate Chemistr, Whistler, R. L. (Ed.), Academic Press: Orlando, FL, 1964; 4, pp. 109.

Zobel, H. F.; French, A. D.; Hinkle, M. E. X-ray diffraction of oriented amylose fibers. II. Structure of V-amylose. Biopolymers 1967, 5, 837-845.

Zobel, H. F. Starch crystal transformations and their industrial importance. Starch&;#8208;St&;auml;rke 1988, 40(1), 1-7.

Zobel, H. F; Stephen, A. M. Starch: structure, analysis, and application. In: Food Polysaccharides and Their Applications, Stephen, A. M. (Ed.), Marcel Dekker, New York, 1995; pp. 19–65.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