(3.232.129.123) 您好!臺灣時間:2021/02/26 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈修平
研究生(外文):Hsiu-Ping Shen
論文名稱:利用分散聚合法與無電電鍍法製備聚苯乙烯/銀核殼型導電複合顆粒及其性質與應用研究
論文名稱(外文):Monodisperse Core-shell Type Polystyrene/Silver Particles via Dispersion Polymerization and Modified Electroless Plating: Synthesis and Characterization
指導教授:邱文英邱文英引用關係
指導教授(外文):Wen-Yen Chiu
口試委員:林江珍陳崇賢李佳芬
口試委員(外文):Jiang-Jen LinChorng-Shyan ChernChia-Fen Lee
口試日期:2014-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:96
中文關鍵詞:分散聚合法無電電鍍法核殼型乳膠顆粒導電填充顆粒高分子/銀複合材料
外文關鍵詞:Dispersion polymerizationElectroless platingCore-shell type particleConductive fillerOrganic-inorganic hybrid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用分散聚合法與無電電鍍法製備微米級高分子/銀複合顆粒及其導電度與表面型態之探討。實驗架構是利用分散聚合法製備窄分布的高分子乳膠顆粒,接著對高分子乳膠顆粒表面進行粗化、敏化及活化等表面性質修飾,最後以無電電鍍法在高分子乳膠顆粒表面還原銀金屬,製備微米級高分子/銀導電複合顆粒。
實驗主要分為兩個部分,第一部分利用高分子型界面劑聚乙烯亞胺(PEI)及聚乙烯&;#21537;咯烷酮(PVP)在乙醇/水混和溶劑的環境下進行分散聚合法製備聚苯乙烯乳膠顆粒;以動態粒徑分析儀與掃描式電子顯微鏡觀察粒徑與表面型態,微差掃描熱卡計測定其玻璃轉移溫度。結果顯示成功製備出粒徑約3微米且粒徑均一分布之聚苯乙烯乳膠顆粒,其玻璃轉移溫度(Tg)約為98°C。
第二部分以濃硫酸與氯化亞錫對聚苯乙烯顆粒進行表面性質修飾,接著利用無電電鍍法還原銀金屬製備核殼型複合顆粒,並調整不同銀含量探討其表面型態與導電度。以電位分析儀檢測表面性質修飾後的界面電位變化;以掃描式電子顯微鏡觀察複合顆粒之表面型態,接著壓錠測量導電度。結果顯示藉由聚乙烯亞胺(PEI)作為界面劑之聚苯乙烯乳膠顆粒為核可成功製備具有均勻銀金屬殼層之導電複合顆粒。
透過本研究,不但可藉由分散聚合法成功合成出粒徑均一分布之聚苯乙烯乳膠顆粒以及利用無電電鍍法製備具有均勻銀金屬殼層之導電複合顆粒,未來更期許能實際應用於異方向性導電膜之製備。


In this study, preparation of monodispersed silver-coated polystyrene core-shell type particles (Ag-PS) has been derived from a modified electroless silver plating process. The zeta potential, morphology and conductivity of the Ag-PS composite particles were investigated to study the influence of stabilizer, silver content and other experimental parameters.
This study included two parts. In the first part, polyethyleneimine (PEI) and polypyrrolidone (PVP) were served as stabilizers for producing monodispersed polystyrene latexes by dispersion polymerization. Then, the glass transition temperature (Tg), particle size, zeta potential and morphology were characterized by differential scanning calorimeter (DSC), dynamic light scattering analyzer (DLS), zeta potential analyzer, and scanning electron microscope (SEM), respectively. It was found that the Tg of polystyrene latexes was approximate to the pure polystyrene. In addition, the particle size was approximate to 3μm and monodispersed.
In the second part, a series of pretreatments of the PS surface was applied to modify the surface properties such as roughness, contact area and hydrophilic character. Then, silver nuclei produced on polystyrene particles served as nucleation sites for the growth of silver shell. The zeta potential, silver content, density, conductivity, particle size and morphology were characterized by zeta potential analyzer, thermogravimetric analyzer (TGA), pycnometer, four point probe and scanning electron microscope (SEM), respectively. X-ray diffractometer and energy-dispersive X-ray spectroscopy were employed to detect the crystallinity of silver and elements of composite particle. The results showed that a dense, stable and uniform silver shell was formed on the surface of PS particles. The bulk conductivity of the Ag-PS composites could achieve 2427 S/cm with only 36 wt.% silver content. According to the results, the Ag-PS composite particles with diameters of 3μm have great potential to be used as fillers in anisotropic conductive films.


