(3.239.159.107) 您好!臺灣時間:2021/03/08 21:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘筱蕙
研究生(外文):Xiao-Hui Pua
論文名稱:芋頭農業資材最佳化糖解產物於嗜酸乳酸菌發酵與其生理活性之研究
論文名稱(外文):Optimization of Glucose Release from Taro Agricultural Resource for Lactobacillus acidophilus Cultivation and Evaluation of Its Biological Activity Properties
指導教授:鄭光成鄭光成引用關係
指導教授(外文):Kuan-Chen Cheng
口試委員:游若篍周正俊蘇南維
口試委員(外文):Roch-Chui YuCheng-Chun ChouNan-Wei Su
口試日期:2014-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:119
中文關鍵詞:芋頭農業資材嗜酸乳酸菌熱致死菌胞外多醣免疫調節抗腫瘤
外文關鍵詞:Taro agricultural resourceLactobacillus acidophilusHeat-killed cellExopolysaccharideImmune-regulationAnti-tumor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於農業與工廠製造過程所產生的農業廢棄物日益增加,如何永續利用農業廢棄物逐漸獲得世人關注。這些廢棄物在經過適當的前處理之後成為具有潛力的農業資材,並可用於再生能源之生產。另一方面,近期的研究指出,非活性乳酸菌體對於抗腫瘤及免疫調節有一定的功效,然而有關培養基對非活性乳酸菌的影響之研究卻非常有限。此研究利用酵素水解芋頭農業資材中的澱粉生成葡萄糖並以此作為乳酸菌培養基之碳源培養嗜酸乳酸菌BCRC 14079再探討不同培養基對於其熱致死菌、菌胞內液及胞外多醣之抗腫瘤和免疫調節功效的影響。本實驗以Box-Behnken設計之反應曲面法最適化澱粉液化生產還原糖得知澱粉液化最適化條件為在溫度79.2oC下加入9 mL/L之 α-澱粉&;#37238;反應5小時,可產30.57 g/L 還原糖。經過液化後,以在溫度60 oC下加入0.3 mL/L葡萄&;#33527;澱粉水解酵素反應3小時可達最高產量,產出60.14 g/L葡萄糖。本研究探討了6種農業飼料作為替代培養基之氮來源的效果,調配出具有較低成本且環保的乳酸菌培養基。這6種飼料分別為動物性之肉骨粉、雞肉粉及魚骨粉與植物性之玉米酒糟粉、玉米蛋白粉及大豆粉。結果顯示,以37 g/L葡萄糖(來自芋頭農業資材水解物)為碳來源混合25 g/L之玉米蛋白粉並額外添加1 g/L酵母萃取物之CGMY1培養基可產出log 9.20 CFU/mL嗜酸菌。MTT assay細胞存活率分析結果顯示CGM培養基來源之熱致死菌及胞外多醣對抑制人類大&;#32928;癌細胞HT-29及Caco-2的活性最高,且熱致死菌的功效高於胞外多醣。NF-ΚB與COX-2螢光系統檢測顯示最能刺激螢光素報導體的表現為CGM培養基所得之熱致死細胞,而CGMY1培養基所得之胞外多醣次之,最後為MRS培養基所得之胞內液。本研究證實芋頭農業資材可被開發成一具有經濟價質且環保的乳酸菌培養基,並可以此培養基生產具有更高抗腫瘤及免疫調節功效之非活性乳酸菌體。

Food manufacturing sectors, using starch crop, fruits and vegetables as input, has generated a huge amount of field waste and processing wastes that can be utilized as agricultural resources. Yet, the current applications of taro agricultural resources (TAR) was limited as fertilizers. On the other hand, recent studies have revealed that non-viable probiotics have many therapeutic activities including anti-tumor and immunoregulatory properties. However, studies on the influence of culturing medium towards the biological activities of non-viable probiotics were scarce. In this study, TAR was utilized to produce glucose as carbon source for Lactobacillus acidophilus BCRC 14079 cultivation and the anti-tumor and immunomudulatory property of non-viable probiotics namely heat-killed cell (HKC), cytoplasmic fraction (CF) and exopolysaccharide (EPS) were evaluated. Optimum parameter for liquefaction determined by Box-Behnken Design Response Surface Methodology (BBD-RSM) was 79.2oC of temperature, 9 mL/L of α-amylase enzyme solution and 5 h of reaction time, producing 30.57 g/L of reducing sugar. For saccharification, dose of amyloglucosidase, temperature, and saccharification time were determined as 0.3mL/L of amyloglucosidase enzyme solution, 60oC and 3 h, resulting in approximately 60.14 g/L of glucose. Various alternative nitrogen sources, namely bone meal (BM), fish meal (FM), chicken meal (CM), dried distillers grains with solubles (DDGS), corn gluten meal (CGM), and soy meal (SM) were evaluated to substitute yeast extract (YE) as nitrogen source in order to produce a more economic and environmental friendly medium for lactic acid bacteria (LAB) cultivation. The most potential novel TAR medium for enhanced LAB growth, CGMY1 medium, constitutes of approximately 37 g/L of glucose (TAR hydrolyzate) and CGM supplemented with 1 g/L of YE, producing log 9.20 CFU/mL of LAB cells. MTT assay result showed HKC and EPS from CGM medium exhibited the highest anti-proliferative effect towards colon adenocarcinoma cells HT-29 and Caco-2. In addition, the anti-tumor effect of HKC was better than EPS. The results of luciferase-based NF-ΚB and COX-2 system indicated that HKC from CGM medium stimulates the most expression of luciferin reporter in both systems, followed by EPS from CGMY1 medium and CF from MRS medium. In conclusion, this study demonstrated the potential of utilizing TAR for L. acidophilus cultivation and the production of non-viable probiotics with enhanced anti-tumor and/or immunoregulatory property by using novel TAR mediums.

