跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀明慧
研究生(外文):Ming-Hui Chi
論文名稱:利用體外模式探討發酵豆粕衍生對腸黏膜免疫調節作用
論文名稱(外文):An in vitro study on gut mucosal immunomodulation by peptides derived from fermented soybean meal
指導教授:蔣丙煌蔣丙煌引用關係
口試委員:周正俊潘子明陳錦樹
口試日期:2014-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:88
中文關鍵詞:黏膜免疫大豆粕小麥固態發酵胜&;#32957;小腸上皮細胞
外文關鍵詞:Mucosal immunitysoybean mealwheatsolid-state fermentationpeptidesintestinal epithelial cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
感染性疾病(Infectious diseases)主要是由致病微生物所引起的,在人類和動物體中,此疾病主要發生在黏膜表面,特別是在腸道中。黏膜組織是體內免疫系統與外界各種抗原接觸作用的主要部位,可防止病原微生物入侵生物體。在人體中,小腸是最大的淋巴器官,含有許多淋巴球。近年來已有文獻顯示,小腸上皮細胞(Intestinal epithelial cells;IEC)在調節腸道平衡和免疫反應上扮演著關鍵角色。大豆粕(soybean meal;SBM)俗稱豆粉,為大豆經過溶劑萃取油脂後所留下之副產物。大豆粕因含有高量蛋白質,所以在飼料工業中已被廣泛的作為蛋白的來源。有研究指出,來自大豆蛋白的生物活性&;#32957;具有免疫調節活性。因此,本研究的目的為評估發酵豆粕衍生&;#32957;對於腸黏膜免疫的調節作用。將豆粕與小麥依比例混合做為基質,之後利用三種不同的菌&;#37211;在不同時間點下進行發酵,分別為Aspergillus oryzae BCRC 30428、Rhizopus oryzae BCRC 31150、Bacillus subtilis BCRC 14715。這些菌株常用在發酵東方傳統製品上,而在本實驗中則用以分解豆粕中的蛋白質,產生生物活性&;#32957;。IEC-6細胞株為來自大鼠的正常小腸上皮細胞,本研究用它作為體外細胞模式,以評估發酵豆粕衍生&;#32957;在LPS的誘導下是否可以降低細胞間的滲透性和細胞激素IL-6的分泌,以及增加IL-10的分泌。同時也評估在單獨給予發酵豆粕水萃物時是否可以增加IL-6和IL-10的分泌量,以間接證實對於IgA生成量的關係。首先測定IEC-6細胞株電阻,知其電阻值約為80.82 ± 2.75 Ω‧cm2,與文獻中所顯示之大鼠完整小腸組織(50-100 Ω ‧ cm2)電阻相似,因此,可確定IEC-6細胞株可做為細胞單層膜模式,用以評估上皮細胞的障壁功能。實驗結果顯示,不同菌&;#37211;在不同發酵時間下所得之發酵產物,皆顯示隨著發酵時間增加,48、60、72 h之豆粕水萃物對於大鼠小腸上皮細胞均有促進增生的效果。接著將不同菌&;#37211;發酵48、60、72 h之豆粕水萃物,進一步做細胞通透性的測定,結果顯示,利用B. subtilis natto發酵之豆粕水萃物,可維持上皮細胞之屏障完整性,對於黏膜並無損傷作用。因此,進一步的以Lipopolysaccharides(LPS)作為誘導劑,觀察B. subtilis natto發酵之豆粕水萃物對於上皮細胞是否有保護效果。結果可知,B. subtilis natto在不同發酵時間下之豆粕水萃物對於LPS所誘導降低的細胞跨膜電阻值(Transepithelial resistance; TER)皆有顯著增加的情形,可有效改善細胞通透性減緩黏膜損傷。而在IL-6細胞激素分泌量的實驗中,A. oryzae和B. subtilis natto的發酵水萃物,隨著發酵時間的增加,其對於LPS所誘導增加的IL-6分泌量有顯著性降低之作用,顯示這些發酵水萃物可有效降低發炎激素的產生。同時B. subtilis natto的發酵水萃物,在與LPS共培養下,也可有效提升IL-10的分泌量。綜合以上結果,可知B. subtilis natto的發酵水萃物,確實具有較好的生理活性,因此,接著利用分子篩層析法分離B. subtilis natto發酵水萃物中之不同大小片段之胜&;#32957;,結果顯示B. subtilis natto發酵水萃物確實有隨著發酵時間增加,分子量較小之胜&;#32957;有增加的趨勢。因此,之後會進一步的將分離出之區分物,進行生物活性評估,以找出具有黏膜免疫作用的生物活性&;#32957;。

The majority of infectious diseases of animals and humans occur at mucosal surfaces, especially in the intestinal tract. The mucosa is the principal site for the immune system’s interaction with the outside environment, it can protect our body from pathogenic organisms. Intestine is the largest lymphoid organ in human body. Recent researches showed that intestinal epithelial cells (IEC) may play key role in maintaining the homeostasis and modulating the immune response. Soybean meal is the byproduct of soybean oil production. It has been used extensively as an important source of dietary protein in the feed industry because of their high protein content. It has been reported that peptides derived from soy protein have