致謝 I
摘要 III
Abstract IV
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
第二章 文獻回顧 2
2-1 分散聚合法 2
2-1-1 顆粒穩定機制 4
2-1-2 顆粒大小控制 8
2-2 無電電鍍法 11
2-2-1 無電電鍍的前處理 12
2-2-2 鍍液的成分 13
2-2-3 無電電鍍的反應機制 16
2-3 金屬包覆之核殼型複合顆粒 20
2-3-1 合成方法 20
2-3-2 應用 24
第三章 實驗方法 29
3-1 實驗藥品 29
3-2 實驗儀器 33
3-3 實驗步驟 36
3-3-1 實驗流程圖 36
3-3-2 高分子乳膠顆粒合成 40
3-3-3 以無電電鍍法製備銀/高分子複合顆粒 42
第四章 結果與討論 47
4-1 高分子乳膠顆粒 47
4-1-1 轉化率測定 47
4-1-2 高分子粒徑觀察 47
4-1-3 高分子乳膠顆粒之界面電位分析 50
4-1-4 高分子乳膠顆粒之玻璃轉移溫度 51
4-2 以無電電鍍法製備銀/高分子複合顆粒 52
4-2-1 粗化、敏化、活化與還原 54
4-2-2 高分子乳膠顆粒界面性質探討 66
4-2-3銀含量之影響 68
4-2-4 XRD與EDX鑑定分析 76
4-2-5導電度之分析 79
第五章 結論 87
參考文獻 89


1.Ugelstad, J., et al., Monodisperse polymer particles — a step forward for chromatography. Nature, 1983. 303: p. 95-96.
2.Ugelstad, J., et al., Thermodynamics of Swelling of Polymer, Oligomer and Polymer-Oligomer Particles. Preparation and Application of Monodisperse Polymer Particles. Science and Technology of Polymer Colloids, 1983. 67-68: p. 51-99.
3.Ugelstad, J., et al., Preparation and application of new monosized polymer particles. Progress in Polymer Science, 1992. 17(1): p. 87-161.
4.Ugelstad, J., et al., Biochemical and biomedical application of monodisperse polymer particles. Macromolecular Symposia, 1996. 101(1): p. 491-500.
5.Covolan, V.L., L.H. Innocentini Mei, and C.L. Rossi, Chemical Modifications on Polystyrene Latex: Preparation and Characterization for Use in Immunological Applications. Polymers for Advanced Technologies, 1997. 8(1): p. 44-50.
6.Ishizu, K., Synthesis and structural ordering of core–shell polymer microspheres. Progress in Polymer Science, 1998. 23(8): p. 1383-1408.
7.Biswas, R., et al., Photonic band gaps in colloidal systems. Physical Review B, 1998. 57: p. 3701.
8.Viswanathan, N.B., Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique. Journal of controlled release, 1999. 58(1): p. 9-20.
9.Fudouzi, H. and Y. Xia, Photonic Papers and Inks: Color Writing with Colorless Materials. Advanced Materials, 2003. 15(11): p. 892-896.
10.Paine, A.J., W. Luymes, and J. McNulty, Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions. Macromolecules, 1990. 23(12): p. 3104-3109.
11.Arshady, R., Suspension, emulsion, and dispersion polymerization: A methodological survey. Colloid and Polymer Science, 1992. 270(8): p. 717-732.
12.Vladmir S&;#774;migol, et al., Monodisperse polymer beads as packing material for high-performance liquid chromatography. Synthesis and properties of monidisperse polystyrene and poly(methacrylate) latex seeds. Die Angewandte Makromolekulare Chemie, 1992. 195(1): p. 151-164.
13.Vanderhoff, J.W. and E.B. Bradford, Polymer colloid. Plenum Press, 1971.
