|
[1] J. B. Chen, M. Z. Qin, Y. F. Tang, Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation, Computers and Mathematics with Applications, 43 (2002), 1095-1106. [2] S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, Journal Computational Physics, 157 (2000), 473-499. [3] C. K. W. Tam, J. C. Webb, Dispersion-relation-preserving finite difference schemes for computational acoustics, Journal of Computational Physics, 107(1993), 262-281. [4] F. Q. Hu, M. Y. Hussaini, J. L. Manthey, Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics, Journal of Computational Physics, 124 (1996), 177-191. [5] Q. Changa, E. Jiaa, W. Sunb, Difference Schemes for Solving the Generalized Nonlinear Schrodinger Equation, Journal of Computational Physics, 148 (2) (1999), 397-415. [6] T. R. Taha and M. J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. numerical, nonlinear Schrodinger equation, Journal of Computational Physics, 55 (2) (1984), 203-230. [7] R. H. J. Grimshaw, A. Tovbis, Rogue waves: analytical predictions, Proceding of the Royal Society A, 469 (2157) (2013), 20130094. [8] D. H. Peregrine, Water waves, nonlinear Schrodinger equations and their solutions, The Journal of the Australian Mathematical Society, 25 (1) (1983), 16-43. [9] A. Kundu, A. Mukherjee, T. Naskar, Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents, Proceding of the Royal Society A, 2014. [10] C. Kharif, E. Pelinovsky, Physical mechanisms of the rogue wave phenomenon, European Journal of Mechanics - B/Fluids, 22 (6) (2003), 603-634. [11] K. Dysthe, H. E. Krogstad, P. Muller, Oceanic Rogue Waves, Annual Review of Fluid Mechanics, 40 (2008), 287-310. [12] C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean, Springer Berlin Heidelberg, 2009. [13] C. C. Young, C. H. Wu, An efficient and accurate non-hydrostatic model with embedded Boussinesq-type like equations for surface wave modeling, International Journal for Numerical Methods in Fluids, 60 (1) (2009), 27-53. [14] C. C. Young, C. H. Wu, Nonhydrostatic modeling of nonlinear deep-water wave groups, Journal of Engineering Mechanics, 136 (2) (2010); 155-167. [15] A. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform, Vol. 97. International Geophysics, Academic Press, 2010. [16] P. A. Dieft, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems, American Mathematical Society, 26 (1) (1992), 119-124. [17] P. A. Dieft, X. Zhou, Long-time asymptotics for integrable systems. High order Theory, Communications in Mathematical pphysics, 165 (1994), 175-191. [18] A. B. de monvel, A. Its, D. Shepelsky, Painleve-type asymptotics for the Camassa-Holm eqution, SIAM Journal on Mathematical Analysis, 42 (4) (2010), 1854-1873. [19] P. A. Clarkson, The Painleve equation - Nonlinear Special Functions, Journal of Computational and Applied Mathematics, 153 (2003), 127-140. [20] M. Boiti , F. Pempinelli, Nonlinear Schrodinger equation, Backlund transformations and Painleve transcendents, Nuovo Cimento B, 59 (1980), 40-58. [21] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painleve: A Modern Theory of Special Functions (in Aspect of Mathematics), Vieweg-Verlag, Braunschweig, Germany, E 16, 1991. [22] C.M. Cosgrove, G. Scoufis, Painleve classification of a class of differential equations of the second order and second degree, Studies in Applied Mathematics, 88 (1993), 25-87. [23] C. Heitzinger, C. Ringhofer, A note on the symplectic integration of the nonlinear Schrodinger equation, Journal of Computational Electronics, 3 (1) (2004), 33-44. [24] L. Lee, G. Lyng, I. Vankova, The Gaussian semiclassical soliton ensenble and numerical methods for the focusing nonlinear Schrodinger equation, Physica D, 241 (2012),1767-1781. [25] G. Fibich, Self-focusing in the damped nonlinear Schrodinger equation, SIAM Journal on Applied Mathematics, 61 (15) (2001), 1680-1705. [26] T. J. Bridges, Multi-symplectic structures and wave propagation, Mathematical Proceedings of the Cambridge Philsophical Society, 121 (1997), 147-190. [27] X. S. Liu, Y. Y. Qi, J. F. He, P. Z. Ding, Recent progress in symplectic algorithm for use in quantum systems, Communications in Computational Physics, 2 (1) (2007), 1-53. [28] X. S. Liu, L.W. Su, P. Z. Ding, Symplectic algorithm for use in computing the timeindependent Schrodinger equation, International Journal of Quantum Chemistry, 87 (1) (2002), 1-11. [29] T. J. Bridges, S. Reich, Numerical methods for Hamiltonian PDEs, Journal of Physics A: Mathematical and General, 39 (2006), 5287-5320. [30] X. Liu, Y. C. Sun, Y. Tang, Conservativity of symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrodinger equation, Master Thesis, Chinese Academy of Science, 2004. [31] V. E. Zakharov, A. B. Shabat, Interaction between solitons in a stable medium, Soviet Physics - JETP, 64 (1973), 1627-1639. [32] A. Aydin, B. Barasozen, Symplectic and multi-symplectic methods for coupled nonlinear Schrodinger equations with periodic solutions, Computer Physics Communications, 177 (2007), 566-583. [33] T. J. Bridges, S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserves symplecticity, Physics Letter A, 284 (2001), 184-193. [34] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (2nd edition), Springer Series in Computational