immunomodulating activity. Thus, the aim of this research was to evaluate the effects of peptides derived from fermented soybean meal on mucosal immune response. Mixture of soybean meal and wheat was fermented with different microorganisms, including Aspergillus oryzae BCRC 30428, Rhizopus oryzae BCRC 31150, Bacillus subtilis BCRC 14715. These microbes are commonly used as starters in the fermentation of many traditional, oriental food products. The IEC-6 cell line from the rat normal small intestine cell was used as the cell model to evaluate whether peptides from fermented soy products could increase IL-6 and IL-10 cytokines secretion, inhibit LPS induced inflammatory cytokines and decrease intracellular permeability. First, we determined the transepithelial resistance (TER) value of IEC-6 cell line, and found its TER value is approximately 80.82 ± 2.75 Ω ‧ cm2, which is similar to the complete rat intestinal tissue (50-100 Ω ‧ cm2). Therefore, the IEC-6 cell can be used as a cell monolayer to assess the epithelial barrier function. Results showed that disregard the kind of starter used, the water extract of fermented soybean meal could increase proliferation of the rat intestinal epithelial cells, and this effect would be enhanced when fermentation time was increased. For the permeability of IEC-6 cells, our results showed that only the water extract of B. subtilis natto fermented soybean meal could maintain the integrity of the epithelial barrier. Therefore, we further treated the cells with LPS to increase of permeability in IEC-6 cells, and in the meantime the cell culture were also given water extract of B. subtilis natto fermented soybean meal. We found the water extract of the fermented product could significantly recover the level of transepithelial resistance. This result demonstrated that the water extract of B. subtilis natto fermented soybean meal had protective effect on rat intestinal epithelial cells and can decrease mucosal injury. In addition, the water extracts of soybean meal fermented by B. subtilis natto could inhibit the LPS induced inflammation in intestinal epithelial cells, and its bioactivity increased with increase of fermentation time. And it could also up-regulate the level of IL-10. We further used the size exclusion chromatograph to separate the peptides based on their molecular weights, and then identified the peptides which has the bioactivity of mucosal immunomodulation.

目錄
口試委員會審定書 I
中文摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 X

第一章、文獻回顧 1
第一節、小腸組織之組成與功能 1
(一)小腸上皮細胞之屏障功能 1
(二)小腸細胞間之結合作用 3
第二節、腸黏膜的防禦機制 5
(一)黏膜屏障 6
(二)免疫防禦 7
(三)腸黏膜免疫系統的組成 8
第三節、大豆及其副產物大豆粕 11
(一)大豆之特性 11
(二)大豆粕之特性 11
(三)發酵大豆粕的特性 12
(四)固態發酵之特性 13
第四節、發酵菌&;#37211; 14
(一) Aspergillus oryzae 14
(二) Rhizopus oryzae 14
(三) Bacillus subtilis 15
第五節、機能性蛋白質與生物活性&;#32957; 16