14.Vanderhoff, J.W., et al., Preparation of Large-Particle-Size Monodisperse Latexes in Space: Polymerization Kinetics and Process Development. Journal of Dispersion Science and Technology, 1984. 5(3-4): p. 231-246.
15.Vanderhoff, J., et al., Preparation of large-particle-size monodisperse latexes in space. Polymer Materials Science &; Engineering, 1986. 54.
16.Ugelstad, J., et al., Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2. A two step swelling process of polymer particles giving an enormous increase in absorption capacity. Die Angewandte Makromolekulare Chemie, 1979. 180(3): p. 737-744.
17.Ugelstad, J. and P.C. Mork, Swelling of oligomer-polymer particles. New methods of preparation. Advances in Colloid and Interface Science, 1980. 13(1): p. 101-140.
18.Napper, D.H., Colloid Stability. Product R&;D, 1970. 9(4): p. 467-477.
19.Hamaker, H.C., The London—van der Waals attraction between spherical particles. Physica, 1937. 4(10): p. 1058-1072.
20.Verwey, E.J.W., Theory of the Stability of Lyophobic Colloids. The Journal of Physical and Colloid Chemistry, 1947. 51(3): p. 631-636.
21.Visser, J., On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Advances in Colloid and Interface Science, 1972. 3(4): p. 331-363.
22.Derjaguin, B. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress in Surface Science, 1993. 43(1–4): p. 30-59.
23.Christian, P., et al., Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 2008. 17(5): p. 326-343.
24.Okubo, M., Preparation of micron-sized, monodispersed, anomalous polymer particles by utilizing the solvent-absorbing/releasing method. Colloid and Polymer Science, 2000. 278(10): p. 919-926.
25.Okubo, M., et al., Morphology of micron-sized, monodisperse, nonspherical polystyrene/poly(n-butyl methacrylate) composite particles produced by seeded dispersion polymerization. Journal of Applied Polymer Science, 2002. 83(9): p. 2013-2021.
26.Capek, I., M. Riza, and M. Akashi, Dispersion copolymerization of polyoxyethylene macromonomer and styrene: Effect of initiator type and concentration on the polymerization process. European Polymer Journal, 1995. 31(9): p. 890-902.
27.Paine, A.J., Dispersion polymerization of styrene in polar solvents. IV. Solvency control of particle size from hydroxypropyl cellulose stabilized polymerizations. Journal of Polymer Science Part A: Polymer Chemistry, 1990. 28(9): p. 2485-2500.
28.Shen, S., E. Sudol, and M. El&;#8208;Aasser, Control of particle size in dispersion polymerization of methyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry 1993. 31(6): p. 1393-1402.
29.Konno, M. and D. Nagao, Monodisperse Polymer Particles, in Encyclopedia of Polymer Science and Technology. 2002, John Wiley &; Sons, Inc.
30.Chou, I.C. and W.-Y. Chiu, Novel Synthesis of Multi-Scaled, Surfactant-Free Monodisperse Latexes via Alcoholic Dispersion Polymerization in a Mixed Ionic/Nonionic Initiation System. Macromolecules, 2013. 46(9): p. 3561-3569.
31.Glenn O. Mallory and J.B. Hajdu, Electroless plating: fundamentals and applications. 1990: William Andrew.
32.Peeters, P., et al., Properties of electroless and electroplated Ni–P and its application in microgalvanics. Electrochimica Acta, 2001. 47(1): p. 161-169.
33.Lin, C.-H., Electroless Nickel Plating on the Surfaces of Different Polymer nanoparticles, in Department of Materials Science and Engineering. 2008, National Taiwan University.
34.Hari Krishnan, K., et al., An overall aspect of electroless Ni-P depositions—A review article. Metallurgical and Materials Transactions A, 2006. 37(6): p. 1917-1926.
35.De Minjer, C.H., Some electrochemical aspects of the electroless nickel process with hypophosphite. Electrodeposition and Surface Treatment, 1975. 3(4): p. 261-273.
36.Meerakker, J.E.A.M., On the mechanism of electroless plating. II. One mechanism for different reductants. Journal of Applied Electrochemistry, 1981. 11(3): p. 395-400.
37.Ohno, I., Electrochemistry of electroless plating. Materials Science and Engineering: A, 1991. 146(1–2): p. 33-49.
