(44.192.10.166) 您好!臺灣時間:2021/03/06 19:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾泓傑
研究生(外文):Hong-Jie Tseng
論文名稱:可撓式薄膜觸覺微感測元件於人體生理監控模組開發
論文名稱(外文):Development of Flexible Thin Film Micro Tactile Sensing Module for Physiological Monitoring
指導教授:吳文中
指導教授(外文):Wen-Jong Wu
口試委員:李世光張培仁謝志文許聿翔
口試委員(外文):Chih-Kung LeePei-Zen ChangYu-Hsiang Hsu
口試日期:2014-06-12
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:166
中文關鍵詞:鋯鈦酸鉛三氟乙烯共聚物觸覺感測器可撓脈搏波速度中醫
外文關鍵詞:PZTP(VDF-TrFE)tactile sensorflexibilitypulse wave velocityTraditional Chinese Medicine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用溶膠-凝膠製程沉積壓電薄膜在可撓之不鏽鋼基板上並開發可撓式之觸覺感測器,不鏽鋼可撓基板優點有應用範圍大、具彎曲性、耐高溫、輕和薄。另外,可撓式觸覺感測器可應用在人體脈搏、脈搏波速、血流速度及中醫脈診上。在陶瓷薄膜之觸覺感測器可分別製作於矽基板與可撓式不鏽鋼基板上。根據本次研究結果,鋯鈦酸鉛薄膜沉積在可撓不鏽鋼基板之靈敏度為0.085~0.110mVg-1mm-2,且高於鋯鈦酸鉛薄膜沉積於矽基板之靈敏度0.017mVg-1mm-2。
在製作以三氟乙烯共聚物薄膜為感測材料之觸覺感測器,於過程中使用電解水解離法能夠改善不鏽鋼基板之表面能。電解水處理製程其優點有低成本、低汙染,製成簡單與非破壞製程等等。實驗結果顯示以三氟乙烯共聚物薄膜沉積在不鏽鋼基板上之觸覺感測器之靈敏度為0.067mVg-1mm-2。
可撓式之觸覺感測器使用來量測人體不同之動脈脈搏處,包括頸動脈、肱動脈、足背動脈、橈動脈和二尖脈之動脈脈搏,並且克服人體之各種動脈區域及檢測人體之動脈輸出之脈搏信號,測量到之動脈脈搏波形可用於診斷患者動脈之相關疾病。量測人體不同動脈處之脈搏波速度(Pulse Wave Velocity, PWV)分別有二尖脈到橈動脈、肱動脈到橈動脈及橈動脈到足背動脈之脈搏波速度。而量測人體之血流速度(Blood Flow Velocity, BFV)分別有頸動脈及橈動脈之區域。最後,可撓之觸覺感測器應用在中醫脈診上,中醫醫學之脈診最主要為橈動脈之脈位處分別有寸、關、尺之脈位,藉由寸、關、尺之脈位及不同之脈診深度來獲得不同之脈搏波形之輸出,量測到在不同之脈位上之脈搏波形並且由脈搏波形能夠提供其人體之器官之健康狀況之相關資訊。

This dissertation presents the development of tactile sensors using the sol-gel process to deposit a piezoelectric thin-film on a flexible stainless steel substrate. Ceramic-based tactile sensors using both silicon and stainless steel substrates were demonstrated and excellent ferroelectric properties were demonstrated. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.085~0.110mVg-1mm-2 on a stainless steel substrate while the sensitivity of the PZT-based tactile sensor was approximately 0.017 mVg-1mm-2 on a silicon substrate.
A polymer-based tactile sensor using P(VDF-TrFE) material was also demonstrated with the developed deionized (DI) water dissociation technique. The deionized (DI) water dissociation technique has several advantages, such as low cost, minimal pollution, easy fabrication and non-destructive processing. It is characterized that the sensitivity of the P(VDF-TrFE) tactile sensor was approximately 0.067mVg-1mm-2.
The developed flexible tactile sensors can be used to measure human pulses at several areas, including carotid, brachial, ankle, radial artery, and apical regions. Flexible tactile sensors can overcome the diverse topology of various human body regions and sense the corresponding signals. The measured arterial pulse waveforms can be used to diagnose hypertension and cardiac failure of patients. Pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. In addition, the tactile sensor was utilized to measure blood flow velocity (BFV) of human body such as carotid and radial artery. Finally, our tactile sensor was used to monitor the pulse waveforms of Cun, Guan, and Chi acupoints located at the radial artery region of the human body in Traditional Chinese Medicine (TCM).

誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 ix
表目錄 xvii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 4
1.2.1 人體動脈相關位置介紹 4
1.2.2 心血管疾病相關影響因素之介紹 8
1.2.3 人體之動脈硬化指標評估與量測方法 9
1.3 可撓式壓電感測器文獻回顧 10
1.4 觸覺感測器文獻回顧 18
1.4.1 觸覺感測器種類 18
1.4.2 觸覺感測器應用 21
1.4.3 觸覺感測器在人體脈搏之應用 23
1.4.4 觸覺感測器在人體脈搏波速傳遞之應用 25
1.4.5 觸覺感測器在中醫脈診感測之應用 26
1.5 論文架構 30
第二章 相關之理論 31
2.1 壓電式觸覺感測原理 31
2.1.1 鐵電材料介紹 31
2.1.2 正、逆壓電效應 32
2.1.3 Piezoelectric Potential Effect 33
2.2 溶膠-凝膠薄膜沉積技術 34
2.3 電解水表面改質系統之解離原理 35
2.4 基板之表面能相關理論 36
2.5 脈搏訊號相關理論 36
2.5.1 動脈脈搏波形 36
2.5.2 水鎚理論(Water Hammer) 38
2.5.3 中醫脈診學 41
第三章 觸覺感測器實驗設計與製作 44
3.1 實驗架構 44
3.2 材料之選擇 45
3.3 基板之選擇 46
3.4 Polymer-based 觸覺感測器製作 47
3.4.1 實驗設計 47
3.4.2 材料溶液製備 48
3.4.3 電解水系統處理 49
3.4.4 薄膜極化流程 50
3.5 Ceramic-based 觸覺感測器製作 50
3.5.1 實驗設計 50
3.5.2 材料溶液製備 53
第四章 結果與討論 54
4.1 Solution Deposition Process &; Lift-off Patterning 54
4.2 Polymer-based on Stainless Steel 63
4.2.1 接觸角(Contact Angle)與表面輪廓之分析 63
4.2.2 附著力(Adhesion)測試 67
4.2.3 X光繞射(XRD)分析 68
4.2.4 傅立葉轉化紅外光光譜儀(FTIR)分析 72
4.2.5 電滯曲線(DE Loop)分析 73
4.2.6 電子顯微鏡(SEM)分析 76
4.3 Ceramic-based on Silicon Substrate 78
4.3.1 接觸角(Contact Angle)之分析 78
4.3.2 電子顯微鏡(SEM)分析 80
4.3.3 電滯曲線(DE Loop)、漏電流(J-E)曲線分析之電性分析 83
4.4 Ceramic-based on Stainless Steel Substrate 84
4.4.1 X光繞射(XRD)分析 84
4.4.2 二次離子質譜儀(SIMS)分析 86
4.4.3 電滯曲線(DE Loop)分析 89
4.4.4 電子顯微鏡(SEM)分析 93
4.4.5 壓電薄膜沉積在不同基板之比較 101
4.5量測模組架構與設計 102
4.5.1量測模組架構 102
4.5.2電路設計 103
4.6觸覺感測器相關測試 104
4.6.1 串擾(Cross-Talk)測試 104
4.6.2 可撓(Flexibility)測試 105
4.6.3 靈敏度(Sensitivity)測試 109
4.6.4 可靠度(Reliability)測試 111
4.6.5 安全性(Safety)測試 112
4.7人體相關量測 113
4.7.1 Piezoelectric Potential Effect 113
4.7.2各動脈脈搏量測 115
4.7.3 人體之脈搏波速(Pulse Wave Velocity)量測 123
4.7.4 人體之血流速度(Blood Velocity Flow)量測 125
4.7.5 人體之中醫脈診(Traditional Chinese Medicine)量測 130
第五章 結論與未來展望 140
5.1 結論 140
5.2 未來展望 144
參考文獻 147

[1]World Health Organization, The top 10 causes of death, http://www.who.int/mediacentre/factsheets/fs310/en/index.html
[2]衛生福利部統計處,民國101年主要死因分析, http://www.mohw.gov.tw/cht/DOS/Statistic.aspx?f_list_no=312&;fod_list_no=2747
[3]John S. Pellerito, Joseph F. Polak, Introduction to vascular ultrasonography ; Philadelphia, PA : Elsevier/Saunders, 2012.
[4]M. Hennerici, D. Neuerburg-Heusler, Vascular diagnosis with ultrasound. Stuttgart ; New York : Thieme, 2006.
[5]S. J. Hutchison, K. C. Holmes, Principles of vascular and intravascular ultrasound. Philadelphia : Elsevier Saunders, 2012.
[6]A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, W. B. Borden, et al., "Heart disease and stroke statistics--2013 update: a report from the American Heart Association," Circulation, vol. 127, pp. e6-e245, Dec 2013.
[7]Merck, Treatment of Atherosclerosis, http://www.pharmaceutical-networking.com/merck-mk-0524b-treatment-of-atherosclerosis/
[8]M. F. O’Rourke, J. A. Staessen, C. Vlachopoulos, D. Duprez, and G. &;eacute;. E. Plante, "Clinical applications of arterial stiffness; definitions and reference values," American Journal of Hypertension, vol. 15, pp. 426-444, May 2002.
[9]B. S. Lee, S. C. Lin, W. J. Wu, X. Y. Wang, P. Z. Chang, and C. K. Lee, "Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film," Journal of Micromechanics and Microengineering, vol. 19, 065014, Jun 2009.
[10]A. Hajati and S. G. Kim, "Ultra-wide bandwidth piezoelectric energy harvesting," Applied Physics Letters, vol. 99, 083105, Aug 2011.
[11]G. Tang, J. Q. Liu, B. Yang, J. B. Luo, H. S. Liu, Y. G. Li, et al., "Fabrication and analysis of high-performance piezoelectric MEMS generators," Journal of Micromechanics and Microengineering, vol. 22, 065017, Jun 2012.
[12]F. Filhol, E. Defay, C. Divoux, C. Zinck, and M. T. Delaye, "Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning," Sensors and Actuators a-Physical, vol. 123-24, pp. 483-489, Sep 2005.
[13]K. H. Koh, T. Kobayashi, F. L. Hsiao, and C. Lee, "Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors," Sensors and Actuators a-Physical, vol. 162, pp. 336-347, Aug 2010.
[14]K. H. Koh, T. Kobayashi, and C. Lee, "A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator," Optics Express, vol. 19, pp. 13812-13824, Jul 2011.
[15]D. Balma, A. Lamberti, S. L. Marasso, D. Perrone, M. Quaglio, G. Canavese, et al., "Piezoelectrically actuated MEMS microswitches for high current applications," Microelectronic Engineering, vol. 88, pp. 2208-2210, Aug 2011.
[16]C. Dehoff, A. Hennings, C. Kugeler, T. Schneller, and U. Bottger, "Piezoelectric actuated MEMS for use in microwave switching and filtering applications," Physica Status Solidi a-Applications and Materials Science, vol. 208, pp. 343-356, Feb 2011.