(一)機能性蛋白質與生物活性&;#32957; 16
(二)蛋白質與胜&;#32957;在腸道之吸收 17
第六節、以IEC-6細胞株作為體外模式評估腸黏膜免疫反應 19

第二章、實驗目的與設計 20
第一節、實驗目的 20
第二節、實驗設計 21
(一)發酵豆粕的發酵製程 21
(二)發酵豆粕活性&;#32957;之基本成分分析與生物活性評估 22

第三章、材料與方法 23
第一節、實驗材料 23
(一)發酵菌種 23
(二)實驗原料 23
(三)細胞株來源 24
(四)藥品試劑 24
第二節、儀器設備 26
第三節、實驗方法 27
(一) 發酵豆粕之製備 27
(二) 發酵豆粕水萃液之製備 29
(三) 發酵豆粕成分分析 29
(四) 樣品配置 32
(五) 細胞培養 32
(六) 細胞存活率分析( MTT assay ) 34
(七) 以細胞模式探討發酵豆粕衍生&;#32957;免疫調節功能 35

第四章、結果與討論 40
第一節、發酵豆粕水萃液之成分分析 40
(一) 發酵豆粕水萃液之水溶性蛋白含量 40
(二) 發酵豆粕水萃液之胜&;#32957;含量 43
(三) 發酵豆粕水萃液之pH值變化 45
第二節、不同菌&;#37211;發酵豆粕水萃液對大鼠腸上皮細胞IEC-6之存活率影響 46
(一) 不同蛋白質濃度的發酵豆粕水萃液處理IEC-6細胞之MTT結果 46
第三節、不同菌&;#37211;發酵豆粕水萃物對大鼠腸上皮細胞IEC-6之細胞緊密型結合
作用( Tight junction )之影響 51
(一)以大鼠腸上皮細胞IEC-6作為評估黏膜上皮細胞屏障功能之模式 51
(二)不同菌&;#37211;發酵豆粕水萃物對於IEC-6細胞通透性之影響 53
(三) B. subtilis natto發酵豆粕水萃物抑制LPS所誘導IEC-6之損傷 57
第四節、以細胞模式探討不同菌&;#37211;發酵豆粕水萃物之免疫調節功能 60
(一)發酵豆粕水萃物對於LPS所誘導產生之發炎激素IL-6之抑制能力 60
(二)發酵豆粕水萃物對於LPS所誘導降低抗發炎激素IL-10之上調能力 65
第五節、利用分子篩層析法分離豆粕水萃物中之活性胜&;#32957; 70
(一)發酵豆粕水萃液之分子量大小 70

第五章、結論 72

第六章、參考文獻 73








圖目錄
圖1-1、調節上皮細胞通透作用的兩個主要途徑 2
圖1-2、小腸細胞間結合作用及上皮細胞接合蛋白之型態 4
圖1-3、黏膜免疫的途徑和各部位的作用功能 5
圖1-4、腸道黏膜免疫的機制 9
圖1-5、腸道黏膜免疫系統 10
圖3-1、OPA法反應式 31
圖3-2、細胞跨膜電阻(TER)測定裝置 36
圖4-1、不同發酵菌&;#37211;對於大豆粕中蛋白質含量的影響 42
圖4-2、不同發酵菌&;#37211;對於大豆粕中胜&;#32957;含量的影響 44
圖4-3、不同發酵菌&;#37211;在發酵大豆粕期間pH值之變化 45
圖4-4、不同蛋白濃度的發酵豆粕水萃液處理大鼠腸上皮細胞IEC-6達24小時之存活率結果 48
圖4-5、在不同時間下IEC-6單層膜之電阻值變化 52
圖4-6、不同菌&;#37211;在不同發酵時間下之豆粕水萃物對於IEC-6細胞通透性影響 54
圖4-7、B. subtilis natto發酵之豆粕水萃物抑制LPS所誘導改變IEC-6細胞之通透性 59
圖4-8、不同菌&;#37211;在不同發酵時間下之豆粕水萃物抑制LPS所誘導產生的發炎細胞激素 62
圖4-9、不同菌&;#37211;發酵豆粕水萃物在不同發酵時間下上調LPS所誘導減少IL-10
之能力 67
圖4-10、納豆菌發酵豆粕水萃物在不同發酵時間下胜&;#32957;之分子量分佈 71








表目錄
表3-1、定量蛋白之檢量線配製表 30



王西華、林玉娟、程梅萍。1994。固態發酵的回顧與展望。生物產業。5(3): 17-24。
林郁婷。2008。在有或無 LPS 作用下大蒜精油對於 IEC-18 細胞株障壁功能及免疫調節活性的影響。中山醫學大學營養學研究所學位論文。臺中。1-75。
林讚峰、黃正財。1983。紅麴菌釀造性質之研究 (一) 澱粉水解酵素。酒類試驗所研究年報 72 年度。臺北。157-167。
洪平。1986。飼料原料要覽(含添加物)。台灣養羊雜誌社。臺北。
連逸韻。2006。利用二階段固態發酵模式製備發酵豆粕以去除寡糖暨過敏性蛋白質。中興大學食品暨應用生物科技學系碩士學位論文。臺中。1-117。
黃琪雅。2009。純化與定序具有抑制血管收縮素轉化酵素活性之雞蛋蛋白胜&;#32957;。東海大學食品科學系碩士學位論文。臺中。1-72。
蔡佩珊。2007。發酵豆粕對肉豬免疫調節功能之影響。臺灣大學食品科技研究所學位論文。臺北。1-78。
鄧德豐。1987。應用微生物學。業強出版。臺北。
魏任廷。2009。利用連續式酵素膜反應器水解豬血生產含生物活性胜&;#32957;之保健產品。臺灣大學食品科技研究所學位論文。臺北。1-141。
蘇遠志。2003。納豆菌代謝產物的開發與應用。生物產業。14:117-30。
Rose, A. H.、郭俊欽(譯)。1989。醱酵食品。徐氏基金會。臺北。
郭智宏。2001。腸道吸收&;not;-胺基酸與胜&;#32957;。食品工業月刊。臺北。33:15。
張建棣。1999。胜&;#32957;於腸胃道傳輸之探討。食品工業月刊。臺北。31:40。
彭建彰。2010。胜&;#32957;的載體性也可算是種標靶營養。食品資訊。臺北。236:90。
李世成。2004。活性&;#32957;在大鼠小腸吸收特點的實驗研究。中國運動醫學雜誌。中國。23:271。
羅國文、余立文。2004。固態發酵製成的開發與應用。食品工業月刊。臺北。3(10):2-10。
洪宗羽、林淑媛、林敬剛等。2009。製作發酵大豆粕菌株之篩選。台灣農學會報。10(2):145-155。
陳怡如。2008。帶鱗單角革單棘魨魚皮之水解產物對纖維母細胞及角質細胞抗氧化能力之影響。臺灣大學食品科技研究所學位論文。臺北。1-133。
韓凌、王培訓、韓冰。2005。四君子湯總多糖對大鼠小腸上皮株IEC-6細胞增殖的影響。遼寧中醫雜誌。32(11):1208-1209。
楊培牆、陳世爵。1979。醬油製造專輯。美國黃豆協會。台北。
Abdel-Rahman, M. A.; Tashiro, Y.; Sonomoto, K., Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31, 877-902.
