跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:尤建勳
研究生(外文):Jian-Syun Yu
論文名稱:彈性超穎材料(負楊氏模數模型)波傳行為探討與實驗分析
論文名稱(外文):Experimental and numerical study of elastic metamaterial with negative Young’s modulus model
指導教授:黃心豪黃心豪引用關係
指導教授(外文):Hsin-Haou Haung
口試委員:林輝政江茂雄宋家驥
口試委員(外文):Hui-Jheng LinMao-Hsuing ChiangChia-Chi Sung
口試日期:2014-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:72
中文關鍵詞:超穎材料等效楊氏模數尤拉樑波傳行為
外文關鍵詞:MetamaterialEffective Young’s modulusEuler-Bernoulli BeamWave propagation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超穎材料(Metamaterial)為人造的材料,藉由幾何設計與尺寸的改變,使物體展現出與一般物理定律不同的行為,起初從電磁波的研究逐漸發展至聲學及固體力學等領域。超穎材料的學理關鍵在於材料內的微結構,而彈性超穎材料主要利用外力激發使材料內的微結構產生局部共振,透過振動或機構等方式,進而在等效模型中得到負質量密度、負楊氏模數、負體積模數等不存在於自然界中的性質。
本文延伸等效負楊氏模數模型針對剪力波發展超穎結構樑模型,推導其運動方程式並繪製頻散曲線討論波傳行為,接著透過有限元素分析軟體COMSOL,分析超穎結構樑模型系統參數對於頻率響應的影響。最後實際設計超穎結構並利用3D列印機製作試體,進行一維振動實驗觀察波傳現象觀察是否在目標頻率段具有波傳衰減行為。
根據數值模擬及實驗結果,本研究設計之週期性超穎結構樑,由頻域分析得出在280Hz~300Hz在正弦外力激振下具有振幅衰減行為。透過一維振動實驗發現當外力激振頻率落在局部共振器的頻率時衰減振幅可減少約80%。由上述結果得知本文提出之模型,實際中可以有效地阻隔特定頻率範圍內的剪力波傳遞,期許此概念可應用於彈性波濾波及減震功能。


This article presents methods for modeling, analysis, and design of metamaterial beams with extreme Young’s modulus. Metamaterials are man-made materials that make objects exhibit behavior different from the general laws of physics by changing the geometry and dimensions. Metamaterial research extends from the electromagnetic into acoustics and solid mechanics. By different mechanism such as translational or rotational vibration, Elastic solid metamaterials would be the equivalent models of media having negative mass density, negative Young''s modulus, or negative bulk modulus in excitation force. Objects can be made vibration absorption when utilizing those phenomena.
The thesis is divided into three parts. First, through a combination of Euler-Bernoulli beam, spring-mass system and trusses construct a theoretical model. From a unit cell of an infinite metamaterial beam (meta-beam), governing equations are derived using the extended Hamilton principle. By Bloch-Floquet theory for periodic structures we except to find the stop-band in the dispersion curve created by resonators. We uses the incoming elastic wave in the beam to resonant the spring-mass system. We expect that the system resonance creates additional bending moments to stop the wave propagation in meta-beam. Second, we design the possible practical meta-beam. The effect of the meta-beam is explicitly confirmed by analysis of wave propagation using numerical simulations in COMSOL. By numerical simulation, we expect to find the actual working mechanism in meta-beams and their transient responses. Finally, the practical designs and their dynamic behaviors are examined and discussed using numerical simulations.


誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
表目錄 VI
圖目錄 VII
第1章 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 1
1.3 論文架構 5
第2章 超穎結構樑模型理論 6
2.1 等效負楊氏模數模型理論 6
2.2 超穎結構樑模型理論 12
2.3 頻散曲線與系統參數配置分析 18
2.4 結果討論 27
第3章 等效負楊氏模數模型之有限元素模型建構 28
3.1 設計模型幾何及參數 28
3.2 數值模擬邊界條件與參數設定 32
3.3 數值模擬案例分析 34
3.4 結果討論 44
第4章 一維模型波傳試驗 46
4.1 實驗概念 46
4.2 實驗設置 47
4.3 實驗數據及分析 56
第5章 工程尺度應用 62
5.1 預期應用領域之方向 62
5.2 數值模擬結果 63
第6章 結論及未來展望 68
參考文獻 70