[17]E. Defay, C. Millon, C. Malhaire, and D. Barbier, "PZT thin films integration for the realisation of a high sensitivity pressure microsensor based on a vibrating membrane," Sensors and Actuators a-Physical, vol. 99, pp. 64-67, Apr 2002.
[18]J. Cheong, A. Goyal, S. A. Tadigadapa, and C. D. Rahn, "Fabrication and performance of a flextensional microactuator," Journal of Micromechanics and Microengineering, vol. 15, pp. 1947-1955, Oct 2005.
[19]N. R. Harris, M. Hill, R. Torah, R. Townsend, S. Beeby, N. M. White, et al., "A multilayer thick-film PZT actuator for MEMs applications," Sensors and Actuators a-Physical, vol. 132, pp. 311-316, Nov 2006.
[20]N. J. Conway, Z. J. Traina, and S. G. Kim, "A strain amplifying piezoelectric MEMS actuator," Journal of Micromechanics and Microengineering, vol. 17, pp. 781-787, Apr 2007.
[21]H. Choi, A. Dalakoti, S. Bose, and A. Bandyopadhyay, "Influence of top electrode design on pMUTs performance," Sensors and Actuators a-Physical, vol. 135, pp. 613-619, Apr 2007.
[22]F. H. Ko, Y. C. Hsu, M. T. Wang, and G. W. S. Huang, "Fabrication of a gas sensor with a piezoelectric PZT film deposited by a novel hydrothermal microwave-assisted annealing," Microelectronic Engineering, vol. 84, pp. 1300-1304, 2007.
[23]Y. C. Hsu, J. L. Hsu, and N. B. Le, "An experimental and numerical investigation into the effects of the PZT actuator shape in polymethylmethacrylate (PMMA) peristaltic micropumps," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 15, pp. 565-571, Apr 2009.
[24]V. T. Dau, T. X. Dinh, and S. Sugiyama, "A MEMS-based silicon micropump with intersecting channels and integrated hotwires," Journal of Micromechanics and Microengineering, vol. 19, 125016, Dec 2009.
[25]C. S. Chao, P. C. Huang, M. K. Chen, and L. S. Jang, "Design and analysis of charge-recovery driving circuits for portable peristaltic micropumps with piezoelectric actuators," Sensors and Actuators a-Physical, vol. 168, pp. 313-319, Aug 2011.
[26]Q. F. Zhou, S. T. Lau, D. W. Wu, and K. Shung, "Piezoelectric films for high frequency ultrasonic transducers in biomedical applications," Progress in Materials Science, vol. 56, pp. 139-174, Feb 2011.
[27]S. Trolier-McKinstry, F. Griggio, C. Yaeger, P. Jousse, D. L. Zhao, S. S. N. Bharadwaja, et al., "Designing Piezoelectric Films for Micro Electromechanical Systems," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 58, pp. 1782-1792, Sep 2011.
[28]H. G. Yu, L. Zou, K. Deng, R. Wolf, S. Tadigadapa, and S. Trolier-McKinstry, "Lead zirconate titanate MEMS accelerometer using interdigitated electrodes," Sensors and Actuators a-Physical, vol. 107, pp. 26-35, Oct 2003.
[29]C. C. Hindrichsen, N. S. Almind, S. H. Brodersen, R. Lou-Moller, K. Hansen, and E. V. Thomsen, "Triaxial MEMS accelerometer with screen printed PZT thick film," Journal of Electroceramics, vol. 25, pp. 108-115, Oct 2010.
[30]M. Kohli, C. Wuethrich, K. Brooks, B. Willing, M. Forster, P. Muralt, et al., "Pyroelectric thin-film sensor array," Sensors and Actuators a-Physical, vol. 60, pp. 147-153, 1997.
[31]W. G. Liu, J. S. Ko, and W. G. Zhu, "Influences of thin Ni layer on the electrical and absorption properties of PZT thin film pyroelectric IR sensors," Infrared Physics &; Technology, vol. 41, pp. 169-173, 2000.
[32]L. L. Sun, O. K. Tan, and W. G. Zhu, "Pb(Zr0.3Ti0.7)O-3/PbTiO3 multilayer thin films for pyroelectric infrared sensor application," Journal of Applied Physics, vol. 99, 094108, May 2006.
[33]E. Hong, S. V. Krishnaswamy, C. B. Freidhoff, and S. Trolier-McKinstry, "Micromachined piezoelectric diaphragms actuated by ring shaped interdigitated transducer electrodes," Sensors and Actuators a-Physical, vol. 119, pp. 521-527, Apr 2005.
[34]Y. Meyer, T. Verdot, M. Collet, J. Baborowski, and P. Muralt, "Active isolation of electronic micro-components with piezoelectrically transduced silicon MEMS devices," Smart Materials &; Structures, vol. 16, pp. 128-134, Feb 2007.
[35]L. L. Zhang, M. Ichiki, J. Tsaur, Z. J. Wang, and R. Maeda, "Pulsed laser deposited lead zirconate titanate thin films for micro actuators," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes &; Review Papers, vol. 42, pp. 3986-3990, Jun 2003.
[36]S. Y. Yang, B. T. Liu, J. Ouyang, V. Nagarajan, V. N. Kulkarni, R. Ramesh, et al., "Epitaxial Pb(Zr,Ti)O-3 capacitors on Si by liquid delivery metalorganic chemical vapor deposition," Journal of Electroceramics, vol. 14, pp. 37-44, Jan 2005.
[37]T. Suzuki, I. Kanno, J. J. Loverich, H. Kotera, and K. Wasa, "Characterization of Pb(Zr,Ti)O-3 thin films deposited on stainless steel substrates by RF-magnetron sputtering for MEMS applications," Sensors and Actuators a-Physical, vol. 125, pp. 382-386, Jan 2006.