Adibi, S. A., Role of small intestine in digestion of protein to amino acids and peptides for transport to portal circulation [Human]. Curr. Concepts Nutr. 1980.
Aguilar, M.-I., HPLC of peptides and proteins: methods and protocols. Springer: 2004; Vol. 251.
Aidoo, K.; Hendry, R.; Wood, B., Solid substrate fermentations. Adv. Appl. Microbiol. 1982, 28, 201-237.
Akira, S.; Hirano, T.; Taga, T.; Kishimoto, T., Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). The FASEB J. 1990, 4, 2860-2867.
Aktories, K.; Barbieri, J. T., Bacterial cytotoxins: targeting eukaryotic switches. Nat. Rev. Microbiol. 2005, 3, 397-410.
Anwar, A.; Saleemuddin, M., Alkaline proteases: a review. Bioresour. Technol. 1998, 64, 175-183.
Ayabe, T.; Satchell, D. P.; Wilson, C. L.; Parks, W. C.; Selsted, M. E.; Ouellette, A. J., Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol. 2000, 1, 113-118.
Banerjee, R.; Bhattacharyya, B., Extracellular alkaline protease of newly isolatedRhizopus oryzae. Biotechnol. Lett. 1992, 14, 301-304.
Beagley, K.; Eldridge, J.; Lee, F.; Kiyono, H.; Everson, M.; Koopman, W.; Hirano, T.; Kishimoto, T.; McGhee, J., Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells. J. Exp. Med. 1989, 169, 2133-2148.
Berg, R. D., Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 1995, 3, 149-154.
Blumenthal, C. Z., Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei : justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul. Toxicol. Pharmacol. 2004, 39, 214-228.
Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
Chen, C.-C.; Liou, G.-Y.; Lee, F.-L., Rhizopus and Related Species from Peka in Taiwan. Fungal Sci. 2007, 22, 51-57.
Church, F. C.; Swaisgood, H. E.; Porter, D. H.; Catignani, G. L., Spectrophotometric Assay Using o-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. J. Dairy Sci. 1983, 66, 1219-1227.
Chutmanop, J.; Chuichulcherm, S.; Chisti, Y.; Srinophakun, P., Protease production by Aspergillus oryzae in solid&;#8208;state fermentation using agroindustrial substrates. J. Chem. Technol. Biotechnol. 2008, 83, 1012-1018.
de Fatima Viana, S.; Guimaraes, V. M.; Jose, I. C.; de Almeida e Oliveira, M. G.; Brunoro Costa, N. M.; de Barros, E. G.; Moreira, M. A.; de Rezende, S. T., Hydrolysis of oligosaccharides in soybean flour by soybean α-galactosidase. Food Chem. 2005, 93, 665-670.
De Gobba, C.; Espejo-Carpio, F. J.; Skibsted, L. H.; Otte, J., Antioxidant peptides from goat milk protein fractions hydrolysed by two commercial proteases. Int. Dairy J. 2014.
de LeBlanc, A. d. M.; Matar, C.; LeBlanc, N.; Perdigon, G., Effects of milk fermented by Lactobacillus helveticus R389 on a murine breast cancer model. Breast Cancer Res. 2005, 7, R477-R486.
Deitch, E. A.; Specian, R. D.; Berg, R. D., Endotoxin-induced bacterial translocation and mucosal permeability: role of xanthine oxidase, complement activation, and macrophage products. Crit. Care Med. 1991, 19, 785-791.
Denizot, F.; Lang, R., Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89, 271-277.
Duarte, J.; Vinderola, G.; Ritz, B.; Perdigon, G.; Matar, C., Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobiology 2006, 211, 341-350.
Egorov, T. A.; Odintsova, T. I.; Pukhalsky, V. A.; Grishin, E. V., Diversity of wheat anti-microbial peptides. Peptides 2005, 26, 2064-2073.
Egusa, S.; Otani, H., Soybean protein fraction digested with neutral protease preparation,“Peptidase R”, produced by Rhizopus oryzae, stimulates innate cellular immune system in mouse. Int. Immunopharmacol. 2009, 9, 931-936.
Escudero, E.; Mora, L.; Fraser, P. D.; Aristoy, M.-C.; Toldra, F., Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chem. 2013, 138, 1282-1288.
Forster, C., Tight junctions and the modulation of barrier function in disease. Histochem. Cell Biol. 2008, 130, 55-70.
Farhadi, A.; Banan, A.; Fields, J.; Keshavarzian, A., Intestinal barrier: an interface between health and disease. J. Gastroenterol. Hepatol. 2003, 18, 479-497.
Farquhar, M. G.; Palade, G. E., Junctional complexes in various epithelia. J. Cell Biol. 1963, 17, 375-412.
