(3.235.108.188) 您好!臺灣時間:2021/02/26 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡旭濱
研究生(外文):Hsu-Pin Tsai
論文名稱:環境變遷對於南海東北部沉積物中生物矽含量時序變化之影響
論文名稱(外文):The Effect of Environmental Change on Biogenic Silica Temporal Variation in Sediments of the Northeastern South China Sea
指導教授:林曉武林曉武引用關係
指導教授(外文):Saulwood Lin
口試委員:溫良碩王珮玲林慧玲
口試委員(外文):Liang-Saw WenPeiling WangHui-Ling Lin
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:50
中文關鍵詞:南海古氣候末次冰盛期生物矽化學萃取
外文關鍵詞:South China Seapaleo-climate changeLast Glacial Maximumbiogenic silicachemical extraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
南海東北部的海洋沉積物中不僅含有矽質殼體及碳酸鈣殼體之海源物質沉積,更深受周圍陸地(台灣、中國大陸、菲律賓等)河川所傳輸之陸源物質所影響。海源物質生產與沉積主要受控於表層水溫變化、營養鹽多寡、陸源物質輸入稀釋及碳酸鈣補償深度,因氣候變遷所改變之海水溫度、海面高度及海表初級生產力,都會影響到海源物質的沉積。陸源物質之傳輸亦受到風化強度、岩石組成、降雨多寡所影響,以台灣河川為例受到高年降雨量、陸地高度等因素,年輸出懸浮顆粒可高達近400萬噸之巨,對於鄰近海域沉積物沉降量變化有巨大之影響。雖然近年來對鄰近海域陸源物質傳輸與沉降有相當多之研究,但對於海源顆粒,尤其是生物矽顆粒之沉降與年代受氣候變遷之研究卻為數不多。
海源沉積物主要組成有生物矽、有機碳及碳酸鈣等。生物矽(Biogenic Silica, BSi)是指利用化學分析方法所測定的無定形矽含量,也稱為生物性蛋白石或簡稱為蛋白石(Opal)。沉積物當中的生物矽主要來源是矽藻、放射蟲、矽鞭毛藻和海綿骨針等矽質生物死亡之後其骨骼沉降堆積在海床上。在古海洋學研究中,生物矽沉積紀錄可以被用以指示古生產力的變化,而這些變化與古海水營養鹽狀況及古氣候狀況的變化有著密切相關,因此生物矽沉積紀錄可指出大尺度的古海洋或古氣候(如冰期、間冰期)的變化。
研究結果發現南海東北部沉積物中,測站AG(北緯20.05度,東經118.10度)的生物矽含量介於3.68% ~ 9.20%之間,平均值5.64 ±1.92%;測站2914(北緯22.03度,東經119.85度)的沉積物生物矽含量介於1.63%~6.40%,平均值3.57 ±1.47%。從空間上的尺度來看,距離台灣較遠的測站AG其生物源的沉積量比距離台灣較近的測站2914高出許多;從時間上的尺度來看,兩測站生物矽含量皆以全新世時期的含量最低,末次冰期的含量最高,而轉換期次之。將此生物矽含量與有機碳含量做比較,發現此兩者有著很好的相關性,尤其是在冰期時R2值甚至高達0.70,而在全新世時期的相關性則偏低。
綜合上述結果顯示南海東北部靠近台灣端的海底沉積物受到台灣輸出大量懸浮顆粒所稀釋,造成其生物矽含量明顯較低,而在轉換期與末次冰期時南海東北部沉積物中有機碳貢獻量主要由矽質殼體生物所提供,且生物矽含量較全新世時期高。


Biogenic silica, as well as carbonaceous particles, are the most important types of biogenic sediments. For the South China Sea area where huge amount of terrigenous particles from small rivers of the surrounding islands and large rivers play a very important role in transporting land derived materials to the ocean, however, the exact amount of terrigenous materials from land to the ocean may subject to climate change and varied in times. In addition, sea temperature fluctuation may also affect ocean productivity in the area. There is little study on the variation(s) of sediment deposition with respect to the temporal variation, in particular, and area subjecting to climatic changes.
Biogenic sediments mainly compose of biogenic silica, organic carbon and calcium carbonate. Biogenic Silica (BSi) is the amorphous silicon content which is usually determined by wet chemical extraction. It is also known as or referred to as biogenic opal (Opal). Main sources of the biogenic silica in sediment come from diatoms, radiolarians, silicoflagellates and sponge spicules and other siliceous organisms, with their skeletons accumulated on the seabed. Biogenic silica content variation in sediments usually indicate a change(s) of oceanic paleoproductivity. Changes of paleoproductivity were closely related to the status of paleoseawater nutrient and the change of paleoclimatic condition. Hence, sedimentary record of biogenic silica could serve as an indicator of large scale changes of the ancient oceans or paleoclimatic (e.g. glacial or interglacial) change.