[38]J. G. Wu, D. Q. Xiao, J. G. Zhu, J. L. Zhu, J. Z. Tan, and Q. L. Zhang, "Enhanced dielectric and ferroelectric properties of Pb(Zr0.8Ti0.2)O-3/Pb(Zr0.2Ti0.8)O-3 multilayered thin films prepared by rf magnetron sputtering," Applied Physics Letters, vol. 90, Feb 2007.
[39]A. Bose, T. Maity, S. Bysakh, A. Seal, and S. Sen, "Influence of plasma pressure on the growth characteristics and ferroelectric properties of sputter-deposited PZT thin films," Applied Surface Science, vol. 256, pp. 6205-6212, Aug 2010.
[40]R. Lou-Moeller, C. C. Hindrichsen, L. H. Thamdrup, T. Bove, E. Ringgaard, A. F. Pedersen, et al., "Screen-printed piezoceramic thick films for miniaturised devices," Journal of Electroceramics, vol. 19, pp. 333-338, Dec 2007.
[41]J. H. Park, H. Kim, D. S. Yoon, S. Y. Kwang, J. Lee, and T. S. Kim, "Effects of the material properties on piezoelectric PZT thick film micro cantilevers as sensors and self actuators," Journal of Electroceramics, vol. 25, pp. 1-10, Aug 2010.
[42]C. C. Hindrichsen, N. S. Almind, S. H. Brodersen, R. Lou-Moller, K. Hansen, and E. V. Thomsen, "Triaxial MEMS accelerometer with screen printed PZT thick film," Journal of Electroceramics, vol. 25, pp. 108-115, Oct 2010.
[43]X. Y. Wang, C. Y. Lee, Y. C. Hu, W. P. Shih, C. C. Lee, J. T. Huang, et al., "The fabrication of silicon-based PZT microstructures using an aerosol deposition method," Journal of Micromechanics and Microengineering, vol. 18, 055034, May 2008.
[44]J. Van Tassel and C. A. Randall, "Electrophoretic deposition and sintering of thin/thick PZT films," Journal of the European Ceramic Society, vol. 19, pp. 955-958, Jun 1999.
[45]B. Su, C. B. Ponton, and T. W. Button, "Hydrothermal and electrophoretic deposition of lead zirconate titanate (PZT) films," Journal of the European Ceramic Society, vol. 21, pp. 1539-1542, Nov 2001.
[46]J. Ma and W. Cheng, "Deposition and packing study of sub-micron PZT ceramics using electrophoretic deposition," Materials Letters, vol. 56, pp. 721-727, Nov 2002.
[47]J. Perez, P. M. Vilarinho, and A. L. Kholkin, "High-quality PbZr0.52Ti0.48O3 films prepared by modified sol-gel route at low temperature," Thin Solid Films, vol. 449, pp. 20-24, Feb 2004.
[48]B. Malic, M. Kosec, I. Arcon, and A. Kodre, "Homogeneity issues in chemical solution deposition of Pb(Zr,Ti)O3 thin films," Journal of the European Ceramic Society, vol. 25, pp. 2241-2246, Mar 2005.
[49]M. D. Losego, J. F. Ihlefeld, and J. P. Maria, "Importance of solution chemistry in preparing sol-gel PZT thin films directly on copper surfaces," Chemistry of Materials, vol. 20, pp. 303-307, Jan 2008.
[50]Y. Ohya, Y. Yahata, and T. Ban, "Dielectric and piezoelectric properties of dense and porous PZT films prepared by sol-gel method," Journal of Sol-Gel Science and Technology, vol. 42, pp. 397-405, Jun 2007.
[51]C. C. Mardare, E. Joanni, A. I. Mardare, C. P. M. de S&;aacute;, and P. B. Tavares, "The performance of Zr as barrier layer for Pt bottom electrodes in Pb(Zr,Ti)O3 thin film capacitors," Thin Solid Films, vol. 483, pp. 21-26, Jul 2005.
[52]H. J. Nam, D. K. Choi, and W. J. Lee, "Formation of hillocks in Pt/Ti electrodes and their effects on short phenomena of PZT films deposited by reactive sputtering," Thin Solid Films, vol. 371, pp. 264-271, Aug 2000.
[53]W. W. Jung, S. K. Choi, S. Y. Kweon, and S. J. Yeom, "Platinum(100) hillock growth in a Pt/Ti electrode stack for ferroelectric random access memory," Applied Physics Letters, vol. 83, pp. 2160-2162, Sep 2003.
[54]K. Nakamura, Y. Otani, M. Kurita, S. Okamura, and T. Shiosaki, "Variation in 111 d-space and generation of hillocks in platinum thin-film electrodes by heat treatment," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications &; Review Papers, vol. 44, pp. 8096-8101, Nov 2005.
[55]Y. S. Jeong, H. U. Lee, S. A. Lee, J. P. Kim, H. G. Kim, S. Y. Jeong, et al., "Annealing effect of platinum-based electrodes on physical properties of PZT thin films," Current Applied Physics, vol. 9, pp. 115-119, Jan 2009.
[56]B. P. Zhu, D. D. Li, Q. F. Zhou, J. Shi, and K. K. Shung, "Piezoelectric PZT thick films on LaNiO3 buffered stainless steel foils for flexible device applications," Journal of Physics D-Applied Physics, vol. 42, 025504, Jan 2009.
[57]K. Morimoto, I. Kanno, K. Wasa, and H. Kotera, "High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers," Sensors and Actuators A: Physical, vol. 163, pp. 428-432, Sep 2010.
[58]Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, "Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion," Nano Letters, vol. 10, pp. 524-528, Feb 2010.