38.Abrantes, L. and J. Correia, On the Mechanism of Electroless Ni&;#8208;P Plating. Journal of the electrochemical society, 1994. 141(9): p. 2356-2360.
39.Shimada, T., H. Nakai, and T. Homma, Density Functional Theory Study on the Reaction Mechanism of Reductants for Electroless Ag Deposition Process. Journal of The Electrochemical Society, 2007. 154(4): p. D273.
40.Oldenburg, S.J., et al., Nanoengineering of optical resonances. Chemical Physics Letters, 1998. 288(2–4): p. 243-247.
41.Oldenburg, S.J., et al., Infrared extinction properties of gold nanoshells. Applied Physics Letters, 1999. 75(19): p. 2897.
42.Jackson, J.B. and N.J. Halas, Silver Nanoshells:&;#8201; Variations in Morphologies and Optical Properties. The Journal of Physical Chemistry B, 2001. 105(14): p. 2743-2746.
43.Zhang, S., et al., Modified in situ and self-catalytic growth method for fabrication of Ag-coated nanocomposites with tailorable optical properties. Journal of Nanoparticle Research, 2012. 14(9).
44.Liu, T., et al., An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 387(1-3): p. 17-22.
45.Li, J.-M., et al., Poly(styrene-co-acrylic acid) core and silver nanoparticle/silica shell composite microspheres as high performance surface-enhanced Raman spectroscopy (SERS) substrate and molecular barcode label. Journal of Materials Chemistry, 2011. 21(16): p. 5992.
46.Zhang, N., et al., Synthesis of silver nanoparticle-coated poly(styrene-co-sulfonic acid) hybrid materials and their application in surface-enhanced Raman scattering (SERS) tags. RSC Advances, 2013. 3(33): p. 13740.
47.Zhang, W.Y., et al., Robust Photonic Band Gap from Tunable Scatterers. Physical Review Letters, 2000. 84(13): p. 2853-2856.
48.Graf, C. and A. van Blaaderen, Metallodielectric Colloidal Core&;#8722;Shell Particles for Photonic Applications. Langmuir, 2001. 18(2): p. 524-534.
49.Wang, Z., et al., Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency. Physical Review B, 2001. 64(11): p. 113108.
50.Wang, D., et al., Gold–Silica Inverse Opals by Colloidal Crystal Templating. Advanced Materials, 2002. 14(12): p. 908-912.
51.Liang, Z., A.S. Susha, and F. Caruso, Metallodielectric Opals of Layer-by-Layer Processed Coated Colloids. Advanced Materials, 2002. 14(16): p. 1160-1164.
52.Chen, C.-W., T. Serizawa, and M. Akashi, Preparation of Platinum Colloids on Polystyrene Nanospheres and Their Catalytic Properties in Hydrogenation&;#8224;. Chemistry of Materials, 1999. 11(5): p. 1381-1389.
53.Lu, Y., et al., In Situ Formation of Ag Nanoparticles in Spherical Polyacrylic Acid Brushes by UV Irradiation. The Journal of Physical Chemistry C, 2007. 111(21): p. 7676-7681.
54.Wen, F., et al., Synthesis of Noble Metal Nanoparticles Embedded in the Shell Layer of Core&;#8722;Shell Poly(styrene-co-4-vinylpyridine) Micospheres and Their Application in Catalysis. Chemistry of Materials, 2008. 20(6): p. 2144-2150.
55.Zhang, J., et al., Colloidal silver deposition onto functionalized polystyrene microspheres. Polymer Chemistry, 2011. 2(4): p. 970.
56.Siiman, O. and A. Burshteyn, Preparation, Microscopy, and Flow Cytometry with Excitation into Surface Plasmon Resonance Bands of Gold or Silver Nanoparticles on Aminodextran-Coated Polystyrene Beads. The Journal of Physical Chemistry B, 2000. 104(42): p. 9795-9810.
57.Cong, Y., et al., Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. Journal of Materials Chemistry B, 2014. 2(22): p. 3450-3461.
58.Ma, Y. and Q. Zhang, Preparation and characterization of monodispersed PS/Ag composite microspheres through modified electroless plating. Applied Surface Science, 2012. 258(19): p. 7774-7780.