ACKNOWLEGMENTS I
摘要 II
ABSTRACT III
CONTENTS V
LIST OF FIGURES X
LIST OF TABLES XII
CHAPTER I 1
INTRODUCTION 1
CHAPTER II 4
LITERATURE REVIEW 4
2.1 Taro 4
2.2 Agricultural Resource 9
2.2.1 Food Industry Agricultural Resource 9
2.2.2 Taro Agricultural Resource (TAR) 10
2.2.3 Alternative Nitrogen Source 10
2.3 Starch 12
2.4 Hydrolysis of Starch 14
2.4.1 Enzymatic Hydrolysis 16
2.4.2 α-Amylase 17
2.4.3 Amyloglucosidase 18
2.5 Response Surface Methodology 19
2.5.1 Box-Behnken Design 23
2.6 Lactic Acid Bacteria 25
2.6.1 Lactobacillus acidophilus 28
2.6.2 Functional Non-Viable probiotics 29
2.7 Cancer 31
2.8 Immunomodulation 33
2.8.1 NF-ΚB signaling pathway 35
2.8.2 COX-2 signaling pathway 36
CHAPTER III 37
METHODOLOGY 37
3.1 Chemicals, Instruments and Apparatus 37
3.2 Microorganism 44
3.3 Bacteria Cell Population 44
3.4 Taro Agricultural Resource Mash 46
3.5 Moisture Content 46
3.6 Total Starch Content 47
3.7 Enzymatic Starch Hydrolysis of Taro Agricultural Resource 48
3.7.1 Optimization of Liquefaction by Box-Behnken Design Response Surface Methodology (BBD-RSM) 49
3.7.2 Analysis of Reducing Sugar 51
3.7.3 Saccharification 52
3.7.4 Analysis of Glucose 52
3.8 Taro Agricultural Resource Hydrolyzate Mediums (TAR mediums) 54
3.8.1 Selection of Optimum Glucose Concentration 54
3.8.2 Selection of Alternative Nitrogen Source 55
3.8.3 Blending of Novel Taro Agricultural Resource Mediums 55
3.9 Preparation of non-viable probiotics of Lactobacillus acidophilus 56
3.9.1 Preparation of Heat-Killed Cell (HKC) 56
3.9.2 Preparation of Cytoplasmic Fraction (CF) 56
3.9.3 Preparation of Exopolysaccharide (EPS) 57
3.9.4 Preparation of Physical Control 58
3.10 Cell Culture 58
3.10.1 Human Colonic Carcinoma Cell Line (Caco-2) 59
3.10.2 Human Colon Adenocarcinoma Grade II Cell Line (HT-29) and Intestine 407 (INT-407) cell line 59
3.10.3 Mouse Leukemic Monocyte Macrophage Cell Line (RAW 264.7) 60
3.10.4 Cell count 60
3.10.5 Cryopreservation and Thawing of Cells 61
3.11 Standard curve of Cell Lines 62
3.12 Biosensor Platform 64
3.12.1 Anti-Tumor Property by MTT Assay 64
3.12.1.1 Cell Treatment 65
3.12.2 Immunomodulation Property by Luciferase Assay 66
3.12.2.1 Cell Treatment 66
3.11.2.3 Luciferase Assay 67
3.11.3 Protein Normalization 67
3.12 Statistics 67
CHAPTER IV 68
RESULTS AND DISCUSSION 68
4.1 Moisture Content and Total Starch Content 68
4.3 Optimum Parameter of Liquefaction by Box-Behnken Response Surface Methodology 69
4.4 Saccharification 74
4.5 TAR medium(s) 76
4.5.1 Effect of Glucose Concentration on L. acidophilus Growth 76
4.5.2 Effect of Alternative Nitrogen Sources 78
4.5.3 Effect of TAR Mediums Supplemented with Yeast Extract 81
4.6 Inhibitory Effects of HKC from Different Sources on Colon Adenocarcinoma Cell Viability 85
4.7 Inhibitory Effects of EPS from Different Sources on Colon Adenocarcinoma Cell Viability 88
4.8 Inhibitory Effects of HKC and EPS from Different Sources on Intestine 407 Cell Viability 90
4.9 Inhibitory Effects of HKHC and Starch on Colon Adenocarcinoma Cells and Intestine-407 Cell Viability 93
4.9 Immunomodulation effects of non-viable probiotics 97
CHAPTER V 102
CONCLUSION and FUTUREF PROSPECTS 102
REFERENCES 104


Abd El-Gawad, I. A.; El-Sayed, E. M.; Hafez, S. A.; El-Zeini, H. M.; Saleh, F. A. Inhibitory effect of yoghurt and soya yoghurt containing Bifidobacteria on the proliferation of Ehrlich ascites tumour cells in vitro and in vivo in a mouse tumour model. Brit. J. Nutr. 2004, 92(1), 81-86.

Aggarwal, B. B.; Shishodia, S.; Sandur, S. K.; Pandey, M. K.; Sethi, G. Inflammation and cancer: how hot is the link? Biochem. Pharmacol. 2006, 72(11), 1605-1621.

Anjum, N.; Maqsood, S.; Masud, T.; Ahmad, A.; Momin, A. Lactobacillus acidophilus: Characterization of the species and application in food production. Crit. Rev. Food Sci. 2014, 54(9), 1241-1251.

Arapoglou, D.; Varzakas, T.; Vlyssides, A.; Israilides, C. Ethanol production from potato peel waste (PPW). Waste Manag. 2010, 30(10), 1898-902.

Arapoglou, D.; Vlyssides, A.; Varzakas, T.; Haidemenaki, K.; Malli, V.; Marchant, R.; Israilides, C. In Alternative ways for potato industries waste utilisation, Proceedings of the 11th International Conference on Environmental Science and Technology Chania, Crete, Greece, Sept 3-5, 2009.

Aso, Y.; Akazan, H. Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. Urol. Int. 1992, 49(3), 125-129.

Aso, Y.; Akaza, H.; Kotake, T.; Tsukamoto, T.; Imai, K.; Naito, S. Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial. The BLP Study Group. Eur. Urol. 1994, 27(2), 104-109.

Awarenet. Handbook for the prevention and minimisation of waste and valorisation of by-products in European agro-food industries [Online]:Gaiker, Centro Tecnologico: Zamudio, Spain, 2004; http://eea.eionet.europa.eu/Public/irc/envirowindows/awarenet/library?l=/awarenet_handbook&;vm=detailed&;sb=Title (accessed Apr 29, 2014).

Babayemi, O. J. Nutrient value and in vitro gas production of African wild cocoyam (Colocasia esculentrum). A.J.F.A.N.D. 2009, 9(1), 593-607.

Bailey, L. H. Hortus Third: A Concise Dictionary of Plants Cultivated in the United States and Canada; Macmillan: New York, 1976.

Bala Subramanian, S.; Yan, S.; Tyagi, R.; Surampalli, R. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering. Water Res. 2010, 44(7), 2253-2266.

Basnet, K. Solid waste pollution versus sustainable development in high mountain environment: A case study of Sagarmatha National Park of Khumbu region, Nepal.Contrib. Nepalese Stud. 1993, 20(1), 131-139.

Bernfeld, P. Amylases, alpha and beta. Meth. Enzymol. 1955, 149-158.