[59]M. Y. Cheng, X. H. Huang, C. W. Ma, and Y. J. Yang, "A flexible capacitive tactile sensing array with floating electrodes," Journal of Micromechanics and Microengineering, vol. 19, 115001, Jul 2009.
[60]C. A. Gutierrez and E. Meng, "Impedance-Based Force Transduction Within Fluid-Filled Parylene Microstructures," Journal of Microelectromechanical Systems, vol. 20, pp. 1098-1108, Oct 2011.
[61]M. Akiyama, Y. Morofuji, T. Kamohara, K. Nishikubo, Y. Ooishi, M. Tsubai, et al., "Preparation of oriented aluminum nitride thin films on polyimide films and piezoelectric response with high thermal stability and flexibility," Advanced Functional Materials, vol. 17, pp. 458-462, Feb 2007
[62]J. Castellanos-Ramos, R. Navas-Gonzalez, H. Macicior, T. Sikora, E. Ochoteco, and F. Vidal-Verdu, "Tactile sensors based on conductive polymers," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 16, pp. 765-776, May 2010.
[63]K. Riha and R. Ciz, "Searching for a New Non-Invasive Method of Blood Circulation System Diagnostics," in Systems, 2008. ICONS 08. Third International Conference on, pp. 156-161, Apr 2008.
[64]B. Charlot, F. Parrain, N. Galy, S. Basrour, and B. Courtois, "A sweeping mode integrated fingerprint sensor with 256 tactile microbeams," Journal of Microelectromechanical Systems, vol. 13, pp. 636-644, Aug 2004.
[65]T. Salo, T. Vancura, and H. Baltes, "CMOS-sealed membrane capacitors for medical tactile sensors," Journal of Micromechanics and Microengineering, vol. 16, pp. 769-778, Apr 2006
[66]Y. Yang, M. Y. Cheng, W. Y. Chang, L. C. Tsao, S. A. Yang, W. P. Shih, et al., "An integrated flexible temperature and tactile sensing array using PI-copper films," Sensors and Actuators a-Physical, vol. 143, pp. 143-153, May 2008.
[67]M. Akiyama, N. Ueno, K. Nonaka, and H. Tateyama, "Flexible pulse-wave sensors from oriented aluminum nitride nanocolumns," Applied Physics Letters, vol. 82, pp. 1977-1979, Mar 2003.
[68]F. Clemente, P. Arpaia, and P. Cimmino, "A piezo-film-based measurement system for global haemodynamic assessment," Physiological Measurement, vol. 31, pp. 697-714, May 2010.
[69]V. G. Almeida, H. C. Pereira, T. Pereira, E. Figueiras, E. Borges, J. M. R. Cardoso, et al., "Piezoelectric probe for pressure waveform estimation in flexible tubes and its application to the cardiovascular system," Sensors and Actuators a-Physical, vol. 169, pp. 217-226, Sep 2011.
[70]Z. T. Li and Z. L. Wang, "Air/Liquid-Pressure and Heartbeat-Driven Flexible Fiber Nanogenerators as a Micro/Nano-Power Source or Diagnostic Sensor," Advanced Materials, vol. 23, pp. 84-89, Jan 2011.
[71]J. McLaughlin, M. McNeill, B. Braun, and P. D. McCormack, "Piezoelectric sensor determination of arterial pulse wave velocity," Physiological Measurement, vol. 24, pp. 693-702, Aug 2003.
[72]H. C. Pereira, T. Pereira, V. Almeida, E. Borges, E. Figueiras, J. B. Simoes, et al., "Characterization of a double probe for local pulse wave velocity assessment," Physiological Measurement, vol. 31, pp. 1449-1465, Nov 2010.
[73]J. H. Wu, R. S. Chang, and J. A. Jiang, "A novel pulse measurement system by using laser triangulation and a CMOS image sensor," Sensors, vol. 7, pp. 3366-3385, Dec 2007.
[74]C.-C. Wei, "An Innovative Method to Measure the Peripheral Arterial Elasticity: Spring Constant Modeling Based on the Arterial Pressure Wave with Radial Vibration," Annals of Biomedical Engineering, vol. 39, pp. 2695-2705, Nov 2011.
[75]C. Y. Liu, C. C. Wei, and P. C. Lo, "Variation Analysis of Sphygmogram to Assess Cardiovascular System under Meditation," Evidence-Based Complementary and Alternative Medicine, vol. 6, pp. 107-112, Mar 2009.
[76]C. S. Hu, Y. F. Chung, C. C. Yeh, and C. H. Luo, "Temporal and Spatial Properties of Arterial Pulsation Measurement Using Pressure Sensor Array," Evidence-Based Complementary and Alternative Medicine, vol. 2012, pp. 1-9, May2012.
[77]C.-H. Luo, Y.-F. Chung, C.-S. Hu, C.-C. Yeh, X.-C. Si, D.-H. Feng, et al., "Possibility of quantifying TCM finger-reading sensations: I. Bi-Sensing Pulse Diagnosis Instrument," European Journal of Integrative Medicine, vol. 4, pp. e255-e262, Sep 2012.
[78]J. Chang, M. Dommer, C. Chang, and L. Lin, "Piezoelectric nanofibers for energy scavenging applications," Nano Energy, vol. 1, pp. 356-371, May 2012.
[79]S. A. Wilson, R. P. J. Jourdain, Q. Zhang, R. A. Dorey, C. R. Bowen, M. Willander, et al., "New materials for micro-scale sensors and actuators An engineering review," Materials Science &; Engineering R-Reports, vol. 56, pp. 1-129, Jun 2007.
[80]K. El-Hami and K. Matsushige, "Lamellae orientation effect on local polarized domain in P(VDF/TrFE) copolymer: Application in data storage," Journal of Applied Polymer Science, vol. 96, pp. 1410-1413, May 2005.