Frister, H.; Meisel, H.; Schlimme, E., OPA method modified by use of N, N-dimethyl-2-mercaptoethylammonium chloride as thiol component. Fresenius'' Zeitschrift fur analytische Chemie 1988, 330, 631-633.
Furuse, M.; Hirase, T.; Itoh, M.; Nagafuchi, A.; Yonemura, S.; Tsukita, S., Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 1993, 123, 1777-1788.
Garrett, W. S.; Gordon, J. I.; Glimcher, L. H., Homeostasis and inflammation in the intestine. Cell 2010, 140, 859-870.
Georgiev, V. S.; Zoon, K. C., National Institute of Allergy and Infectious Diseases, NIH. In Springer: 2009.
Goldfarb, A. R.; Saidel, L. J.; Mosovich, E., The ultraviolet absorption spectra of proteins. J. Biol. Chem. 1951, 193, 397-404.
Goodrich, M.; McGee, D., Effect of intestinal epithelial cell cytokines on mucosal B-cell IgA secretion: enhancing effect of epithelial-derived IL-6 but not TGF-β on IgA+ B cells. Immunol. Lett. 1999, 67, 11-14.
Gu, Y.; Wu, J., LC–MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins. Food Chem. 2013, 141, 2682-2690.
Gumbiner, B.; Lowenkopf, T.; Apatira, D., Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Nat. Acad. Sci. 1991, 88, 3460-3464.
Hafeez, Z.; Cakir-Kiefer, C.; Roux, E.; Perrin, C.; Miclo, L.; Dary-Mourot, A., Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products. Food Res. Int. 2014.
Han, X.; Fink, M. P.; Yang, R.; Delude, R. L., Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 2004, 21, 261-270.
Holmgren, J.; Czerkinsky, C., Mucosal immunity and vaccines. Nat. Med. 2005, 11, S45-S53.
Hong, K.-J.; Lee, C.-H.; Kim, S. W., Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 2004, 7, 430-435.
Hu, L.-N.; Fang, X.-Y.; Liu, H.-L.; Gao, Z.; Wu, X.-F.; Sun, Y.; Wu, X.-D.; Xu, Q., Protective effects of 18β-glycyrrhetinic acid on LPS-induced injury in intestinal epithelial cells. Chin. J. Nat. Med. 2013, 11, 24-29.
Huang, W.-H.; Sun, J.; He, H.; Dong, H.-W.; Li, J.-T., Antihypertensive effect of corn peptides, produced by a continuous production in enzymatic membrane reactor, in spontaneously hypertensive rats. Food Chem. 2011, 128, 968-973.
Iizuka, H.; Iida, M., Maltoryzine, a new toxic metabolite produced by a strain of Aspergillus oryzae var. microsporus isolated from the poisonous malt sprout. Nature 1962, 196, 681-682.
Isaac, R. E.; Kim, Y.-J.; Audsley, N., The degradome and the evolution of Drosophila sex peptide as a ligand for the MIP receptor. Peptides 2014, 53, 258-264.
Iwamoto, T.; Yamada, K.; Shimizu, M.; Totsuka, M., Establishment of intestinal epithelial cell lines from adult mouse small and large intestinal crypts. Biosci. Biotechnol. Biochem. 2011, 75, 925-929.
Jeon, Y.-J.; Byun, H.-G.; Kim, S.-K., Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem. 1999, 35, 471-478.
Jourdheuil-Rahmani, D.; Charbonnier, M.; Domingo, N.; Luccioni, F.; Lafont, H.; Lairon, D., Biliary anionic peptide fraction and apoA-I regulate intestinal cholesterol uptake. Biochem. Biophys. Res. Commun. 2002, 292, 390-395.
Kamada, N.; Seo, S.-U.; Chen, G. Y.; Nunez, G., Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13, 321-335.
Keshun, L., Soybeans: chemistry, technology, and utilization. Chapman &; Hall: 1997.
Kiers, J.; Rombouts, F.; Nout, M., In vitro digestibility of Bacillus fermented soya bean. Int. J. Food Microbiol. 2000, 60, 163-169.
Kimura, H.; Sawada, N.; Tobioka, H.; Isomura, H.; Kokai, Y.; Hirata, K.; Mori, M., Bacterial lipopolysaccharide reduced intestinal barrier function and altered localization of 7H6 antigen in IEC&;#8208;6 rat intestinal crypt cells. J. Cell. Physiol. 1997, 171, 284-290.
Kimura, S.; Maruyama, J.-i.; Takeuchi, M.; Kitamoto, K., Monitoring global gene expression of proteases and improvement of human lysozyme production in the nptB gene disruptant of Aspergillus oryzae. Biosci. Biotechnol. Biochem. 2008, 72, 499-505.
Kiyono, H.; Fukuyama, S., NALT-versus Peyer''s-patch-mediated mucosal immunity. Nat. Rev. Immunol. 2004, 4, 699-710.
Ko, J.-Y.; Lee, J.-H.; Samarakoon, K.; Kim, J.-S.; Jeon, Y.-J., Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food Chem. Toxicol. 2013, 52, 113-120.