Beuchat, L. R. Microbial stability as affected by water activity. Cereal Food. World 1981, 26(7), 345-349.

Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76(5), 965-977.

Bischoff, W. On D-optimal designs for linear models under correlated observations with an application to a linear model with multiple response. J. Stat. Plan. Infer. 1993, 37(1), 69-80.

Bleau, C.; Monges, A.; Rashidan, K.; Laverdure, J. P.; Lacroix, M.; Van Calsteren, M. R.; Millette, M.; Savard, R.; Lamontagne, L. Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW&;#8208;9595M increase IL&;#8208;10 production by macrophages. J. Appl. Microbiol. 2010, 108(2), 666-675.

Bogdanov, I. G.; Velichkov, V. T.; Gurevich, A. I.; Dalev, P. G.; Kolosov, M. N.; Malkova, V. P.; Sorokina, I. B.; Christova, L. N. Antitumor effect of glycopeptides from the cell wall of Lactobacillus bulgaricus. Bull. Exp. Biol. Med. 1977, 84, 709-712.

Bongaerts, G.; Severijnen, R. The beneficial, antimicrobial effect of probiotics. Med. Hypotheses 2001, 56(2), 174-177.

Bonizzi, G.; Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004, 25(6), 280-288.

Boot, H. J.; Kolen, C.; Pouwels, P. H. Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J. Bacteriol. 1995, 177(24), 7222-7230.

Box, G. E.; Hunter, J. S. Multi-factor experimental designs for exploring response surfaces. A.N.M.S. 1957, 28(1), 195-241.

Box, G. E.; Draper, N. R. Robust designs. Biometrika 1975, 62(2), 347-352.

Box, G. E. P. Multi-factor designs of first order. Biometrika 1952, 39(1-2), 49-57.

Box, G. E. P.; Behnken, D. W. Some new three level designs for the study of quantitative variables. Technometrics 1960, 2(4), 455-475.

Brown, B. I.; Brown, D. H. The subcellular distribution of enzymes in type II glycogenosis and the occurrence of an oligo-α-1, 4-glucan glucohydrolase in human tissues. BBA-Enzymol. Biol. Oxidation 1965, 110(1), 124-133.

Brzozowski, T.; Konturek, P. C.; Konturek, S. J.; Drozdowicz, D.; Pajdo, R.; Pawlik, M.; Brzozowska, I.; Hahn, E. G. Expression of cyclooxygenase (COX)-1 and COX-2 in adaptive cytoprotection induced by mild stress. J. Physiol. Paris 2000, 94(2), 83-91.


Chabot, S.; Yu, H. L.; De Leseleuc, L.; Cloutier, D.; Van Calsteren, M. R.; Lessard, M.; Roy, D.; Lacroix, M.; Oth, D. Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-gamma in mouse splenocytes. Le Lait 2001, 81(6), 683-697.

Chandrasekharan, N.; Dai, H.; Roos, K. L. T.; Evanson, N. K.; Tomsik, J.; Elton, T. S.; Simmons, D. L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. P. Natl. Acad. Sci. 2002, 99(21), 13926-13931.

Chaplin, M. F.; Bucke, C. Enzyme tech. Cambridge University Press, 1990.

Chen, S. T. Prebiotic effects of several lactics'' exopolysaccharides on the growth of Bifidus. Master Thesis, National Taiwan University, September 2005.

Cheng, P.; Mueller, R.; Jaeger, S.; Bajpai, R.; Iannotti, E. Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus. J. Ind. Microbiol. 1991, 7(1), 27-34.

Choi, S.; Kim, Y.; Han, K.; You, S.; Oh, S.; Kim, S. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol. 2006, 42(5), 452-458.

Chumchalova, J.; Stiles, J.; Josephsen, J.; Plockova, M. Characterization and purification of acidocin CH5, a bacteriocin produced by Lactobacillus acidophilus CH5. J. Appl. Microbiol. 2004, 96(5), 1082-1089.

Ciszek-Lenda, M. Biological functions of exopolysaccharides from probiotic bacteria. Centr Eur. J. Immunol. 2011, 36, 51-55.

Danner, H.; Braun, R., Biotechnology for the production of commodity chemicals from biomass. Chem. Soc. Rev. 1999, 28(6), 395-405.

De Matteis, S.; Dario, C.; Jay H. L.; Margaret, T.; Susan, P.; Roel C. H. V.; Hans, K. Impact of occupational carcinogens on lung cancer risk in a general population. Int. J. Epidemiol. 2012, 41(3), 711-721.

De Vuyst, L.; De Vin, F.; Vaningelgem, F.; Degeest, B. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 2001, 11(9), 687-707.

Degeest, B.; De Vuyst, L. Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Appl. Environ. Microbiol. 1999, 65(7), 2863-2870.

Dehlink, E.; Domig, K. J.; Loibichler, C.; Kampl, E.; Eiwegger, T.; Georgopoulos, A.; Kneifel, W.; Urbanek, R.; Szepfalusi, Z. Heat and formalin inactivated probiotic bacteria induce comparable cytokine patterns in intestinal epithelial cell leucocyte cocultures. J. Food Protect. 2007, 70(10), 2417-2421.

Delcour, J.; Ferain, T.; Deghorain, M.; Palumbo, E.; Hols, P. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. In Lactic Acid Bacteria: Genetics, Metabolism and Applications, Springer; N.Y., 1999; pp 159-184.

Ebada, S. S.; Edrada, R. A.; Lin, W.; Proksch, P. Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat. protoc. 2008, 3(12), 1820-1831.

Erickson, K. L.; Hubbard, N. E. Probiotic immunomodulation in health and disease. J. Nutr. 2000, 130(2), 403-409.

FAOSTAT. World Taro (Cocoyam) Crop Production of Year 2012: Area harvested and Yield. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed Jun 1, 2014).

Feedpedia. http://www.feedipedia.org (accessed Jun 24, 2014)

Ferreira, S. C.; Bruns, R.; Ferreira, H.; Matos, G.; David, J.; Brandao, G.; Da Silva, E. P.; Portugal, L.; Dos Reis, P.; Souza, A. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597(2), 179-186.

Fichera, G. A.; Giese, G. Non-immunologically-mediated cytotoxicity of Lactobacillus casei and its derivative peptidoglycan against tumor cell lines. Cancer lett. 1994, 85(1), 93-103.

Fietta, P.; Delsante, G. The effector T helper cell triade. Riv. Biol. 2008, 102(1), 61-74.

