中文文獻:
[1]楊奕農,2009,時間序列分析:經濟與財務上之應用(二版),雙葉書廊出版。
[2]陳旭昇,2007,時間序列分析:總體經濟與財務金融支應用,東華書局出版。
[3]劉筱筠,2005,“應用門檻GARCH-M模型分析國際原油價格變動與台灣股價報酬波動之關聯”,國立台北大學經濟學系碩士論文。[4]蔡坤旻,2009,“原油價格變動對於太陽能產業指數的影響-雙門檻GARCH模型之應用-”,國立台北大學國際企業研究所碩士論文。[5]陳維邦,2008,“股價與石油價格波動性之關係- 動態條件相關多變量模型之應用-”,逢甲大學財務金融學系碩士論文。[6]庄&;#32418;&;#38892;,2013,“頁岩革命的真相(一): “世界工廠”或將迴歸美國”, http://finance.people.com.cn/n/2013/1101/c348883-23397597.html
[7]庄&;#32418;&;#38892;,2013,“頁岩革命的真相(二): 中國尚難以複製美國的成功”, http://finance.people.com.cn/BIG5/n/2013/1104/c348883-23419898.html
[8]羅比特。斯吉德爾斯基,2013,“頁岩油真的是全球經濟的終極救星?”, http://www.businessweekly.com.tw/KBlogArticle.aspx?ID=5734&;pnumber=1
[9]方文碩、田志遠,2001,“匯率貶值對股票市場的衝擊-雙變量GARCH-M模型”,台灣金融財務季刊,第二輯第三期, pp.99-117。
英文文獻:
[1]Bollerslev, T., 1986, “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, pp.307-327.
[2]Bollerslev, T., R. Chou, and F. Kroner, 1992, “ARCH Modelling in Finance,” Journal of Econometrics, 52, pp.5-59.
[3]Claudio Morano, 2001, “A semiparametric approach to short-term oil price forecasting,” Energy Economics, Vol.23, Issue 3, pp.325-338.
[4]Dickey, D. A. and W. A. Fuller, 1979, “Distribution of the Estimators for Autoregression Time Series with a Unit Root,” Journal of American Statistical Association, 74, pp.427-431.
[5]Dickey, D. A. and W. A. Fuller, 1981, “Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root,” Econometrica, Vol49, No. 4.
[6]Ding, Z. and Engle R. F., 2001, “Large Scale Conditional Covariance Matrix Modeling, Estimation and Testing,” Academia Economic Papers, 29, pp.157-184.
[7]Dana Van Wagener, 2014, “U.S. tight oil production: Alternative supply projections and an overview of EIA’s analysis of well-level data aggregated to the country level”, http://www.eia.gov/forecasts/aeo/tight_oil.cfm
[8]Engle, R. F., 1982, “Autoregressive Conditional Heteroscedasticity with Estimates of theVariance of United Kingdom Inflation,” Econometrica, 50, pp.987-1007.
[9]Engle, R. F. and K. F. Kroner, 1995, “Multivariate Simultaneous Generalized ARCH,” Economietric Theory, 11, pp.122-150.
[10]Engle, R. and K. Sheppard, 2001, “Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH,” Department of Economics, University of California, San Diego, Working Paper.
[11]Engle, R., 2002, “Dynamic Conditional Correlation- A simple class of multivariate GARCH models,” Journal of Business and Economic Statistics, Vol.20, No.3, pp.339-350.
[12]Granger, C. W. J. and P. Newbold, 1974, “Spurious Regression in Econometrics,” Journal of Econometrics, 2, pp.111-120
[13]Glosten, L. R., Jagannathan, R., and Runkle, D. E., 1993, “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,” The Journal of Finance, Vol.48, Issue 5, pp.1779-1801.
[14]Hassan Mohammadi, 2010, “International evidence on crude oil price dynamics: Application of ARIMA-GARCH models,” Energy Economics, Vol.32, Issue 5, pp.1001-1008.
[15]Huang, B. N., M. J. Huang, and H. P. Peng, 2005, “The assymetry of the impact of oil price shocks on economic activities: An application of the multivariate threshold model,” Energy Economics, 27, pp.455-476.
[16]Kmenta, J., 1986, Elements of Econometrics. 2nd ed., New York: Macmillan Publishing Co.