Lopez-Fandino, R.; Otte, J.; Van Camp, J., Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int. Dairy J. 2006, 16, 1277-1293.
Lafarga, T.; O’Connor, P.; Hayes, M., Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides 2014.
Lahl, W. J.; Braun, S. D., Enzymatic production of protein hydrolysates for food use. Food Technol. 1994, 48, 68-71.
Lalles, J., Soy products as protein sources for preruminants and young pigs. Soy in Animal Nutrition. JK Drackley, ed. Fed. Anim. Sci. Soc., Champaign, IL 2000, 106-126.
Lavermicocca, P.; Valerio, F.; Lonigro, S. L.; De Angelis, M.; Morelli, L.; Callegari, M. L.; Rizzello, C. G.; Visconti, A., Study of adhesion and survival of lactobacilli and bifidobacteria on table olives with the aim of formulating a new probiotic food. Appl. Environ. Microbiol. 2005, 71, 4233-4240.
LeBlanc, J.; Matar, C.; Valdez, J.; LeBlanc, J.; Perdigon, G., Immunomodulating Effects of Peptidic Fractions Issued from Milk Fermented with Lactobacillus helveticus. J. Dairy Sci. 2002, 85, 2733-2742.
LeBlanc, J.; Fliss, I.; Matar, C., Induction of a humoral immune response following an Escherichia coli O157: H7 infection with an immunomodulatory peptidic fraction derived from Lactobacillus helveticus-fermented milk. Clin. Diagn. Lab. Immunol. 2004, 11, 1171-1181.
Li, D.; Nelssen, J.; Reddy, P.; Blecha, F.; Hancock, J.; Allee, G.; Goodband, R.; Klemm, R., Transient hypersensitivity to soybean meal in the early-weaned pig. J. Anim. Sci. 1990, 68, 1790-1799.
Lycke, N., Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 2012, 12, 592-605.
Ma, T. Y.; Hollander, D.; Bhalla, D.; Nguyen, H.; Krugliak, P., IEC-18, a nontransformed small intestinal cell line for studying epithelial permeability. J. Lab. Clin. Med. 1992, 120, 329-341.
Madara, J. L., Increases in guinea pig small intestinal transepithelial resistance induced by osmotic loads are accompanied by rapid alterations in absorptive-cell tight-junction structure. J. Cell Biol. 1983, 97, 125-136.
Madara, J. L., Regulation of the movement of solutes across tight junctions. Annu. Rev. Physiol. 1998, 60, 143-159.
Mallet, J.-F.; Duarte, J.; Vinderola, G.; Anguenot, R.; Beaulieu, M.; Matar, C., The immunopotentiating effects of shark-derived protein hydrolysate. Nutrition 2014, 30, 706-712.
Marasanapalle, V.; Li, X.; Polin, L.; Jasti, B. R., Novel in vitro model barriers for evaluation of the permeability of antitumor compounds, thioxanthones. Invest. New Drugs 2006, 24, 111-116.
Marcial, M. A.; Carlson, S. L.; Madara, J. L., Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationships. J. Mem. Biol. 1984, 80, 59-70.
Martinez, C.; Gonzalez-Castro, A.; Vicario, M.; Santos, J., Cellular and molecular basis of intestinal barrier dysfunction in the irritable bowel syndrome. Gut and liver 2012, 6, 305-315.
Mayer, L.; Shao, L., Therapeutic potential of oral tolerance. Nat. Rev. Immunol. 2004, 4, 407-419.
McGee, D.; Beagley, K. W.; Aicher, W. K.; McGhee, J. R., Transforming growth factor-beta and IL-1 beta act in synergy to enhance IL-6 secretion by the intestinal epithelial cell line, IEC-6. J. Immunol. 1993, 151, 970-978.
Meisel, H., Biochemical properties of peptides encrypted in bovine milk proteins. Curr. Med. Chem. 2005, 12, 1905-1919.
Messina, M. J., Legumes and soybeans: overview of their nutritional profiles and health effects. Am. J. clin. Nutr. 1999, 70, 439s-450s.
Meyer, T. A.; Noguchi, Y.; Ogle, C. K.; Tiao, G.; Wang, J. J.; Fischer, J. E.; Hasselgren, P.-O., Endotoxin stimulates interleukin-6 production in intestinal epithelial cells: a synergistic effect with prostaglandin E2. Arch. Surg. 1994, 129, 1290-1295.
Miller, B.; Newby, T.; Stokes, C.; Bourne, F., Influence of diet on postweaning malabsorption and diarrhoea in the pig. Res. Vet. Sci. 1984, 36, 187-193.
Mitchell, D.; Lonsane, B., Definition, characteristics and potential. Solid Sub. Culti. 1992, 1-16.
Montilla, N. A.; Blas, M. P.; Santalla, M. L.; Villa, J. M., Mucosal immune system: a brief review. Immunol. 2004, 23, 207-16.
Msadek, T., When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends Microbiol. 1999, 7, 201-207.