Fisher, M. A. Starch. In Chemistry: Foundations and Applications [Online]; MacMillan Reference Library.http://www.encyclopedia.com/doc/1G2-3400900478.html (accessed May 9, 2014).

French, D.; Knapp, D. W. The maltase of Clostridium acetobutylicum; its specificity range and mode of action. J. Biol. Chem. 1950, 187(2), 463-71.

Fujiwara, D.; Inoue, S.; Wakabayashi, H.; Fujii, T. The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance. Int. Arch. Allergy. Imm. 2004, 135(3), 205-215.

Ganzle, M.; Schwab, C. Exopolysaccharide production by intestinal Lactobacilli. Probiotics &; prebiotics: scientific aspects; Caister Academic Press, Norfolk, U.K., 2005; pp 83-96.

Gerald, B. B. Starch Hydrolysis for Ethanol Production. Miles Laboratories, Inc. Elkhart, Indiana 1980, 264-269.

Ghose, T. K. Measurement of Cellulase Activities. Pure Appl. Chem. 1987, 59(2), 257-268.

Ghosh, S.; May, M. J.; Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 1998, 16(1), 225-260.

Gill, H.; Rutherfurd, K. Viability and dose response studies on the effects of the immunoenhancing lactic acid bacterium Lactobacillus rhamnosus in mice. Br. J. Nutr. 2001, 86(2), 285-289.

Gretzer, B.; Ehrlich, K.; Maricic, N.; Lambrecht, N.; Respondek, M.; Peskar, B. M. Selective cyclo&;#8208;oxygenase&;#8208;2 inhibitors and their influence on the protective effect of a mild irritant in the rat stomach. Br. J. Pharmacol. 1998, 123(5), 927-935.

Grimoud, J.; Durand, H.; De Souza, S.; Monsan, P.; Ouarne, F.; Theodorou, V.; Roques, C. In vitro screening of probiotics and synbiotics according to anti-inflammatory and anti-proliferative effects. Int. J. Food Microbiol. 2010, 144(1), 42-50.

Haissig, B. E.,; Dickson, R. E. Starch measurement in plant tissue using enzymatic hydrolysis. Physiol. Plant. 1979, 47(2), 151-157.

Harold, E. Ingredients used in microbiological media. The manufacture and purpose of these ingredients. http://www.disknet.com/indiana_biolab/b041.htm (accessed July 16, 2014)

Hall, D. O.; Rosillo, C. F.; Williams, R. H.; Woods, J. Biomass for energy: supply prospects; Earthscan: Oxford, U.K., 1993; pp 593-651.

Haller, D.; Blum, S.; Bode, C.; Hammes, W.; Schiffrin, E. Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect. Immun. 2000, 68(2), 752-759.

Har-Noy, M. Vaccine compositions and methods. U.S. Patent Application 12/434, 168, May 1, 2009

Har-Noy, M. Induction of IL-12 using immunotherapy. U.S. Patent Application 13/581, 745, May 2, 2012

Harley, I. M.; Mary, T. Specialty crops for Pacific Islands. Agroforestry Net, Inc., 2011.

Hayden, M. S.; Ghosh, S. Signaling to NF-κB. Genes Dev. 2004, 18(18), 2195-2224.

Heenan, C.; Adams, M.; Hosken, R.; Fleet, G. Growth medium for culturing probiotic bacteria for applications in vegetarian food products. LWT-Food Sci. Technol. 2002, 35(2), 171-176.

Hirose, Y.; Murosaki, S.; Yamamoto, Y.; Yoshikai, Y.; Tsuru, T. Daily intake of heat-killed Lactobacillus plantarum L-137 augments acquired immunity in healthy adults. J. nutr. 2006, 136(12), 3069-3073.

Hood, S.; Zoitola, E. Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells. J. Food Sci. 1988, 53(5), 1514-1516.
Hsieh, W. J.; Chiou, S. T.; Pan, M. H.; Hsieh, S. C. Establishment and evaluation of biotechnological platform for screening health food with anti-inflammation ability. J. Tradit. Complement. Med. 2012, 2, 76-80.

Huhanen, M.; Linko, Y. Y. Effect of temperature and various nitrogen sources on L (+)-lactic acid production by Lactobacillus casei. Appl. Microbiol. Biotechnol. 1996, 45(3), 307-313

Hummel, S.; Veltman, K.; Cichon, C.; Sonnenborn, U.; Schmidt, M. A. Differential targeting of the E-cadherin/β-catenin complex by Gram-positive probiotic lactobacilli improves epithelial barrier function. Appl. Environ. Microbiol. 2012, 78(4), 1140-1147.

Hwang, C. F.; Chen, J. N.; Huang, Y. T.; Mao, Z. Y. Biomass production of Lactobacillus plantarum LP02 isolated from infant feces with potential cholesterol-lowering ability. Afr. J. Biotechnol. 2011, 10(36), 7010-7020.

Ibnou-Zekri, N.; Blum, S.; Schiffrin, E. J.; Von der Weid, T. Divergent patterns of colonization and immune response elicited from two intestinal Lactobacillus strains that display similar properties in vitro. Infect. Immun. 2003, 71(1), 428-436.

Ismail, A. S.; Hooper, L.V. Epithelial cells and their neighbors. IV. Bacterial contributions to intestinal epithelial barrier integrity. Am. J. of Physiol. Gastrointest. Liver Physiol. 2005, 289(5), 779-784.

Iyer, C.; Versalovic, J., Lactic acid bacteria: Probiotics with anti-cancer activities. Lactobacillus molecular biology: from genomics to probiotics, 2009; p 153.

Izmirlioglu, G. Ethanol production from waste potato mash using Saccharomyces cerevisiae. Master Thesis, The Pennsylvania State University, May 2010.

Jane, J.; Shen, L.; Chen, J.; Lim, S.; Kasemsuwan, T.; Nip, W. Physical and chemical studies of taro starches and flours 1 2. Cereal Chem. 1992, 69, 528-535.

Jeffrey, P.L.; Brown, D. H.; Brown, B. I. Lysosomal α-glucosidase. I. Purification and properties of the rat liver enzyme. Biochem. 1970, 9(6), 1403-1415.

Jiang, Y.; Lu, X.; Man, C.; Han, L.; Shan, Y.; Qu, X.; Liu, Y.; Yang, S.; Xue, Y.; Zhang, Y. Lactobacillus acidophilus induces cytokine and chemokine production via NF-κB and p38 Mitogen-Activated Protein Kinase signaling pathways in intestinal epithelial cells. Clin. Vaccine Immunol. 2012, 19 (4), 603-608.