Mathematics, 31, 2006. [35] J. M. Sanz-Serna, A. Portillo, A classical numerical integrators for wave-packet dynamics, Journal of Chemical Physics, 104 (6) (1996), 2349-2355. [36] N. N. Yanenko, The Methods of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables (M:Holt; edit), Springer-Verlag, New York, 1971. [37] Y. M. Chen, H. J. Zhu, S. H. Song, Multi-symplectic splitting method for two-dimensional nonlinear Schrodinger equation, Communications in Theoretical Physics, 56 (2011), 617-622. [38] Q. Chang, E. Jia, W. Sun, Difference schemes for solving the generalized nonlinear Schrodinger equation, Journal of Computational Physics, 148 (1999), 397-415. [39] W. Bao, S. Jin, P. A. Markowich, On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime, Journal of Computational Physics, 175 (2002), 487-524. [40] P. A. Markowich, P. Pietra, C. Pohl, Numerical approximation of quadratic observables of Schrodinger equations in the semi-classical limit, Numerische Mathematik, 81 (1999), 595-630. [41] S. Jin, C. D. Levermore, D.W. McLaughlin, The behavior of solutions of the NLS equation in the semiclassical limit, in Singular Limits of Dispersive waves (Plenum, New York, Londan), 1994. [42] J. C. Bronski, D. W. McLaughlin, Semiclassical behavior in the NLS equation: OPtical shocks-focusing instabilities, in Singular Limits of Dispersive waves (Plenum, New York, Londan), 1994. [43] S. Jin, C. D. Levermore, D.W. McLaughlin, The semiclassical limit of defocusing NLS hierarchy, Communications on Pure and Applied Mathematics 52 (5) (1999), 613-654. [44] A. Ankiewicz, P. A. Clarkson, N. Akhmediev, Rogue waves, rational solutions, the patterns of their zeros and integral relations, Journal of Physics A: Mathematical and Theoretical, 43 (12) (2010), 122002(9pp). [45] G. B. Whitham, Non-linear dispersion of water waves, Journal of Fluid Mechanics, 27 (2) (1967), 399-412. [46] V. H. Chu, C. C. Mei, The non-linear evolution of Stokes waves in deep water, Journal of Fluid Mechanics, 47 (2) (1970), 337-351. [47] H. Hasimoto, H. Ono, Nonlinear modulation of gravity waves, Journal of the Physical Society of Japan, 33 (3) (1972), 805-811. [48] F. Dias, C. Kharif, Nonlinear gravity and capillary-gravity waves, Annual Review of Fluid Mechanics, 31 (1999), 301-346. [49] N. K. Vitanov, Deep-water waves: On the nonlinear Schrodinger equation and its solutions, Journal of Theoretical and Applied Mechanics, 43 (2) (2013), 43-54. [50] N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace, Physics Letters A, 373 (2006), 675-678. [51] G. J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, P. A. E. M. Janssen, Dynamics and modelling of ocean waves, in Cambridge University Press, New York, 1994. [52] K. Hasselmann, T. P. Barnett,E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D. J. Olbers, K. Richter, W. Sell, H. Walden, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deutches Hydrographisches Institut, A. (8) (12) (1973), 95 pp. [53] V. E. Zakharov, A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional of waves in nonlinear media, Journal of Experimental and Theoretical Physics, 34 (1972), 62-69. [54] F. Bureau, Equations differentielles du second ordre en Y et du second degre en &;#376; dont l’integrale generale est a points critiques fixes, Annali di Matematica Pura ed Applicata, 91 (1972), 163-281. [55] J. Chazy, Sur les equations differentielles du troisieme ordre et d’ordre superieur dont l’integrale generale a ses points critiques fixes, Acta Math, 34 (1911), 317-385. [56] L. Gagnon, B. Grammaticos, A. Ramani, P. Winternitz, Lie symmetries of a generalised nonlinear Schrodinger equation: III. Reductions to third-order ordinary differential equations, Journal of Physics A: Mathematical and General, 22 (1989), 499-509. [57] E.L. Ince, Ordinary Differential Equations, Dover, New York, (1956). [58] A. B. de Monvel, V. P. Kotlyarov, D. Shepelsky, C. Zheng, Initial boundary value problems for integrable systems: towards the long time asymptotics, Nonlinearity, 23 (10) (2010), 2483-2499. [59] R. Buckingham, S. Venakides, Long-time asymptotics of the nonlinear Schrodinger equation shock problem, Communications on Pure and Applied Mathematics, 60 (9) (2007), 1349-1414. [60] A. B. de Monvel, V. P. Kotlyarov, D. Shepelsky, Focusing NLS equation: long-time dynamics of step-like initial data, International Mathematics Research Notices, 2011 (7) (2010), 1613-1653. [61] C. Zheng, A perfectly matched layer approach to the nonlinear Schrodinger wave equations, Journal of Computational Physics, 227 (1) (2007), 537-556. [62] C. Bogey, C. Bailly, A family of low dispersive and low dissipative explicit schemes for flow and noise computations, Journal of Computational Physics, 194 (2004), 194-214. [63] A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes, American Institute of Aeronautics and Astronautics Jounary, 1981-1259, 1981. [64] M.R. Visbal, D.V. Gaitonde, High-order-accurate methods for complex unsteady subsonic flows, American Institute of Aeronautics and Astronautics Jounary, 37 (10) (1999), 1231-1239. [65] C.A. Kennedy, M.H. Carpenter, Several new numerical methods for compressible shear-layer simulations, Applied Numerical Mathematics, 14 (2) (1994), 397-433.
|