[81]G. Song, C. Olmi, and H. Gu, "An overheight vehicle–bridge collision monitoring system using piezoelectric transducers," Smart Materials and Structures, vol. 16, p. 462, Jan 2007.
[82]S. Bai, Q. Xu, L. Gu, F. Ma, Y. Qin, and Z. L. Wang, "Single crystalline lead zirconate titanate (PZT) nano/micro-wire based self-powered UV sensor," Nano Energy, vol. 1, pp. 789-795, Nov 2012.
[83]X. Wen, W. Wu, Y. Ding, and Z. L. Wang, "Piezotronic Effect in Flexible Thin-film Based Devices," Advanced Materials, vol. 25, pp. 3371-3379, Jun 2013.
[84]S. Yu, T. K. S. Wong, X. Hu, and K. Pita, "Sol-gel derived mesoporous silica films used as low dielectric constant materials," Thin Solid Films, vol. 462–463, pp. 311-315, Sep 2004.
[85]Z. H. Chen, S. W. Huang, and J. G. Hwu, "Electrical characteristics of ultra-thin gate oxides (< 3 nm) prepared by direct current superimposed with alternating-current anodization," Solid-State Electronics, vol. 48, pp. 23-28, Jan 2004.
[86]A. Choubey, D. Marton, and E. A. Sprague, "Human aortic endothelial cell response to 316L stainless steel material microstructure," Journal of Materials Science-Materials in Medicine, vol. 20, pp. 2105-2116, May 2009.
[87]N. A. Shirwany and M. H. Zou, "Arterial stiffness: a brief review," Acta Pharmacol Sin, vol. 31, pp. 1267-76, Oct 2010.
[88]Salvi, Paolo, Pulse waves. Milano: Springer Milan, 2012.
[89]P. Salvi, E. Magnani, F. Valbusa, D. Agnoletti, C. Alecu, L. Joly, A. Benetos, "Comparative study of methodologies for pulse wave velocity estimation," J Hum Hypertens, vol. 22, pp. 669-677, Jun 2008.
[90]J. Padilla, E. Berjano, J. S&;aacute;iz, R. Rodriguez, and L. F&;aacute;cila, "Pulse Wave Velocity and Digital Volume Pulse as Indirect Estimators of Blood Pressure: Pilot Study on Healthy Volunteers," Cardiovascular Engineering, vol. 9, pp. 104-112, Sep 2009.
[91]A. K. Reddy, S. Madala, A. D. Jones, W. A. Caro, J. F. Eberth, T. T. Pham, et al., "MULTICHANNEL PULSED DOPPLER SIGNAL PROCESSING FOR VASCULAR MEASUREMENTS IN MICE," Ultrasound in Medicine and Biology, vol. 35, pp. 2042-2054, Dec 2009.
[92]B. Jiang, B. Liu, K. L. McNeill, and P. J. Chowienczyk, "Measurement of pulse wave velocity using pulse wave Doppler ultrasound: Comparison with arterial tonometry," Ultrasound in Medicine and Biology, vol. 34, pp. 509-512, Mar 2008.
[93]A. Harada, T. Okada, K. Niki, C. Dehua, and M. Sugawara, "New methods of one-point measurement of pulse wave velocity," in Ultrasonics Symposium, 2002. Proceedings, vol.2, pp. 1835-1838. Oct 2002.
[94]A. Harada, T. Okada, K. Niki, D. Chang, and M. Sugawara, "On-line noninvasive one-point measurements of pulse wave velocity," Heart and Vessels, vol. 17, pp. 61-68, Dec 2002.
[95]S. Takayama, T. Seki, N. Sugita, S. Konno, H. Arai, Y. Saijo, et al., "Radial Artery Hemodynamic Changes Related to Acupuncture," EXPLORE: The Journal of Science and Healing, vol. 6, pp. 100-105, Mar 2010.
[96]逢甲大學, 中國醫學研究社,http://myweb.fcu.edu.tw/~a18/activity.htm
[97]暱圖網,中醫經絡學,http://www.nipic.com/show/4/107/f2e5ccdb3b660ba9.html
[98]看雜誌, 小孩針灸 媽媽態度很重要, http://www.watchinese.com/article/2013/8155
[99]漢方醫學有限公司, 共濟會醫士團亡華戰略:欲滅中醫,先滅中藥, http://www.hftcm.com/academy-detail.html?content=35
[100]K. Malinauskas, P. Palevicius, M. Ragulskis, V. Ostasevicius, and R. Dauksevicius, "Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis," Sensors, vol. 13, pp. 5368-5380, Apr 2013.
[101]Pollster波仕特線上市調, 超過九成人相信中醫有療效, http://www.pollster.com.tw/Aboutlook/lookview_item.aspx?ms_sn=2212
[102]吳清忠, 人體使用手冊, http://blog.udn.com/DDPisShit/3855243
[103]R. Ali, D. R. Mahapatra, and S. Gopalakrishnan, "An analytical model of constrained piezoelectric thin film sensors," Sensors and Actuators a-Physical, vol. 116, pp. 424-437, Oct 2004.
[104]T. Suzuki, I. Kanno, J. J. Loverich, H. Kotera, and K. Wasa, "Characterization of Pb(Zr,Ti)O-3 thin films deposited on stainless steel substrates by RF-magnetron sputtering for MEMS applications," Sensors and Actuators a-Physical, vol. 125, pp. 382-386, Jan 2006.
[105]Y. M. Poon, C. H. Ho, Y. W. Wong, and F. G. Shin, "Theoretical predictions on the effective piezoelectric coefficients of 0-3 PZT/Polymer composites," Journal of Materials Science, vol. 42, pp. 6011-6017, Aug 2007.