Feed. Encyclopaedia Britannica. Encyclopaedia Britannica Online Academic Edition [Online]; Encyclopadia Britannica Inc. http://www.britannica.com/EBchecked/topic/203664/feed. (accessed Jun 21, 2014)

Joint, F. A. O. WHO working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada, April 30 and May 1, 2002.

Kaeffer, B.; Benard, C.; Lahaye, M.; Blottiere, H. M.; Cherbut, C. Biological properties of Ulvan, a new source of green seaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelial cells. Planta Med. 1999, 65(6), 527-531.

Kagnoff, M. F.; Eckmann, L. Epithelial cells as sensors for microbial infection. J. Clin. Invest. 1997, 100(1), 6.

Kake. Reading Chinese Menus: Characters: 芋— yu — taro. http://kake.dreamwidth.org/124904.html (accessed Jun 29, 2014).

Kakutani, R.; Adachi, Y.; Kajiura, H.; Takata, H.; Kuriki, T.; Ohno, N. The effect of orally administered glycogen on anti-tumor activity and natural killer cell activity in mice. Int. Immunopharmacol., 2012, 12(1), 80-87.

Kandler, O.; Weiss, N. Regular, non-sporing gram-positive rods. In: Bergey’s Manual of Systematic Bacteriology; Sneath, P. H. A., Mair, N., Sharpe, M. E., Holt, J. G., EDS.; Williams and Wilkins, Baltimore, 1986; Vol 2, pp. 1208–1234.

Kato, I.; Tanaka, K.; Yokokura, T. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-γ by mouse splenocytes. Int. J. Immunopharmacol. 1999, 21(2), 121-131.

Kearsley, M. W.; Dziedzic, S. Z.Handbook of starch hydrolysis products and their derivatives. Springer: N.Y., 1995.

Kelly, J. J.; Alpers, D. H. Properties of human intestinal glucoamylase. BBA-Enzymol. 1973, 315(1), 113-122.

Khuri, A. I.; Mukhopadhyay, S. Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2(2), 128-149.

Kiefer, J.; Wolfowitz, J. The equivalence of two extremum problems. Canadian J. Math. 1960, 12(363-366), 234.

Kim, J. Y.; Woo, H. J.; Kim, Y. S.; Kim, K. H.; Lee, H. J. Cell cycle dysregulation induced by cytoplasm of Lactococcus lactis ssp. lactis in SNUC2A, a colon cancer cell line. Nutr. Cancer 2003, 46(2), 197-201.

Kishimoto, Y.; Wada, K.; Nakamoto, K.; Ashida, K.; Kamisaki, Y.; Kawasaki, H.; Itoh, T. Quantitative analysis of cyclooxygenase-2 gene expression on acute gastric injury induced by ischemia-reperfusion in rats. Life sci. 1997, 60(8), 127-133.

Kitazawa, H.; Yamaguchi, T.; Fujimoto, Y.; Itoh, T. Comparative activity of B-cell mitogen, a phosphopolysaccharide, produced by L. lactis ssp. cremoris on various lymphocytes. Anim. Sci. Technol. 1993, 64, 605-605.

Kitazawa, H.; Harata, T.; Uemura, J.; Saito, T.; Kaneko, T.; Itoh, T. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Food. Microbiol. 1998, 40(3), 169-175.

Klaenhammer, T. R.; Kleerebezem, M.; Kopp, M. V.; Rescigno, M. The impact of probiotics and prebiotics on the immune system. Nat. Rev. Immunol. 2012, 12(10), 728-734.

Knoerr-Gaertner, H.; Schuhmann, R.; Kraus, H.; Uebele-Kallhardt, B. Comparative cytogenetic and histologic studies on early malignant transformation in mesothelial tumors of the ovary. Hum. Genet. 1977, 35(3), 281-297.

Knudson, A. G. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 2001, 1(2), 157-162.

Kohler, H.; McCormick, B. A.; Walker, W. A. Bacterial-enterocyte crosstalk: cellular mechanisms in health and disease. J. Pediatr. Gastroenterol. Nutr. 2003, 36(2), 175-185.

Konstantinov, S. R.; Smidt, H.; de Vos, W. M.; Bruijns, S. C.; Singh, S. K.; Valence, F.; Molle, D.; Lortal, S.; Altermann, E.; Klaenhammer, T. R. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl. Acad. Sci. 2008, 105(49), 19474-19479.

Kolchaar, K. Economic Botany in the Tropics, Macmillan India, 2006.

Kopp, E. B.; Medzhitov, R., The Toll-receptor family and control of innate immunity. Curr. Opin. Immunol. 1999, 11 (1), 13-18.

Korhonen, R.; Korpela, R.; Saxelin, M.; Maki, M.; Kankaanranta, H.; Moilanen, E. Induction of nitric oxide synthesis by probiotic Lactobacillus rhamnosus GG in J774 macrophages and human T84 intestinal epithelial cells. Inflamma. 2001, 25(4), 223-232.

Kotani, Y.; Shinkai, S.; Okamatsu, H.; Toba, M.; Ogawa, K.; Yoshida, H.; Fukaya, T.; Fujiwara, Y.; Chaves, P. H.; Kakumoto, K. Oral intake of Lactobacillus pentosus strain b 240 accelerates salivary immunoglobulin A secretion in the elderly: A randomized, placebo-controlled, double-blind trial. Immun. Ageing 2010, 7(11).

Krafft, O.; Schaefer, M. D-optimal designs for a multivariate regression model. J. Multivariate Anal. 1992, 42(1), 130-140.

Kralj, S.; van Geel-Schutten, G.; Dondorff, M.; Kirsanovs, S.; Van Der Maarel, M.; Dijkhuizen, L. Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiol. 2004, 150(11), 3681-3690.

Lahtinen, S.; Ouwehand, A. C.; Salminen, S.; von Wright, A. In Lactic acid bacteria: microbiological and functional aspects. CRC Press, 2011.

Laman, J. D.; Thompson, E. J.; Kappos, L. Balancing the Th1/Th2 concept in multiple sclerosis. Immunol. Today 1998, 19(11), 489-490.

Lan, J. G.; Cruickshank, S. M.; Sing, J.; Farrar, M.; Lodge, J. P. A.; Felsburg, P. J.; Carding, S. R. Different cytokine response of primary colonic epithelial cells to commensal bacteria. World J. Gastroenterol. 2005, 11(22), 3375.

Lebot, V. Tropical root and tuber crops: cassava, sweet potato, yams, aroids; CABI. 2009; No. 17.