59.Moody, R.L., T. Vo-Dinh, and W.H. Fletcher, Investigation of Experimental Parameters for Surface-Enhanced Raman Scattering (SERS) Using Silver-Coated Microsphere Substrates. Applied Spectroscopy, 1987. 41(6): p. 966-970.
60.Schueler, P.A., et al., Physical structure, optical resonance, and surface-enhanced Raman scattering of silver-island films on suspended polymer latex particles. Analytical Chemistry, 1993. 65(22): p. 3177-3186.
61.Chen, C.-W., et al., In-Situ Formation of Silver Nanoparticles on Poly(N-isopropylacrylamide)-Coated Polystyrene Microspheres. Advanced Materials, 1998. 10(14): p. 1122-1126.
62.Mayer, A.B.R., W. Grebner, and R. Wannemacher, Preparation of Silver&;#8722;Latex Composites. The Journal of Physical Chemistry B, 2000. 104(31): p. 7278-7285.
63.Cheng, X., et al., Facile method to prepare monodispersed Ag/polystyrene composite microspheres and their properties. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(18): p. 4547-4554.
64.Kim, J.-W., et al., Synthesis of metal/polymer colloidal composites by the tailored deposition of silver onto porous polymer microspheres. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(10): p. 2551-2557.
65.Dong, A.G., et al., Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction. Chemical Communications, 2002(4): p. 350-351.
66.Zhang, D.B., et al., Synthesis of silver-coated silica nanoparticles in nonionic reverse micelles. Journal of Materials Science Letters, 2001. 20(5): p. 439-440.
67.Shibata, S., et al., Preparation of Silica Microspheres Containing Ag Nanoparticles. Journal of Sol-Gel Science and Technology, 1998. 11(3): p. 279-287.
68.Pol, V.G., et al., Sonochemical Deposition of Silver Nanoparticles on Silica Spheres. Langmuir, 2002. 18(8): p. 3352-3357.
69.Pol, V.G., H. Grisaru, and A. Gedanken, Coating Noble Metal Nanocrystals (Ag, Au, Pd, and Pt) on Polystyrene Spheres via Ultrasound Irradiation. Langmuir, 2005. 21(8): p. 3635-3640.
70.Kim, S.D., W.G. Choe, and J.R. Jeong, Environmentally friendly electroless plating for Ag/TiO2-coated core-shell magnetic particles using ultrasonic treatment. Ultrason Sonochem, 2013. 20(6): p. 1456-62.
71.Kobayashi, Y., V. Salgueirino-Maceira, and L.M. Liz-Marzan, Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating. Chemistry of Materials, 2001. 13(5): p. 1630-1633.
72.Chen, D., et al., A general method for synthesis continuous silver nanoshells on dielectric colloids. Thin Solid Films, 2008. 516(18): p. 6371-6376.
73.Lim, Y.T., O.O. Park, and H.-T. Jung, Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: near infrared responsive materials. Journal of Colloid and Interface Science, 2003. 263(2): p. 449-453.
74.Kim, E., et al., Synthesis and electrical resistivity of the monodisperse PMMA/Ag hybrid particles. Materials Chemistry and Physics, 2012. 134(2-3): p. 814-820.
75.Lee, J.-H., et al., Fabrication of Nickel/Gold Multilayered Shells on Polystyrene Bead Cores by Sequential Electroless Deposition Processes. Journal of Electronic Materials, 2008. 37(10): p. 1648-1652.
76.Schuetz, P. and F. Caruso, Semiconductor and Metal Nanoparticle Formation on Polymer Spheres Coated with Weak Polyelectrolyte Multilayers. Chemistry of Materials, 2004. 16(16): p. 3066-3073.
77.Caruso, F., et al., Multilayer Assemblies of Silica-Encapsulated Gold Nanoparticles on Decomposable Colloid Templates. Advanced Materials, 2001. 13(14): p. 1090-1094.
78.Cassagneau, T. and F. Caruso, Contiguous Silver Nanoparticle Coatings on Dielectric Spheres. Advanced Materials, 2002. 14(10): p. 732-736.
79.Riesz, P., D. Berdahl, and C. Christman, Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environmental Health Perspectives, 1985. 64: p. 233.
