(54.236.58.220) 您好!臺灣時間:2021/03/08 07:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾景暘
研究生(外文):Jing-Yang TZENG
論文名稱:氣候變遷對於寒帶淡水湖泊沉積物中硫循環的影響
論文名稱(外文):Climate Change and its Influence on Sulfur Enrichment in the Freshwater Lake Sediment
指導教授:林曉武林曉武引用關係
口試委員:溫良碩賴美津林玉詩
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:60
中文關鍵詞:淡水湖泊古氣候變化硫酸鹽還原作用甲烷厭氧氧化作用
外文關鍵詞:freshwater lakepaleo-climatic changesulfate reductionanaerobic methane oxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
貝加爾湖因屬於寒帶的陸域湖泊,對氣候的變化反應較迅速且明顯,並良好記錄在湖泊之無機及有機物質的來源及生地化反應的變化。氣候變化不僅反應於沉積物有機碳、氮等地化參數,亦會影響硫的分布,包含硫酸鹽、黃鐵硫濃度與硫同位素值。間冰期時由河川輸入較多的硫酸鹽與有機碳,硫酸鹽經還原後形成黃鐵硫保存於沉積物中,反之,冰期時流量減少,產生的黃鐵硫變少。儘管其研究結果顯示沉積物中硫埋藏是河川受到氣候變遷所影響,但貝加爾湖屬於斷層湖,存在許多泥火山和溫泉,應也視為物質輸入的另一來源,更且貝加爾湖內亦有大量天然氣水合物與冷泉噴發存在,而溫泉與冷泉皆可能排放不同型態溶解硫化物,然而此類來源與變化卻是過往研究所忽略之處。
本研究於貝加爾湖採集了湖泊、河川、溫泉水樣與重力岩心樣品,分析其硫酸鹽濃度、硫同位素、黃鐵硫、有機碳與生物矽含量,探討硫的來源與冰河時期對沉積物中硫富集之影響。研究結果顯示三種不同類型的水樣其硫酸鹽與硫同位素值有著相當大的差異,其中不會受到氣候變化影響的溫泉水應為除了河川外。另一個硫輸入來源,影響著沉積物中硫之地化參數。於貝加爾湖中的北、中與南部盆地所採取的重力岩心顯示於冰期時,無明顯陸緣有機碳與硫酸鹽經河川輸入,卻記錄著高濃度的硫,表示此時應有硫以非河川輸入的形式進入水體,而冰期時因湖水垂直循環不甚良好造成缺氧,所以有高濃度的硫富集於沉積物中,並不單純由受控於氣候變遷的河川所控制。


Lake Baikal is one of the deepest fresh water and the oldest lake in the world. Situated at the polar region, this is subjecting the lake easily responding to smaller magnitude of climatic changes. According to Watanabe (2004), records of millions of years of climate change were kept in this lake and that climatic change was the only factor controlling the amount of terrigenous materials entering this lake as recorded in carbon, nitrogen, sulfur contents and isotopic compositions. In addition, limited redox reaction could occurred in this fresh water land lock lake environment due to a limit source of sulfur could entering this fresh-water environment such that sulfate become to be a limiting factor in the sulfur cycle. Climatic change could play a major role in alternating supply of sulfate to this environment. During interglacial warm period, increase fluxes of river sulfate and organic carbon entering the lake and resulting in higher flux of pyrite formation by a higher degree of anoxic sulfate reduction. On the other hand, little pyrite could deposit during cold glaciation periods with a limited river supply sulfate. Lake Baikal, however, unlike most other freshwater lake, is subjecting to continental rifting. A number of hydrothermal vents and cold seeps have been found in the lake which could bring in different types and extra sulfur to the Lake. In order to investigate sources of sulfur and influence of climate change may have had in this freshwater lake, we employed a lake wide sampling strategy, including lake, river, spring water samples as well as lake sediment for pore water sulfate, sulfur isotope, sedimentary pyrite, organic carbon and biogenic silica contents, and organic carbon C14.
Similar to Watanabe''s results, this study also found large degree of variations in pyrite concentration in sediment. However, large degree of variations over sulfate concentration were found. Higher concentrations of sulfate existed, in particular, in hydrothermal vents and spring water as well as those in some limited areas of river water. Contrary to Watanabe’s finding, the results of this study indicate that river may not be the only source of sulfur entering this fresh water lake. Furthermore, pyrite enrichments in the sediment occurred not during climatic warm periods but during cold periods. Sediments rich in pyrite were also found in some cold seeps sediments. The result of this study showed that river is not the only source of sulfur entering this freshwater lake. The occurrences of higher degree of pyrite formation during climatic cold periods demonstrated that vents and seeps could be the major source(s) of sulfur in this freshwater lake.