Lee, J. W.; Kim, E. H.; Yim, I. B.; Joo, H. G. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J. Vet. Sci. 2004, 5(1), 41-48.

Lee, S. H.; Jun, S. Enhancement of sugar release from taro waste using ohmic heating and microwave heating techniques. T. A. S. A. E. 2011, 54(3), 1041-1047

Lee, Y.; Lee, T.S. Enhancement in ex vivo phagocytic capacity of peritoneal leukocytes in mice by oral delivery of various lactic-acid-producing bacteria. Curr. Microbiol. 2005, 50(1), 24-27.

Lewis, B. A. Starch.Encyclopedia of Food and Culture [Online]; Encyclopedia.com, 2003. http://www.encyclopedia.com/doc/1G2-3403400552.html (accessed May 9, 2014)

Li, Q.; Verma, I. M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2002, 2(10), 725-734.

Liimatainen, H. K. T.; Kaariainen, J. In Development of Bio-ethanol production from waste potatoes, Proceedings of the waste minimization and resources use optimization conference, 2004; pp 123-129.

Liu, C. F.; Tseng, K. C.; Chiang, S. S.; Lee, B. H.; Hsu, W. H.; Pan, T. M. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agric. 2011a, 91(12), 2284-91.

Liu, C. T. Effects of Lactobacillus casei 01 and its exopolysaccharide on 1,2-dimethylhydrazine induced colon precancerous lesions in F344 rats. Ph.D Thesis, National Taiwan University, 2010.

Liu, C. T.; Chu, F. J.; Chou, C. C.; Yu, R. C. Antiproliferative and anticytotoxic effects of cell fractions and exopolysaccharides from Lactobacillus casei 01. Mutat. Res-Gen. Tox. En. 2011b, 721(2), 157-162.

Ljungh, A.; Wadstrom, T. Lactobacillus molecular biology: from genomics to probiotics; Horizon Scientific Press, 2009.

Lotz, M.; Gutle, D.; Walther, S.; Menard, S.; Bogdan, C.; Hornef, M. W. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 2006, 203(4), 973-984.

Mack, D. R.; Lebel, S. Role of probiotics in the modulation of intestinal infections and inflammation. Curr. Opin. Gastroen. 2004, 20(1), 22-26.

Maddelein, M. L.; Libessart, N.; Bellanger, F.; Delrue, B.; D''Hulst, C.; Van den Koornhuyse, N.; Fontaine, T.; Wieruszeski, J. M.; Decq, A.; Ball, S. Toward an understanding of the biogenesis of the starch granule. Determination of granule-bound and soluble starch synthase functions in amylopectin synthesis. J. Biol. Chem. 1994, 269(40), 25150-25157.

Madigan, M. T.; Martinko, J. M.; Parker, J.; Brock, T. D. Biology of microorganisms; Prentice Hall: Upper Saddle River, NJ, 1997; Vol. 985.

Mahro, B.; Timm, M. Potential of biowaste from the food industry as a biomass resource. Eng. Life Sci. 2007, 7(5), 457-468.

Mao, W. J.; Fang, F.; Li, H. Y.; Qi, X. H.; Sun, H. H.; Chen, Y.; Guo, S. D. Heparinoid-active two sulfated polysaccharides isolated from marine green algae
Monostroma nitidum. Carbohydr. Polym. 2008, 74, 834-839.

Mariana S. P.; Fabio R. M.; Paulo A. S. M. Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans? Glycobiol. 2002, 12(10), 573-580.

Masuno, T.; Kishimoto, S.; Ogura, T.; Honma, T.; Niitani, H.; Fukuoka, M.; Ogawa, N. A comparative trial of LC9018 plus doxorubicin and doxorubicin alone for the treatment of malignant pleural effusion secondary to lung cancer. Cancer. 1991, 68(7), 1495-1500.

Matsuguchi, T.; Takagi, A.; Matsuzaki, T.; Nagaoka, M.; Ishikawa, K.; Yokokura, T.; Yoshikai, Y. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin. Diagn. Lab. Immun. 2003, 10(2), 259-266.

Mavris, M.; Sansonetti, P. Epithelial cell responses. Best Pract. Res. Cl. Ga. 2004, 18(2), 373-386.

Mead, R. The design of experiments: statistical principles for practical applications; Cambridge University Press, 1990.

Miettinen, M.; Vuopio-Varkila, J.; Varkila, K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 1996, 64(12), 5403-5405.

Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31(3), 426-428.

Miller, K. D.; Copeland, W. H. A blood trans-α-glucosylase. Biochim. Biophys. Acta. 1956, (22), 193-194.

Miyasaka, S. C.; Ogoshi, R. M.; Tsuji, G. Y.; Kodani, L. S. Site and planting date effects on taro growth. Agron. J. 2003, 95(3), 545-557.

Mizuno, H.; Sakamoto, C.; Matsuda, K.; Wada, K.; Uchida, T.; Noguchi, H.; Akamatsu, T.; Kasuga, M. Induction of cyclooxygenase 2 in gastric mucosal lesions and its inhibition by the specific antagonist delays healing in mice. Gastroenterol. 1997, 112(2), 387-397.

Thirabunyanon, M.; Boonprasom, P.; Niamsup, P. Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol. Lett. 2009, 31(4), 571-576

Morgan, M. J.; Liu, Z. G. Crosstalk of reactive oxygen species and NF-kB signaling. Cell Res. 2010, 21(1), 103-115.

Myers, R. H.; Carter, W. H. Response surface techniques for dual response systems. Technometrics 1973, 15(2), 301-317.

Myers, R. H.; Anderson-Cook, C. M. Response surface methodology: process and product optimization using designed experiments. John Wiley &; Sons: 2009; Vol. 705.

Myers, R. H.; Khuri, A. I.; Carter, W. H. Response surface methodology: 1966–l988. Technometrics 1989, 31(2), 137-157.

Myers, R. H.; Montgomery, D. C.; Vining, G. G.; Borror, C. M.; Kowalski, S. M. Response surface methodology: a retrospective and literature survey. J. Qual. Technol. 2004, 36(1), 53-77.

Nahaisi, M. Lactobacillus acidophilus: therapeutic properties, products and enumeration. Dev. Food Microbiol. 1986

Nigam, P.; Singh, D. Enzyme and microbial systems involved in starch processing. Enzyme Microb. Tech. 1995, 17(9), 770-778.

Nip, W.K. Taro food products. 1990.

NIST/SEMATECH. e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook/pri/section3/pri3363.htm (accessed May 15, 2014).

