(54.236.58.220) 您好!臺灣時間:2021/03/08 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:連振傑
研究生(外文):Chen-Chieh Lian
論文名稱:2kW風力發電機被動螺距控制之分析模擬與設計
論文名稱(外文):Analysis, Simulation, and Design of a 2kW Wind Turbine with Passive Pitch Control
指導教授:林輝政林輝政引用關係
指導教授(外文):Huei-Jeng Lin
口試委員:李雅榮江茂雄鍾承憲
口試委員(外文):Ya-Jung LeeMao-Hsiung ChiangCheng-Hsien Chung
口試日期:2014-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:風力發電機FASTSimMechanics螺距偏航被動控制
外文關鍵詞:Wind TurbineFASTSimMechanicsPitchYawPassive Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  風力發電機大致可分為簡易型無控制設計風力機、局部控制風力機(具備電力控制功能但無機械控制功能)、被動控制風力機(具備電力控制功能及被動機械控制功能)、主動控制風力機(具備電力控制功能及主動機械控制功能)等四大類。小型風力機由於成本考量,大多採用沒有控制設計風力機或局部控制風力機,但兩者的發電性能表現上都有許多成長空間。故本文研究的目的即是改善由東元電機所提供2 kW局部控制風力機之固定螺距(pitch)在高風速條件下的性能表現,採用被動控制風力機之機構,並針對此機構進行參數設計靈敏度分析與研究,進而提高發電效能,其成本可透過大量生產的方式降低。
  本研究之數值模擬分析主要是採用MATLAB/SimMechanics與NREL(National Renewable Energy Laboratory)之FAST (Fatigue, Aerodynamics, Structures, and Turbulence)所提供之Aerodynamics相輔使用。首先參考西班牙Windspot之被動螺距控制機構進行研究,再提出新型被動控制機構的概念進行分析,可得知利用離心力的原理,在高風速的情況下,風力發電機組將利用螺距控制以限制截風能量並協助使風力發電機轉速慢下,在部分荷載範圍,螺距控制允許葉片依據風速轉動到最佳角度,如此將可有效利用風能。
由結果可看出,經由被動螺距改良之東元電機2 kW風力機,Windspot機構所設計的彈簧常數6200 N/m、配重桿長度20公分,以及新型機構所設計的參數為彈簧常數9000 N/m、配重桿長度25公分,藉由適當之彈簧常數與配重桿長度互相搭配,同時達成在高風速下保護葉片的效果以及維持正常發電,在低風速也能維持正常的功率輸出,此結果有助於小型風力機的應用與發展。


  Generally, wind turbines can be categorized into four types: the simplest one called no control, the one with local control containing electrical power control without functions of mechanical control, the one with passive control that has the power control and passive mechanical control, and the one with active control having the power control and active mechanical control. Most of the small wind turbines are designed with no control or local control due to cost effectiveness issues. Both of these two types, however, remain rooms for improvement in terms of performance. The purpose of the present study is to improve the performance of fixed-pitch TECO 2 kW wind turbine with additional passive pitch control mechanism along with parametric and sensitivity study. The cost of the proposed system can be reduced with standardization and mass production.
  Software packages MATLAB/SimMechanics combining with FAST (Fatigue, Aerodynamics, Structures, and Turbulence), developed by NREL (National Renewable Energy Laboratory), are used for investigation in the present study. Based on the concept from the Spain made wind turbine, Windspot, that the over-speed control with passive pitch mechanism can be achieved by utilizing the centrifugal force, we propose and design a new passive control mechanism and investigate the feasibility of adding the mechanism onto the fixed-pitch TECO 2kW wind turbine. Under high wind conditions, the pitch control mechanism reduces the rotation speed of the wind turbine and limits the capture of wind energy for the purpose of adjusting output power, achieving higher utilization efficiency of wind power and providing protection for rotor blades.
  Both the Windspot and the new-designed passive mechanism are modeled and parametrically studied. The optimal designs that give better performance are summarized and suggested as follows: (1) For the TECO 2kW wind turbine with Windspot passive control mechanism, the spring constant is 6200 N/m and weight stick length is 20 cm. (2) For the turbine with new design mechanism, the spring constant and stick length are 9000 N/m and 25 cm, respectively. It is shown that the cut-out wind speed can be extended with proper selection of the spring constant and stick length. As a results, the present study successfully demonstrate that the TECO 2 kW fixed-pitch wind turbine is improved by two types of passive pitch control mechanisms.

誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 9
1.3 本文研究方法 17
1.4 論文架構 18
第二章 風力發電機之氣動力理論 19
2.1 氣動力理論 19
2.2 葉片元素理論 22
2.3 葉尖損失 23
2.4 葉片流體負載計算 24
第三章 東元2kW風力機之數值模型建立 與動態模擬分析 26
3.1 FAST(Fatigue, Aerodynamics, Structures, Turbulence)簡介 26
3.2 東元2 kW之數值模型建立 27
3.2.1 FAST用於模擬風力機系統的機構部分 27
3.2.2 東元2 kW之葉片氣動力分析 30
3.2.3 東元2 kW之葉片結構動力分析 34
3.3 東元2 kW風機分析模型 35
第四章 東元2 kW風力機套用Windspot機構之 數值動態模擬分析 37
4.1 Windspot之被動Pitch機構原理介紹 37
4.1.1 Windspot之被動螺距機構理論推導 37
4.2 東元2kW風機參考Windspot機構之數值動態模擬分析 42
4.2.1 關鍵參數衍伸設計 50
4.3 使用3D列印機製作西班牙Windspot風力機機構 57
第五章 新型小型風力機之被動控制機構設計 59
5.1 新型被動Pitch機構原理介紹 59
5.2 改良東元2kW風機機構之數值動態模擬分析 61
5.2.1 關鍵參數衍伸設計 64
5.3 使用3D列印機製作新型風力機機構 70
第六章 結論及未來展望 75
參考文獻 77
附錄A-新型機構實際圖 79

[1]"Renewable 2014 Global Status Report."
[2]GWEC (gloabal wind energy council). http://www.gwec.net/.
[3]"小型風力機城市應用現況與效能分析計畫," 行政院原子能委員會委託計畫研究報告 (Small wind turbine city status and performance analysis of the application program), 2013.
[4]Windspot. http://www.windspot.es/.
[5]Intertek, "Summary Test Report for the Sonkyo Energy Windspot 3.5 tested at the CEIMAT/CEDER testing location in Northern Spain," ed, 2013.
[6]林輝政, "風力發電講義," ed, 2013.
[7]Y. Shimizu and Y. Kamada, "Studies on a Horizontal Axis Wind Turbine With Passive Pitch-Flap Mechanism (Performance and Flow Analysis Around Wind Turbine)," Journal of Fluids Engineering, pp. 516-522, 2001.
[8]Y. Shimizu, Y. Kamada, and T. Maeda, "Studies on Horizontal Axis Wind Turbine with Passive Teetered Brake &; Damper Mechanism," JSME International Journal, pp. 162-169, 1998.
[9]S. C. Li, "Self-Powered Passive Adaptive Control of Pitch Angle and Betz-Shaped Wind Tunnel," presented at the International Conference on Renewable Energies and Power Quality, Granada (Spain), 2010.
[10]M. C. K. Kang, "Wind Turbine Blade Automatic Pitch Control Using Centrifugal Force," US Patent, 2012.
[11]蕭飛賓、陳宥任、陳彥&;#24419;、白啟正, "葉片旋角控制裝置(Pitch Control Development)," 台灣 Patent, 2012.
[12]B. R. David, B. P. Vicente, "Device For Adajusting The Blade Pitch of A Wind Generator," Spain Patent, 2012.
[13]"HY5-AD5.6 Wind Turbine," Huaying Wind Power Company, 2012.
[14]M. O. L. Hansen, Aerodynamics of Wind Turbines Sencond Edition: Earthscan, 2008.
[15]J. M. Jonkman, M. L. Buhl Jr, "FAST User''s Guide," Technical Report NREL/EL-500-38230, Augest 2005.
[16]D. J. Laion, A. C. Hansen, "USER''S GUIDE to the Wind Turbine Aeaodynamics Computer Software AeroDyn," December 24 2002.
[17]P.J. Moriarty, A.C. Hansen, "AeroDyn Theory Manual," Technical Report, January 2005.
[18]A. Maheri, S. Noroozi, C. A. Toomer, and J. Vinney, "WTAB, a computer program for predicting the performance of horizontal axis wind turbines with adaptive blades," Renewable Energy, vol. 31, pp. 1673-1685, September 23 2006.
[19]S. Y. Yang, Y. K. Wu, H. J. Lin, and W. J. Lee, "Integrated Mechanical and Electrical DFIG Wind Turbine Model Development," Industry Applications, IEEE Transactions on, vol. PP, pp. 1-1, 2013.
[20]M. A. Astro, "XFOIL 6.94 User Guide," Harold Youngren, Aerocraft, Inc, 10 Dec 2001.
[21]J. L. Meriam, L. G. Kraige, Engineering Mechanics Dynamics, Fourth ed., 1997.
[22]MathWorks. MathWorks*Accerlating the pace of engineering and science.
[23]"International standard IEC 61400 series," 2010.
[24]"Fieldlines.com: The Otherpower discussion board," ed, 2011.
[25]POWER-TALK, "Kestrel Wind Turbines," 2007.
[26]Mactrashop.co.uk. Mactra Marine Equipment - Superwind Wind Generators - Technology.
[27]小栗富士雄、小栗達男, 標準機械設計圖表便覽, 第五版 ed.: 眾文圖書股份有限公司, 2012.
[28]齒輪技術入門篇. http://www.khkgears.co.jp/tw/gear_technology/pdf/gear_guide1.pdf.
[29]台灣三住. (1963). http://tw.misumi-ec.com/.
[30]壓縮彈簧. http://www.sog.com.tw/sogart/SOGart/spring.htm.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