80.Zhang, J., et al., Facile Methods to Coat Polystyrene and Silica Colloids with Metal. Advanced Functional Materials, 2004. 14(11): p. 1089-1096.
81.Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 1987. 58(20): p. 2059-2062.
82.John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987. 58(23): p. 2486-2489.
83.Henglein, A. and M. Giersig, Formation of Colloidal Silver Nanoparticles:&;#8201; Capping Action of Citrate. The Journal of Physical Chemistry B, 1999. 103(44): p. 9533-9539.
84.Pillai, Z.S. and P.V. Kamat, What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method? The Journal of Physical Chemistry B, 2003. 108(3): p. 945-951.
85.Ji, X., et al., Size Control of Gold Nanocrystals in Citrate Reduction:&;#8201; The Third Role of Citrate. Journal of the American Chemical Society, 2007. 129(45): p. 13939-13948.
86.Roh, J., et al., Dispersion stability of citrate- and PVP-AgNPs in biological media for cytotoxicity test. Korean Journal of Chemical Engineering, 2013. 30(3): p. 671-674.
87.Van Hoonacker, A. and P. Englebienne, Revisiting silver nanoparticle chemical synthesis and stability by optical spectroscopy. Current Nanoscience, 2006. 2(4): p. 359-371.
88.Murphy, C.J. and N.R. Jana, Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Advanced Materials, 2002. 14(1): p. 80-82.
89.Sun, Y., et al., Crystalline Silver Nanowires by Soft Solution Processing. Nano Letters, 2002. 2(2): p. 165-168.
90.Yin, Y., et al., Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica. Nano Letters, 2002. 2(4): p. 427-430.
91.Sun, Y., et al., Polyol Synthesis of Uniform Silver Nanowires:&;#8201; A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters, 2003. 3(7): p. 955-960.
92.Caswell, K.K., C.M. Bender, and C.J. Murphy, Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires. Nano Letters, 2003. 3(5): p. 667-669.
93.Hu, J.Q., et al., A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires. Advanced Functional Materials, 2004. 14(2): p. 183-189.
94.Lee, G.-J., et al., Preparation of silver nanorods through the control of temperature and pH of reaction medium. Materials Chemistry and Physics, 2004. 84(2–3): p. 197-204.
95.Wiley, B., et al., Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver. Chemistry – A European Journal, 2005. 11(2): p. 454-463.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 新型發光二極體封裝材料之開發:無機顆粒/矽樹脂複合材料之製備
2. 芯鞘型溫感性導電複合纖維之製備與其形態性質分析
3. 環境敏感型高分子奈米材料製備(PNIPAAm/chitosan)及其於藥物釋放與金屬離子吸附之應用
4. 新型無乳化劑乳化聚合技術開發:製備活性共聚乳膠及均一粒徑有機/無機混成乳膠
5. 矽烷改質奈米二氧化鋯/矽樹脂複合材料之製備及其應用於LED封裝材料之評估
6. 以水性聚胺酯為基底引入壓克力多元醇及二氧化矽合成可熱交聯之抗腐蝕塗料
7. 共軛高分子/富勒烯衍生物之高分子太陽能電池熱穩定性質探討
8. 以異質吸引法製備高分子/碳黑複合顆粒及其性質與應用研究
9. 環境敏感型共聚高分子之合成與性質研究 :(I)RAFT法合成溫度/酸鹼雙重應答之三嵌段高分子 (II)磺胺類酸鹼敏感型水膠之合成
10. 聚3,4-乙烯二氧噻吩/聚胺酯複合薄膜之合成及其酸鹼緩衝與抗靜電性質研究
11. 無電電鍍鎳/金於高分子微球之製備
12. 透明導電薄膜:聚3,4-乙烯基二氧噻吩-聚苯乙烯磺酸/石墨烯之製備與性質研究
13. 具溫感性、熱可交聯性聚(異丙基丙烯醯胺)共聚物及其導電碳黑複合材料之製備,靜電紡纖維,性質與形態分析
14. 高折射率奈米二氧化鋯/矽樹脂複合材料之製備及其在LED封裝材料的應用
15. 奈米碳管/聚(氮-異丙基丙烯醯胺)複合薄膜及纖維之製備,性質與形態分析
 
系統版面圖檔 系統版面圖檔