NIST/SEMATECH. e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook/ (accessed May 15, 2014).

Nuran, B; Yi, C. The response surface methodology. PhD diss., M. Sc. Thesis, University of South Bend, U.S.A., 2007.

Oates, C. G. Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci. Technol. 1997, 8(11), 375-382.

Oda, M.; Hasegawa, H.; Komatsu, S.; Kambe, M.; Tsuchiya, F. Anti-tumor polysaccharide from Lactobacillus sp. Agr. Biol. Chem. 1983, 47(7), 1623-1625.

Ogunbanwo, S.; Sanni, A.; Onilude, A. Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. Afr. J. Biotechnol. 2003, 2(7), 179-184.

Oka, H.; Emori, Y.; Ohya, O.; Kobayashi, N.; Sasaki, H.; Tanaka, Y.; Hayashi, Y.; Nomoto, K. An immunomodulatory arabinomannan extracted from Mycobacterium tuberculosis, Z-100, restores the balance of Th1/Th2 cell responses in tumor bearing mice. Immunol. Lett. 1999, 70(2), 109-117.

Okawa, T.; Niibe, H.; Arai, T.; Sekiba, K.; Noda, K.; Takeuchi, S.; Hashimoto, S.; Ogawa, N. Effect of LC9018 combined with radiation therapy on carcinoma of the uterine cervix. A phase III, multicenter, randomized, controlled study. Cancer 1993, 72(6), 1949-1954.

Okawa, T.; Kita, M.; Arai, T.; Iida, K.; Dokiya, T.; Takegawa, Y.; Hirokawa, Y.; Yamazaki, K.; Hashimoto, S. Phase II randomized clinical trial of LC9018 concurrently used with radiation in the treatment of carcinoma of the uterine cervix. Its effect on tumor reduction and histology. Cancer 1989, 64(9), 1769-1776.

Olendorf, D.; Jeryan, C.; Boyden, K.; Fyke, M. K. The Gale encyclopedia of medicine. Gale Research Farmington Hills, M.I., 1999.

Onwueme, I. Taro cultivation in Asia and the Pacific. Rap. Publication 1999, 16, 1-9.

Onwueme, I. C.; Charles, W. B.Tropical root and tuber crops. Production perspectives and future prospects In: FAO Plant Production. 1994.

Orla, J. S. The lactic acid bacteria; AF HostHOST and Son: Koeniglicher Hofboghandel, Copenhagen, 1919.

Otte, J. M.; Cario, E.; Podolsky, D. K. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterol. 2004, 126(4), 1054-1070.

Park, I. M.; Ibanez, A. M.; Shoemaker, C. F. Rice starch molecular size and its relationship with amylose content. Starch 2007, 59, 69-77.

Pazman, A.; Pazman, A.Foundations of optimum experimental design; D. Reidel : Boston, M.A., 1986.

Pazur, J. H.; Ando, T. The action of an amyloglucosidase of Aspergillus niger on starch and malto-oligosaccharides. J. Biol. Chem. 1959, 234(8), 1966-1970.

Pen, J.; Molendijk, L.; Quax, W. J.; Sijmons, P. C.; van Ooyen, A. J. J.; van den Elzen, P. J. M.; Rietveld, K.; Hoekema, A. Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Nat. Biotechnol. 1992, 10(3), 292-296.

Perdigon, G.; Alvarez, S.; Rachid, M.; Aguero, G.; Gobbato, N. Immune system stimulation by probiotics. J. Dairy Sci. 1995, 78(7), 1597-1606.

Perdigon, G.; Vintini, E.; Alvarez, S.; Medina, M.; Medici, M. Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J. Dairy Sci. 1999, 82(6), 1108-1114.

Pool&;#8208;Zobel, B.; Neudecker, C.; Domizlaff, I.; Ji, S.; Schillinger, U.; Rumney, C.; Moretti, M.; Vilarini, I.; Scassellati&;#8208;Sforzolini, R.; Rowland, I. Lactobacillus and bifidobacterium mediated antigenotoxicity in the colon of rats. Nutr. Cancer 1996, 26(3), 365-380

PRISMTC. Design of experiments: tipsheets. http://www.prismtc.co.uk/display/ShowJournal?moduleId=2372153&;categoryId=194174&;#164;tPage=5 (accessed May 16, 2014).

Rasulov, M.; Kuznetsov, I.; Slutski&;#301;, L.; Velikaia, M.; Zabozlaev, A.; Voronkov, M. The ulcerostatic effect of the exopolysaccharide from Bacillus mucilaginosus and its possible mechanisms. Biull. Eksp. Biol. Med. 1993, 116(11), 504-505.

Reuter, G. The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr. Iss. Intest. Microbiol. 2001, 2(2), 43-53.

Rogosa, M.; Franklin, J.; Perry, K. Correlation of the vitamin requirements with cultural and biochemical characters of Lactobacillus spp. J. Gen. Microbiol. 1961, 25(3), 473-482.

Rossi, S. Australian Medicines Handbook 2006. Adelaide; Australian Medicines Handbook Pty. Ltd.:Adelaide, South Australia, 2006.

Ruiz, M. I.; Sanchez, C. I.; Torrres, R. G.; Molina, D. R. Enzymatic hydrolysis of cassava starch for production of bioethanol with a colombian wild yeast strain. J. Brazil. Chem. Soc. 2011, 22(12), 2337-2343.

Sabiiti, E. N. Utilising agricultural waste to enhance food security and conserve the environment. A.J.F.A.N.D. 2011, 11(6).

Schaub, S.; Leonard, J. Composting: An alternative waste management option for food processing industries. Trends Food Sci. Tech. 1996, 7(8), 263-268.

Shao, L.; Serrano, D.; Mayer, L. The role of epithelial cells in immune regulation in the gut. In Seminars in immunology; Academic Press: Waltham, M.A., 2001; Vol. 13(3), pp. 163-176.


Shi, Y. H.; Le, G. W.; Sun, J.; Ma, X.Y. Distinct immune response induced by peptidoglycan derived from Lactobacillus sp. World J. Gastroenterol. 2005, 11(40), 6330-6337.

Simone, C. D.; Vesely, R.; Negri, R.; Salvadori, B. B.; Zanzoglu, S.; Cilli, A.; Lucci, L. Enhancement of immune response of murine Peyer''s patches by a diet supplemented with yogurt. Immunopharmacol. Immunotoxicol. 1987, 9(1), 87-100.

Smai Co., L. Shan Mai Taro Cake. https://www.smai.com.tw/english/products.htm (accessed Feb 25, 2014).