[106]C. Caneva, I. M. De Rosa, and F. Sarasini, "Monitoring of impacted aramid-reinforced composites by embedded PVDF acoustic emission sensors," Strain, vol. 44, pp. 308-316, Aug 2008.
[107]S. Chen, K. Yao, F. E. H. Tay, and L. L. S. Chew, "Comparative Investigation of the Structure and Properties of Ferroelectric Poly(vinylidene fluoride) and Poly(vinylidene fluoride-trifluoroethylene) Thin Films Crystallized on Substrates," Journal of Applied Polymer Science, vol. 116, pp. 3331-3337, Jun 2010.
[108]S. Bonora, M. Meneghini, A. Marrani, M. Bassi, I. Falco, and E. Zanoni, "Photostrictive effect in a polyvinylidene fluoride-trifluoroethylene copolymer," Applied Physics Letters, vol. 99, 033506, Jul 2011.
[109]K. J. Baeg, D. Khim, J. Kim, B. D. Yang, M. Kang, S. W. Jung, et al., "High-Performance Top-Gated Organic Field-Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory," Advanced Functional Materials, vol. 22, pp. 2915-2926, Jul 2012.
[110]F. Bauer, "Properties of ferroelectric polymers under high pressure and shock loading," Nuclear Instruments &; Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 105, pp. 212-216, Nov 1995.
[111]R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, "High-field deformation of elastomeric dielectrics for actuators," Materials Science and Engineering: C, vol. 11, pp. 89-100, Nov 2000.
[112]M. Deshpande and L. Saggere, "PZT thin films for low voltage actuation: Fabrication and characterization of the transverse piezoelectric coefficient," Sensors and Actuators a-Physical, vol. 135, pp. 690-699, Apr 2007.
[113]H. Mace, H. Achard, and L. Peccoud, "Reactive ion etching of Pt/PZT/Pt ferroelectric thin film capacitors in high density DECR plasma," Microelectronic Engineering, vol. 29, pp. 45-48, Dec 1995.
[114]Y. Y. Lin, Q. Liu, T. A. Tang, X. Yao, and W. N. Huang, "Magnetically enhanced reactive ion etching of lead zirconate titanate thin film by CHF3 plasma," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes &; Review Papers, vol. 39, pp. 320-323, Jan 2000.
[115]C. K. Huang and T. B. Wu, "Plasma etching and hydrogen blocking characteristics of PtOx thin films in ferroelectric capacitor fabrication," Applied Physics Letters, vol. 83, pp. 3147-3149, Oct 2003.
[116]K. Zheng, J. Lu, and J. Chu, "A novel wet etching process of Pb(Zr,Ti)O-3 thin films for applications in microelectromechanical system," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes &; Review Papers, vol. 43, pp. 3934-3937, Jun 2004.
[117]S. Ezhilvalavan and V. D. Samper, "Ferroelectric properties of wet-chemical patterned PbZr0.52Ti0.48O3 films," Applied Physics Letters, vol. 86, 072910, Dec 2005.
[118]H. Suzuki, T. Mori, T. Fujinami, T. Ota, M. Fuji, and M. Takahashi, "Micro-patterning of sol-gel-derived PZT thin film with SAM," Ceramics International, vol. 30, pp. 1811-1813, 2004.
[119]C. W. Wu, T. Aoki, and M. Kuwabara, "Electron-beam lithography assisted patterning of surfactant-templated mesoporous thin films," Nanotechnology, vol. 15, pp. 1886-1889, Dec 2004.
[120]T. Aoki, M. Kondo, K. Kurihara, N. Kamehara, and M. Kuwabara, "Crystallinity of microscopically patterned (Pb,La)(Zr,Ti)O-3 films on (001)Nb-doped SrTO3 substrates prepared by chemical solution deposition process with resist molds," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications &; Review Papers, vol. 45, pp. 350-354, Jan 2006.
[121]W. S. Beh, Y. N. Xia, and D. Qin, "Formation of patterned microstructures of polycrystalline ceramics from precursor polymers using micromolding in capillaries," Journal of Materials Research, vol. 14, pp. 3995-4003, Oct 1999.
[122]C. R. Martin and I. A. Aksay, "Topographical evolution of lead zirconate titanate (PZT) thin films patterned by micromolding in capillaries," Journal of Physical Chemistry B, vol. 107, pp. 4261-4268, May 2003.
[123]Y. J. Park, Y. S. Kang, and C. Park, "Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions," European Polymer Journal, vol. 41, pp. 1002-1012, May 2005.
[124]B. S. Bae, "High photosensitive sol-gel hybrid materials for direct photo-imprinting of micro-optics," Journal of Sol-Gel Science and Technology, vol. 31, pp. 309-315, Aug 2004.
[125]S. Marson, R. A. Dorey, Q. Zhang, R. W. Whatmore, A. Hardy, and J. Mullens, "Direct patterning of photosensitive chemical solution deposition PZT layers," Journal of the European Ceramic Society, vol. 24, pp. 1925-1928, 2004.
[126]J.-S. Hwang, W. S. Kim, H.-H. Park, and T.-S. Kim, "The effect of intermediate anneal on the ferroelectric properties of direct-patternable PZT films," Sensors and Actuators A: Physical, vol. 117, pp. 137-142, Jan 2005.
[127]A. Navarro, S. A. Rocks, and R. A. Dorey, "Micromoulding of lead zirconate titanate (PZT) structures for MEMS," Journal of Electroceramics, vol. 19, pp. 321-326, Dec 2007.
[128]D. Wang, S. A. Rocks, and R. A. Dorey, "Micromoulding of PZT film structures using electrohydrodynamic atomization mould filling," Journal of the European Ceramic Society, vol. 29, pp. 1147-1155, Apr 2009.
[129]Z. Chen and C. Lu, "Humidity Sensors: A Review of Materials and Mechanisms," Sensor Letters, vol. 3, pp. 274-295, Dec 2005.