The result of this study showed that biogenic silica content in sediments in the northeastern South China Sea at sampling site AG (ssAG; Latitude: 20.05° N, Longitude: 118.10° E) range between 3.68% and 9.20%, with an average of 5.64 ± 1.92%, and at site 2914 (ss2914; Latitude: 22.03° N, Longitude: 119.85 ° E) range between 1.63% and 6.40%, with an average of 3.57 ± 1.47%. From the perspective of spatial scales, ssAG is further away from Taiwan compare to ss2914. ssAG has much higher level of biological source of sediment. The amount of biogenic silica in both ssAG and ss2914 are relatively low for Holocene and high during the last glacial. In between, the amount of biogenic silica correlate very well with the amount of organic carbon, especially in glacial period where R2 reach up to 0.70. This correlation is much weaker during Holocene.
In conclusion, large amount of suspended particles from Taiwan do play an important role in diluting biogenic sediments. During the last glacial and the transition period, siliceous shell was a major source of sediment organic carbons in the northeastern South China Sea’s sediments. The amount of biogenic silica in last glacial is relatively higher than in Holocene.


中文摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2研究區域 3
1.3研究目的 5
第二章 樣品採集與分析方法 8
2.1 樣品採集 8
2.1.1 採樣位置 8
2.1.2 採樣方法 8
2.2 樣品前處理 11
2.3 分析方法與實驗流程 12
2.3.1 沉積物生物矽分析 12
2.3.1.1 化學萃取法及矽鉬分光光度呈色法 13
2.3.1.2 實驗藥劑 15
2.3.1.3 實驗步驟 15
2.3.2 沉積物有機碳及碳酸鈣含量分析 17
2.3.3 沉積物粒徑大小分析 18
2.3.4 沉積物含水量、孔隙率、統體密度 19
2.3.5 沉積物鋁分析 20
2.3.6 岩心定年分析 21
第三章 研究結果 32
3.1 生物矽含量(圖3-1) 32
3.2 有機碳、碳酸鈣含量(圖3-2) 33
3.3 沉積物中黏土、粉砂及砂粒含量(圖3-2) 35
3.4沉積物鋁含量(圖3-2) 36
第四章 討論 39
4.1影響沉積物中生物矽含量的因素 39
4.2 南海東北部沉積物中生物矽含量時序變化及其因素 40
4.3 南海東北部沉積物中生物矽含量與有機碳關係 42
第五章 結論 45
第六章 參考文獻 46


施迎瑩(2011)南海東北部過去四萬年古海洋環境及氣候變遷紀錄。國立台灣大學海洋研究所碩士論文,共76頁。
洪崇勝(2011)台灣西南海域新興能源-天然氣水合物資源調查與評估地球化學調查研究(4/4):台灣西南海域沉積物之古地磁定年及磁學性質研究經濟部中央地質調查所報告第100-25-E號,經濟部中央地質調查所,共93頁。
許鳳心(2008)台灣西南海域陸源有機碳沉降受鄰近島嶼河川顆粒傳輸影響之研究。國立台灣大學海洋研究所碩士論文,共70頁。
廖瑞芬(2002)水中矽酸鹽測定中矽鉬複合物之呈色反應動力研究。國立台灣大學海洋研究所碩士論文,共89頁。
魏國彥(2009)97年度我國大陸礁層調查工作案工作報告,內政部,445頁,323-333頁。
羅聖宗(1986)中國南海岩心SCS-15A 中浮游性有孔蟲之碳、氧同位素研究。國立台灣大學海洋研究所碩士論文,共67頁。
Burgmer, T. and Hillebrand, H., 2010. Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. Oikos, 120, 922-933.
Conley, D.J., 1998. An interlaboratory comparison for the measurement of biogenic silica in sediments. Marine Chemistry, 63, 39-48.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D. and Lin, J.C., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648-651.
DeMaster, D.J., 1981. The supply and accumulation of silica in the marine environment. Geochimica el Casmochimica Acta, 45, 1715-1732.
DeMaster, D.J., Knapp, G.B. and Nittrouer, C.A., 1983. Biological uptake and accumulation of silica on the Amazon continental shelf. Geochimica el Cosmochimica Acta, 47, 1713-1723.
Grasshoff, K., 1964. On the determination of silica in sea water. Deep-Sea Research, 11, 597-604.
Grasshoff, K., Kremling, K. and Ehrhardt, M., 1983. Methods of seawater analysis. Verlag. Chemie, 2, 174-183.
Head, P.C., 1985. Salinity, dissolved oxygen and nutrients. Practical Estuarine Chemistry, 94-114.
Kamatani, A., 1971. Physical and chemical characteristics of biogenous silica. Marine Biology, 8, 89-95.