中文摘要Ι
英文摘要Ⅱ
目錄Ⅳ
圖目錄Ⅵ
表目錄Ⅷ
第一章 緒論1
1.1前言1
1.2研究區域沉積環境2
1.3硫酸鹽還原作用與黃鐵硫之產生3
1.4研究目的4

第二章 樣品採集及與分析方法8
2.1樣品採集8
2.1.1採樣位置8
2.1.2採樣方法8
2.2樣品前處理12
2.3分析方法12
2.3.1水樣硫酸鹽濃度14
2.3.2沉積物中甲烷濃度14
2.3.3沉積物總硫、有機碳與碳酸鈣含量14
2.3.4沉積物有機碳有機氮分析15
2.3.5沉積物酸可萃取硫與黃鐵硫含量15
2.3.6硫同位素分析16
2.3.7沉積物粒徑大小16
2.3.8沉積物生物矽含量17
2.3.9沉積物中有機碳之碳十四定年18

第三章 研究結果19
3.1水樣硫酸鹽濃度與硫同位素19
3.2沉積物硫酸鹽、總硫濃度與黃鐵硫硫同位素19
3.3沉積物中甲烷濃度21
3.4有機碳與碳酸鈣含量21
3.5有機碳氮莫耳比值與有機碳總硫比值22
3.6沉積物生物矽含量23
3.7沉積物粒徑分布23
3.8沉積物有機碳之碳十四定年23