[130]V. Sencadas, P. Martins, A. Pita&;#771;es, M. Benelmekki, J. L. Go&;#769;mez Ribelles, and S. Lanceros-Mendez, "Influence of Ferrite Nanoparticle Type and Content on the Crystallization Kinetics and Electroactive Phase Nucleation of Poly(vinylidene fluoride)," Langmuir, vol. 27, pp. 7241-7249, Jun 2011.
[131]I. Bae, S. J. Kang, Y. J. Park, T. Furukawa, and C. Park, "Organic ferroelectric field-effect transistor with P(VDF-TrFE)/PMMA blend thin films for non-volatile memory applications," Current Applied Physics, vol. 10, pp. e54-e57, Jan 2010.
[132]Q. Zhang and R. W. Whatmore, "Improved ferroelectric and pyroelectric properties in Mn-doped lead zirconate titanate thin films," Journal of Applied Physics, vol. 94, pp. 5228-5233, Oct 2003.
[133]S. Takahashi, "Effects of impurity doping in lead zirconate-titanate ceramics," Ferroelectrics, vol. 41, pp. 143-156, May 1982.
[134]R.-A. Eichel, E. Erunal, M. D. Drahus, D. M. Smyth, J. van Tol, J. Acker, et al., "Local variations in defect polarization and covalent bonding in ferroelectric Cu2+-doped PZT and KNN functional ceramics at the morphotropic phase boundary," Physical Chemistry Chemical Physics, vol. 11, pp. 8698-8705, Mar 2009.
[135]Y. Jyh-Cheng and W. Jun-Xiang, "Analysis of material processing of sol-gel derived PZT to the performance of microaccelerometer applications," in Design, Test, Integration &; Packaging of MEMS/MOEMS, 2009. MEMS/MOEMS ''09. Symposium on, pp. 208-211, Apr 2009
[136]K. Morimoto, I. Kanno, K. Wasa, and H. Kotera, "High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers," Sensors and Actuators a-Physical, vol. 163, pp. 428-432, Sep 2010.
[137]S. M. Bruemmer and L. A. Charlot, "Development of grain boundary chromium depletion in type 304 and 316 stainless steels," Scripta Metallurgica, vol. 20, pp. 1019-1024, Jul 1986.
[138]U. S. Bhansali, M. A. Khan, and H. N. Alshareef, "Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes," Organic Electronics, vol. 13, pp. 1541-1545, Sep 2012.
[139]R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, "High-field deformation of elastomeric dielectrics for actuators," Materials Science and Engineering: C, vol. 11, pp. 89-100, Nov 2000.
[140]S. P. Beeby, M. J. Tudor, and N. M. White, "Energy harvesting vibration sources for microsystems applications," Measurement Science and Technology, vol. 17, pp. R175, Oct 2006.
[141]Y. B. Jeon, R. Sood, J. h. Jeong, and S. G. Kim, "MEMS power generator with transverse mode thin film PZT," Sensors and Actuators A: Physical, vol. 122, pp. 16-22, Jul 2005.
[142]D. Fang and C. Li, "Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic," Journal of Materials Science, vol. 34, pp. 4001-4010, Aug 1999.
[143]T. R. V. f. A. S. Collaboration, "Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’," European Heart Journal, vol. 31, pp. 2338-2350, October 2010.
[144]M. Mokhtari Dizaji, M. Maerefat, S. Rahgozar, "Estimation of Carotid Artery Pulse Wave Velocity by Doppler Ultrasonography," Journal of Tehran University Heart Center, vol. 4(2), pp. 91-96, Jan 2009.
[145]G.L. Sorensen, J.B. Jensen, J. Udesen, I.K. Holfort, J.A. Jensen, "Pulse Wave Velocity in the Carotid Artery," Ultrasonics Symposium, 2008. IUS 2008. IEEE, pp. 1386-1389, Nov 2008.
[146]N. Keenan, P. Gatehouse, R. H. Mohiaddin, D. Firmin, D. J. Pennell, "Carotid Artery Pulse Wave Velocity Measurement by Cardiovascular Magnetic Resonance," Hounsfield Lecture, pp. 161, 2006.
[147]J. S. FULTON, B. A. McSWINEY, "THE PULSE WAVE VELOCITY AND EXTENSIBILITY OF THE BRACHIAL AND RADIAL ARTERY IN MAN," The Journal of Physiology, vol. 69, pp. 386-392, Jun 1930.
[148]Y. J. Lee, J. Lee, H. J. Lee, H. H. Ryu, E. J. Choi, and J. Y. Kim, " Characteristic study of the pulse position on CHON, GWAN and CHEOK which are used for pulse diagnosis using by ultrasonic waves,” Korean Journal of Oriental Medicine," Korean Journal of Oriental Medicine, vol. 13, pp. 111–117, 2007.
[149]Henry Gray, "Anatomy of the Human Body," 1858.
[150]黃進明, 現代脈診圖譜學. 台北; 知音出版社, 2012.
[151]Y.-Y. Chiu, W.-Y. Lin, H.-Y. Wang, S.-B. Huang, and M.-H. Wu, "Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring," Sensors and Actuators A: Physical, vol. 189, pp. 328-334, Jan 2013.
[152]Sproutling Monitor, http://www.fastcodesign.com/3019806/the-sproutling-why-a-fitbit-for-babies-might-be-brilliant
[153]大紀元, 智慧衣測健康, http://www.epochtimes.com/b5/14/1/11/n4056593.htm
[154]癮科技, Ford heart-rate, http://cool3c.incar.tw/taxonomy/term/47737
[155]文匯報, 在家就醫不是夢, http://big5.news365.com.cn:82/gate/big5/wenhui.news365.com.cn/tp/201206/t20120624_486718.html

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