Kamatani, A., 1974. Studies on the dissolution of diatomaceous silica as a function of heating. Journal of Oceanographical Society of Japan, 30, 157-162.
Kamatani, A. and Takano, M., 1984. The behavior of dissolved silica during the mixing of river and sea waters in Tokyo Bay. Estuarine, Coastal and Shelf Science, 19, 505-512.
Kamatani, A. and Oku, O., 2000. Measuring biogenic silica in marine sediments. Marine Chemistry, 68, 219-229.
Kennett, J.P., 1982. Marine Geology, Prentice-Hall, New York, 813.
Ledford-Hoffman, P.A., DeMaster, D.J. and Nittrouer, C.A., 1986. Biogenic-silica accumulation in the Ross Sea and the importance of Antarctic continental-shelf deposits in the marine silica budget. Geochimica el Cosmochimica Acta, 50, 2099-2110.
Lin, D.C., Chen, M.T., Yamamoto, M. and Yokoyama, Y., 2014. Millennial-scale alkenone sea surface temperature changes in the northern South China Sea during the past 45,000 years (MD972146). Quaternary International, 333, 207-215.
Lyle, A. and Lyle, M., 2002. Determination of biogenic opal in pelagic marine sediments: a simple method revisited. Proceedings of the Ocean Drilling Program, Initial Reports, 199.
Milliman, J.D. and Syvitski, J.P.M., 1992. Geomorphic/Tectonic control of sediment discharge to the ocean:The importance of small mountainous rivers. Journal of Geology, 100, 525-544.
Mortlock, R.A. and Froelich, P.N., 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research, 36, 1415-1426.
Murphy, J. and Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36.
Nelson, D.M., Treguer, P., Brzezinski, M.A., Leynaert, A. and Queguiner, B., 1995. Production and dissolution of biogenic silica in the ocean:Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemistry Cycle, 9, 359-372.
Ramachandran, R. and Gupta, P.K., 1985. An improved spectrophotometric determination of silicate in water based on molybdenum blue. Analytica Chimica Acta, 172, 307-311.
Schelske, C.L., Conley, D.J., Stoermer, E.F., Newberry, T.L. and Campbell, C.D., 1986. Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes. Hydrobiologia, 143, 79-86.
Siever, R., 1991. Silica in the oceans: Biological-geochemical interplay. In:Schneider, S.H., Boston, P.J.(Eds.), Scientists on Gaia. MIT Press, Cambridge, MA, 287-295.
Srreet-Perrott, F.A. and Barker, P.A., 2008. Biogenic silica:a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf. Process. Landforms, 33, 1436-1457.
Su, G. and Wang, T.,(1994)Basic characteristics of modern sedimentation in South China Sea. Oceanology of China Seas, Dordrecht:Kluwer, 2, 407-418.
Warnock, J., Scherer, R. and Loubere, P., 2007. A quantitative assessment of diatom dissolution and late quaternary primary productivity in the Eastern Equatorial Pacific. Deep-Sea Research II, 54, 772-783.
Ragueneau, O., Savoye, N., Amo, Y.D., Cotten, J., Tardiveau, B. and Leynaert, A., 2005. A new method for the measurement of biogenic silica in suspended matter of coastal waters:using Si:Al ratios to correct for the mineral interference. Continental Shelf Research, 25, 697-710.
Ragueneau, O., Treguer, P., Leynaert, A, Anderson, R.F., Brzezinski, M.A., DeMaster, D.J., Dugdale, R.C., Dymond, J., Fischer, G., Francois, R., Heinze, C., Maier-Reimer, E., Martin-Jezequel, V., Nelson, D.M. and Queguiner, B., 2000. A review of the Si cycle in the modern ocean:Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26, 317-365.
Leinen, M., Cwienk, D., Heath, G.R., Biscaye, P.E., Kolla, N., Thiede, J. and Dauphin, J.P., 1986. Distribution of biogenic silica and quartz in recent deep-sea sediments. Geology, 14, 199-203.
Leng, M.J. and Sloane, H.J., 2008. Combined oxygen and silicon isotope analysis of biogenic silica. Journal of Quaternary Science, 23(4), 313-319.
Schluter, M. and Richert, D., 1998. Effect of pH on the measurement of biogenic silica. Marine Chemistry, 63, 81-92.
Treguer, P., Nelson, D.M., Van Bennekom, A.J., DeMaster, D.J., Leynaert, A. and Queguiner, B., 1995. The silica balance in the world ocean:a reestimate. Science, 268, 375-379.
Walther, G-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J-M., Hoegh-Guldberg, O. and Bairlein, F., 2002. Ecological responses to recent climate change. Nature, 416, 389-395.
Wang, P., 1999. Response of Western Pacific marginal seas to glacial cycles:paleoceanographic and sedimentological features.
Marine Geology, 156, 5-39.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