Nagler-Anderson, C., Man the barrier! strategic defences in the intestinal mucosa. Nat. Rev. Immunol. 2001, 1, 59-67.
Najafian, L.; Babji, A., A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications. Peptides 2012, 33, 178-185.
Nakamura, S.; Shimoda, Y., Studies on an antibiotic substance oryzacidin, produced by Aspergillus oryzae. J. Agri. Chem. Soci. Japan 1954, 28, 909-913.
Neutra, M. R.; Pringault, E.; Kraehenbuhl, J.-P., Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu. Rev. Immunol. 1996, 14, 275-300.
Nongonierma, A. B.; FitzGerald, R. J., Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chem. 2014, 145, 845-852.
Nusrat, A.; Parkos, C.; Verkade, P.; Foley, C.; Liang, T.; Innis-Whitehouse, W.; Eastburn, K.; Madara, J., Tight junctions are membrane microdomains. J. Cell Sci. 2000, 113, 1771-1781.
O''Dwyer, S. T.; Michie, H. R.; Ziegler, T. R.; Revhaug, A.; Smith, R. J.; Wilmore, D. W., A single dose of endotoxin increases intestinal permeability in healthy humans. Arch. Surg. 1988, 123, 1459-1464.
Ogra, P. L.; Faden, H.; Welliver, R. C., Vaccination strategies for mucosal immune responses. Clin. Microbiol. Rev. 2001, 14, 430-445.
Orth, R. In Mycotoxins of Aspergillus oryzae strains for use in the food industry as starters and enzyme producing molds, Ann. Nutr. Aliment., 1977.
Parham, P.; Janeway, C. A., The immune system. Garland Science New York, NY: 2005; Vol. 250.
Parker, F.; Migliore-Samour, D.; Floc''h, F.; Zerial, A.; Werner, G. H.; Jolles, J.; Casaretto, M.; Zahn, H.; Jolles, P., Immunostimulating hexapeptide from human casein: amino acid sequence, synthesis and biological properties. Eur. J. Biochem. 1984, 145, 677-82.
Pinto, M.; Robine-Leon, S.; Appay, M., et al., Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 1983, 47.
Pokora, M.; Zambrowicz, A.; D&;#261;browska, A.; Eckert, E.; Setner, B.; Szo&;#322;tysik, M.; Szewczuk, Z.; Zab&;#322;ocka, A.; Polanowski, A.; Trziszka, T., An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides. Food Chem. 2014, 151, 500-505.
Puchalska, P.; Marina, M. L.; Garcia, M. C., Isolation and identification of antioxidant peptides from commercial soybean-based infant formulas. Food Chem. 2014, 148, 147-154.
Qu, W.; Ma, H.; Jia, J.; He, R.; Luo, L.; Pan, Z., Enzymolysis kinetics and activities of ACE inhibitory peptides from wheat germ protein prepared with SFP ultrasound-assisted processing. Ultrason. Sonochem. 2012, 19, 1021-1026.
Quaroni, A.; Wands, J.; Trelstad, R. L.; Isselbacher, K. J., Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J. Cell Biol. 1979, 80, 248-265.
Rachid, M.; Matar, C.; Duarte, J.; Perdigon, G., Effect of milk fermented with a Lactobacillus helveticus R389 (+) proteolytic strain on the immune system and on the growth of 4T1 breast cancer cells in mice. FEMS Immunol. Med. Microbiol. 2006, 47, 242-253.
Rayaprolu, S. J.; Hettiarachchy, N. S.; Chen, P.; Kannan, A.; Mauromostakos, A., Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth. Food Res. Int. 2013, 50, 282-288.
Robinson, T.; Singh, D.; Nigam, P., Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 2001, 55, 284-289.
Salton, M.; Marshall, B., The composition of the spore wall and the wall of vegetative cells of Bacillus subtilis. J. Gen. Microbiol. 1959, 21, 415-420.
Senevirathne, M.; Kim, S.-K., Development of bioactive peptides from fish proteins and their health promoting ability. Adv. Food Nutr. Res. 2012, 65, 235-248.
Shelton, J.; Hemann, M.; Strode, R.; Brashear, G.; Ellis, M.; McKeith, F.; Bidner, T.; Southern, L., Effect of different protein sources on growth and carcass traits in growing-finishing pigs. J. Anim. Sci. 2001, 79, 2428-2435.
Shimizu, M., Food&;#8208;derived peptides and intestinal functions. Biofactors 2004, 21, 43-47.
Shirota, K.; LeDuy, L.; Yuan, S.; Jothy, S., Interleukin-6 and its receptor are expressed in human intestinal epithelial cells. Virchows Archiv. B. 1989, 58, 303-308.
Siemensma, A. D.; Weijer, W. J.; Bak, H. J., The importance of peptide lengths in hypoallergenic infant formulae. Trends Food Sci. Technol. 1993, 4, 16-21.
Sihorkar, V.; Vyas, S., Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization. J. Pharm. Pharm. Sci. 2001, 4, 138-158.
Singh, B. P.; Vij, S.; Hati, S., Functional significance of bioactive peptides derived from soybean. Peptides 2014, 54, 171-179.