第四章 討論36
4.1古氣候與沉積環境36
4.2總硫的形成與埋藏39
4.3岩心的年代分布42
4.4氣候變遷對於硫循環之影響43

第五章 結論56
參考文獻 57


中文部分
余源盛與朱育新(1995)湖泊沉積物中S,C及其比值的環境意義。湖泊科學第7卷第1期。

英文部分
Berner, R.A. and Raiswell, R., 1983. Burial of organic and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47, 855-862.
Bush, A. B. G., 2004. Modelling of late Quaternary climate over Asia: a synthesis. Boreas, 33, 155-163.
Carroll, J., Williamson, M., Lerche, I., Karabanov, E. and Williams, D.F., 1999. Geochronology of Lake Baikal from 210Pb and 137Cs radioisotopes. Applied Radiation and Isotopes, 50, 1105-1119.
Colman, S.M., Karabanov, E.B. and Nelson, Ⅲ, C.H., 2003.Quaternary Sedimentation and Subsidence History of Lake Baikal, Siberia, Based on Seismic Stratigraphy and Coring. Journal of Sedimentary Research, 73, 941-956.
Edgington, D.N., Klump, J.V., Robbins, J.A., Kusner, Y.S., Pampura, V.D. and Sandomirov, I.V., 1991.Sedimentation rates, residence times and radionuclide inventories in Lake Baikal from 137Cs and 210Pb in sediment cores. Nature, 350, 601-604.
Falkner, K.K., Measures, C.I., Herbelin, S.E. and Edmond, J.M., 1991.The major and minor element geochemistry of Lake Baikal. Limnol. Oceanogr., 36, 413-423.
Fietz, S., Kobanova, G., Izmest’eva, L. and Nicklisch, A., 2005. Regional, vertical and seasonal distribution of phytoplankton and photosynthetic pigments in Lake Baikal. Journal of Plankton Research, 27, 793-810.
Habicht, K.S., Gade, M., Thamdrup, B., Berg, P. and Canfield, D.E., 2002. Calibration of Sulfate Levels in the Archean Ocean. Science, 298, 2372-2374.
Hampton, S.E., Izmest’eva, L.R., Moore, M.V., Katz§, S.L., Dennis, B. and Silow, E.A., 2008.Sixty years of environmental change in the world’s largest freshwater lake – Lake Baikal, Siberia. Global Change Biology, 14, 1947-1958.
Jorgensen, B.B., Bottcher, M.E., Neretin, L.N. and Volkov, I.I., 2004.Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochimica et Cosmochimica Acta, 68, 2095-2118.
Klerkx, J., Batist, M.D., Poort, J., Hus, R., Rensbergen, P.V., Khlystov, O. and Granin, N., 2006.Tectonically controlled methane escape in lake Baikal. Springer, Geological Storage of Carbon Dioxide, 203-219.
Manabe, S. and Broccoli, A.J., 1985. The influence of continental ice sheets on the climate of ice age. Journal of Geophysical Research, 90, 2167-2190.
Mat, V.D., Khlystov, O.M., Batist, M.D., Ceramicola, S., Lomonosova, T.K. and Klimansky, A., 2000. Evolution of the Academician Ridge Accommodation Zone in the central part of the Baikal Rift, from high-resolution reflection seismic profiling and geological field investigations. Int J Earth Sci, 89, 229-250.
Peck, J.A., King, J.W., Colman, S.M. and Kravchinsky, 1994. A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climate change. Earth and Planetary Science Letters, 122, 221-238.
Pogodaeva, T.V., Zemskaya, T.I., Golobokova, L.P., Khlystov, O.M., Minami, H. and Sakagami, H., 2007. Chemical composition of pore waters of bottom sediments in different Baikal basins. Russian Geology and Geophysics, 48, 886-900.
Prokopenko, A.A., Karabanov, E.B., Williams, D.F., Kuzmin, M.I., Shackleton, N.J., Crowhurst, S.J., Peck, J.A., Gvozdkov, A.N. and King, J.W., 2001. Biogenic Silica Record of the Lake Baikal Response to Climatic Forcing during the Brunhes. Quaternary Research, 55, 123-132
Prokopenko, A.A., Karabanov, E.B., Williams, D.F., Kuzmin, M.I., Khursevich, G.K., and Gvozdkov, A.A., 2001.The detailed record of climatic events during the past 75,000yrs BP from the Lake Baikal drill core BDP-93-2. Quaternary International, 80-81, 59-68.
Schmid, M., Batist, W.D., Granin, N.G., Kapitanov, V.A., McGinnis, D.F., Mizandrontsev, I.B., Obzhirov, A.I. and Wuest, A., 2007. Sources and Sinks of Methane in Lake Baikal: A Synthesis of Measurements and Modeling. Limnology and Oceanograph, 52, 1824-1837.
Shichi, K.; Kawamuro, K.; Takahara, H.; Hase, Y.; Maki, T. and Miyoshi, N., 2007. Climate and vegetation changes around Lake Baikal during the last 350,000 years. Palaeography, Palaeoclimatology, Palaeoecology, 248, 357-375.
Watanabe, T., Nakamura, T., Nara, F.W., Kakegawa, T., Horiuchi, K., Senda, R., Oda, T., Nishimura, M., Matsumoto, G.I. and Kawai, T., 2009. High-time resolution AMS 14C data sets for Lake Baikal and Lake Hovsgol sediment cores: Changes in radiocarbon age and sedimentation rates during the transition from the last glacial to the Holocene. Quaternary International, 205, 12-20.
Watanabe, T., Naraoka, H. and Kawai, T., 2007. Radiocarbon dating of sediments from large continental lakes (Lakes Baikal, Hovsgol and Erhel). Nuclear Instruments and Methods in Physics Research, B259, 565-570.
Watanabe, T., Naraoka, H., Nishimura, M. and Kawai, T., 2004. Biological and environmental changes in Lake Baikal during the late Quaternary inferred from carbon, nitrogen and sulfur isotopes. Earth and Planetary Science Letters, 222, 285-299.
Watanabe, T., Naraoka, H., Nishimura, M., Kinoshita, M. and Kawai, T., 2003. Glacial-interglacial changes in organic carbon, nitrogen and sulfur accumulation in Lake Baikal sediment over the past 250 kyr. Geochemical Journal, 37, 493-502.
Weiss, R.F., Carmack, E.C. and Koropalov, V.M.,1991. Deep-water renewal and biological production in Lake Baikal, Nature, 349, 665-669.
Yuretich, R., Melles, M., Sarata, B. and Grobe, H., 1999. Clay minerals in the sediments of Lake Baikal :a useful climate proxy. Journal of Sedimentary Research, 69, 588-596.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