Snell, E. E.; Mitchell, H. K. Purine and pyrimidine as growth substances for lactic acid bacteria. Proc. Natl. Acad. Sci. U. S. A. 1941, 27(1), 1.

Solis Pereyra, B.; Lemonnier, D. Induction of human cytokines by bacteria used in dairy foods. Nutr. Res. 1993, 13(10), 1127-1140.

Souza, P. M. D. Application of microbial α-amylase in industry-A review. Brazil. J. Microbiol. 2010, 41(4), 850-861.

Srikanta, S.; Jaleel, S.; Ghildyal, N.; Lonsane, B. Techno&;#8208;economic feasibility of ethanol production from fresh cassava tubers in comparison to dry cassava chips. Nahrung. 1992, 36(3), 253-258.

Stackebrandt, E.; Teuber, M. Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie 1988, 70(3), 317-324.

Stolfi, C.; Fina, D.; Caruso, R.; Caprioli, F.; Sarra, M.; Fantini, M. C.; Rizzo, A.; Pallone, F.; Monteleone, G. Cyclooxygenase-2-dependent and-independent inhibition of proliferation of colon cancer cells by 5-aminosalicylic acid. Biochem. Pharmacol. 2008, 75(3), 668-676.

Surh, Y. J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3(10), 768-780.

Taguchi, G.,System of experimental design: engineering methods to optimize quality and minimize costs; UNIPUB/Kraus International Publications: White Plains, NY, 1987; Vol. 1.

Taillandier, P.; Gilis, F.; Portugal, F. R.; Laforce, P.; Strehaiano, P., Influence of medium composition, pH and temperature on the growth and viability of Lactobacillus acidophilus. Biotechnol. Lett. 1996, 18(7), 775-780.

Takahashi, N.; Kitazawa, H.; Iwabuchi, N.; Xiao, J.; Miyaji, K.; Iwatsuki, K.; Saito, T. Immunostimulatory oligodeoxynucleotide from Bifidobacterium longum suppresses Th2 immune responses in a murine model. Clin. Exp. Immunol. 2006, 145(1), 130-138.

Tejada-Simon, M. V.; Pestka, J. J. Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J. Food Prot. 1999, 62(12), 1435-1444.

Terahara, M.; Meguro, S.; Kaneko, T. Effects of lactic acid bacteria on binding and absorption of mutagenic heterocyclic amines. Biosci. Biotechnol. Biochem. 1998, 62(2), 197-200.

Tester, R. F.; Karkalas, J.; Qi, X. Starch-composition, fine structure and architecture. J. Cereal Sci. 2004, 39(2), 151-165.

Trapecar, M.; Goropevsek, A.; Gorenjak, M.; Gradisnik, L.; Slak, R. M. A co-culture model of the developing small intestine offers new insight in the early immunomodulation of enterocytes and macrophages by Lactobacillus spp. through STAT1 and NF-kB p65 Translocation. PLoS ONE, 2014, 9(1), e86297.

Troll, W.; Wiesner, R. The role of oxygen radicals as a possible mechanism of tumor promotion. Ann. Rev. Pharmacol. Toxicol. 1985, 25 (1), 509-528.

Tsujisaka, Y.; Fukumoto, J.; Yamamoto, T. Specificity of crystalline saccharogenic amylase of moulds. Nature 1958, 181(4611), 770-771.

UNEP. Global partnership on waste management. In Biennium conference of the global partnership on waste management, United Nations: Osaka, Japan, 2012.

Van Hijum, S.; Szalowska, E.; Van Der Maarel, M.; Dijkhuizen, L. Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiol. 2004, 150(3), 621-630.

Voet; Pratt.Fundamentals of Chemistry; John Wiley &; Sons, Inc.: Hoboken, N. J., 1999.

Vogel, H. C.; Todaro, C. M.Fermentation and biochemical engineering handbook: principles, process design and equipment; William Andrew: Norwich, N. Y., 1996.

Weinman, D. E.; Morris, G. K.; Williams, W. L. Unidentified growth factor for a lactic acid bacterium. J. Bacteriol. 1964, 87(2), 263-269.

Weng, S. S. Taro-The potato of hot and humid areas. Country Road [Online], 2008, Vol. 34(8).http://web.igarden.com.tw/magazine/show_one.php?serial_s=1899&;serial_m=14 (accessed Apr 26, 2014)

Werpy, T.; Petersen, G.; Aden, A.; Bozell, J.; Holladay, J.; White, J.; Manheim, A.; Eliot, D.; Lasure, L.; Jones, S. Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas; DTIC Document: No. DOE/GO-102004-1992; National Renewable Energy Lab.: Golden, C.O., 2004

Wood, B. J.; Holzapfel, W.The genera of lactic acid bacteria; Springer: Manhattan, N. Y., 1995; Vol. 2.

Wu, H.; Wu, C. C. Renewable energy promotion strategies and developing status in Taiwan. Monthly J. Taipower''s Eng. 2002, (651), 1-17.

Yasui, H.; Shida, K.; Matsuzaki, T.; Yokokura, T. Immunomodulatory function of lactic acid bacteria. A. Van. Leeuw. J. Microb. 1999, 76(1), 383-389.

Yevich, R.; Logan, J. A. An assessment of biofuel use and burning of agricultural waste in the developing world. Global biogeochem. Cy. 2003, 17(4).

Yoon, T. J.; Kim, J. Y.; Kim, H. J.; Hong, C. W.; Lee, H. J.; Lee, C. K.; Lee, K. H.; Hong, S. M.; Park, S. H. Anti-tumor immunostimulatory effect of heat-killed tumor cells. Exp. Mol. Med. 2008, 40(1), 130-144.

Zeuthen, L. H.; Fink, L. N.; Metzdorff, S. B.; Kristensen, M. B.; Licht, T. R.; Nellemann, C.; Frokiar, H. Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naive foetal enterocytes compared to commensal Escherichia coli. B. M. C. Immunol. 2010, 11(1), 2-2.

Zhang, L.; Li, N.; Caicedo, R.; Neu, J. Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-α–induced interleukin-8 production in Caco-2 cells. J. Nutr. 2005, 135(7), 1752-1756.

Zong, L.; Zhang, C. F.; Covasa, M. H. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol. 2014, 20(24), 7878-7886

Zyrek, A. A.; Cichon, C.; Helms, S.; Enders, C.; Sonnenborn, U.; Schmidt, M. A. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO&;#8208;2 and PKC redistribution resulting in tight junction and epithelial barrier repair. Cell. Microbiol. 2007, 9(3), 804-816.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