Tanzadehpanah, H.; Asoodeh, A.; Chamani, J., An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Res. Int. 2012, 49, 105-111.
Ting, B.; Pouliot, Y.; Gauthier, S.; Mine, Y.; Rizvi, S., Fractionation of egg proteins and peptides for nutraceutical applications. Separation, extraction and concentration processes in the food, beverage and nutraceutical industries 2010, 595-618.
Tsukita, S.; Furuse, M.; Itoh, M., Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2001, 2, 285-293.
Tsukita, S.; Katsuno, T.; Yamazaki, Y.; Umeda, K.; Tamura, A.; Tsukita, S., Roles of ZO&;#8208;1 and ZO&;#8208;2 in Establishment of the Belt&;#8208;like Adherens and Tight Junctions with Paracellular Permselective Barrier Function. Ann. N. Y. Acad. Sci. 2009, 1165, 44-52.
Turner, J. R., Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799-809.
Vinderola, C. G.; Duarte, J.; Thangavel, D.; Perdigon, G.; Farnworth, E.; Matar, C., Immunomodulating capacity of kefir. J. Dairy Res. 2005a, 72, 195-202.
Vinderola, G.; Matar, C.; Perdigon, G., Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvement of toll-like receptors. Clin. Diagn. Lab. Immunol. 2005b, 12, 1075-1084.
Vinderola, G.; Perdigon, G.; Duarte, J.; Farnworth, E.; Matar, C., Effects of the oral administration of the products derived from milk fermentation by kefir microflora on immune stimulation. J. Dairy Res. 2006a, 73, 472-479.
Vinderola, G.; Perdigon, G.; Duarte, J.; Farnworth, E.; Matar, C., Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 2006b, 36, 254-260.
Vinderola, G.; Matar, C.; Perdigon, G., Milk fermented by Lactobacillus helveticus R389 and its non-bacterial fraction confer enhanced protection against Salmonella enteritidis serovar Typhimurium infection in mice. Immunobiology 2007, 212, 107-118.
Wang, X.-j.; Zheng, X.-q.; Kopparapu, N.-k.; Cong, W.-s.; Deng, Y.-p.; Sun, X.-j.; Liu, X.-l., Purification and Evaluation of a Novel Antioxidant Peptide from Corn Protein Hydrolysate. Process Biochem. 2014.
Watson, C.; Rowland, M.; Warhurst, G., Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am. J. Phy. Cell Physiol. 2001, 281, C388-C397.
Wei, D. L.; Jong, S. C., Chinese Rice Pudding Fermentation - Fungal Flora of Starter Cultures and Biochemical-Changes during Fermentation. J. Ferm. Technol. 1983, 61, 573-579.
Wershil, B. K.; Furuta, G. T., 4. Gastrointestinal mucosal immunity. J. Allergy Clin. Immunol. 2008, 121, S380-S383.
Whelan, R. A.; Hartmann, S.; Rausch, S., Nematode modulation of inflammatory bowel disease. Protoplasma 2012, 249, 871-886.
Wilson, S.; Blaschek, K.; Mejia, E. G., Allergenic proteins in soybean: processing and reduction of P34 allergenicity. Nutr. Rev. 2005, 63, 47-58.
Wolf, W. J., Soybean proteins. Their functional, chemical, and physical properties. J. Agric. Food Chem. 1970, 18, 969-976.
Wright, S. D., Multiple receptors for endotoxin. Curr. Opin. Immunol. 1991, 3, 83-90.
Yang, S., Antibiotics production of cellulosic waste with solid state fermentation by Streptomyces. Renew. Ener. 1996, 9, 976-979.
Yimit, D.; Hoxur, P.; Amat, N.; Uchikawa, K.; Yamaguchi, N., Effects of soybean peptide on immune function, brain function, and neurochemistry in healthy volunteers. Nutrition 2012, 28, 154-159.
Yokotsuka, T., Soy sauce biochemistry. Academic Press: 1986.
Yoon, L. W.; Ang, T. N.; Ngoh, G. C.; Chua, A. S. M., Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biom. Bioen. 2014, 67, 319-338.
Yoon, M. Y.; Hwang, H.-J., Reduction of soybean oligosaccharides and properties of α-d-galactosidase from Lactobacillus curvatus R08 and Leuconostoc mesenteriodes JK55. Food Microbiol. 2008, 25, 815-823.
Yoshikawa, M.; Fujita, H.; Matoba, N.; Takenaka, Y.; Yamamoto, T.; Yamauchi, R.; Tsuruki, H.; Takahata, K., Bioactive peptides derived from food proteins preventing lifestyle-related diseases. Biofactors 2000, 12, 143-146.
Zamora, R.; Veum, T., Whole soybeans fermented with Aspergillus oryzae and Rhizopus oligosporus for growing pigs. J. Anim. Sci. 1979, 48, 63-68.
Zhang, Z. Y.; Jin, B.; Kelly, J. M., Production of lactic acid from renewable materials by Rhizopus fungi. Biochem. Eng. J. 2007, 35, 251-263.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top