[1]盛美萍,王敏慶 and 孫進才, 噪聲與振動控制技術基礎: 科學出版社, 2007.
[2]V. G. Veselago, "THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF IMG align= ABSMIDDLE alt= &;#1013; eps/IMG AND μ," Physics-Uspekhi, vol. 10, pp. 509-514, 1968.
[3]J. B. Pendry, "Negative refraction makes a perfect lens," Physical review letters, vol. 85, p. 3966, 2000.
[4]Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, et al., "Locally resonant sonic materials," Science, vol. 289, pp. 1734-1736, 2000.
[5]H. H. Huang, C. T. Sun, and G. L. Huang, "On the negative effective mass density in acoustic metamaterials," International Journal of Engineering Science, vol. 47, pp. 610-617, 2009.
[6]R. Zhu, G. L. Huang, H. H. Huang, and C. T. Sun, "Experimental and numerical study of guided wave propagation in a thin metamaterial plate," Physics Letters A, vol. 375, pp. 2863-2867, 2011.
[7]H. H. Huang and C. T. Sun, "Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young''s modulus," Journal of the Mechanics and Physics of Solids, vol. 59, pp. 2070-2081, 2011.
[8]D. Yu, Y. Liu, H. Zhao, G. Wang, and J. Qiu, "Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom," Physical Review B, vol. 73, p. 064301, 2006.
[9]S. P. Timoshenko, "LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, pp. 744-746, 1921.
[10]D. Yu, Y. Liu, G. Wang, H. Zhao, a nd J. Qiu, "Flexural vibration band gaps in Timoshenko beams with locally resonant structures," Journal of Applied Physics, vol. 100, pp. 124901-124901-5, 2006.
[11]H. Sun, X. Du, and P. F. Pai, "Theory of metamaterial beams for broadband vibration absorption," Journal of Intelligent Material Systems and Structures, vol. 21, pp. 1085-1101, 2010.
[12]J.-S. Chen and C. Sun, "Dynamic behavior of a sandwich beam with internal resonators," Journal of Sandwich Structures and Materials, vol. 13, pp. 391-408, 2011.
[13]G. Gantzounis, M. Serra-Garcia, K. Homma, J. Mendoza, and C. Daraio, "Granular metamaterials for vibration mitigation," Journal of Applied Physics, vol. 114, p. 093514, 2013.
[14]R. Zhu, G. Hu, M. Reynolds, and G. Huang, "An elastic metamaterial beam for broadband vibration suppression," in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, vol. 8695, pp. 86952J-86952J-10, 2013.
[15]E. Baravelli, M. Carrara, and M. Ruzzene, "High stiffness, high damping chiral metamaterial assemblies for low-frequency applications," in SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, vol. 8695 , pp. 86952K-86952K-10, 2013.
[16]N. Olgac and N. Jalili, "Modal analysis of flexible beams with delayed resonator vibration absorber: theory and experiments," Journal of Sound and Vibration, vol. 218, pp. 307-331, 1998.
[17]J. Chen, B. Sharma, and C. Sun, "Dynamic behaviour of sandwich structure containing spring-mass resonators," Composite Structures, vol. 93, pp. 2120-2125, 2011.
[18]G. Cowper, "The shear coefficient in Timoshenko’s beam theory," Journal of applied mechanics, vol. 33, pp. 335-340, 1966.
[19]N. Baddour, "Hamilton’s principle for the derivation of equations of motion," Leading-Edge Applied Mathematical Modeling Research, pp. 155-182, 2008.
[20]H. H. Huang and C. T. Sun, "Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young''s modulus," The Journal of the Acoustical Society of America, vol. 132, pp. 2887-2895, 2012.
[21]F. S. h.c. Svante Littmarck, "COMSOL Multiphysics," version 4.4 ed. stockholm, SWEDEN: COMSOL, Inc, 2013.
[22]R. E. Coleman and R. J. Allemang, 試驗結構動力學: 清華大學出版社, 2012.
[23]J. S. Jensen, "Phononic band gaps and vibrations in one- and two-dimensional mass–spring structures," Journal of Sound and Vibration, vol. 266, pp. 1053-1078, 2003.
[24]林穎, 常永貴, 李文舉, and 賀佔蜀, "基於虛擬儀器的振動測試系統設計," 機床與液壓, vol. 36, pp. 131-134, 2008.
[25]陳俊誠, "以 LabVIEW 軟體開發虛擬頻譜分析儀; Developing Virtual Spectral Analysis Instrument by LabVIEW software," Master, Mechanical Engineering, Nation Central University, Taiwan, 2009.
[26]R. E. Coleman, Experimental Structural Dynamics: An Introduction to Experimental Methods of Characterizing Vibrating Structures: AuthorHouse, 2004.
[27]J. Jam and A. A. Fard, "Application of Single Unit Impact Dampers to Reduce Undesired Vibration of the 3R Robot Arms," International Journal of Aerospace Sciences, vol. 2, pp. 49-54, 2013.
[28]左曙光, 譚欽文, 孫慶, 文岐華, and 馬琮淦, "聲子晶體樑在燃料電池車副車架&;#20943;振中的應用研究," 振&;#21160;與衝擊, vol. 32, pp. 26-30, 2013.
[29]S. J. Mitchell, A. Pandolfi, and M. Ortiz, "Metaconcrete: designed aggregates to enhance dynamic performance," Journal of the Mechanics and Physics of Solids, vol. 65, pp. 69-81, 2014.
[30]G. Finocchio, O. Casablanca, G. Ricciardi, U. Alibrandi, F. Garesci, M. Chiappini, et al., "Seismic metamaterials based on isochronous mechanical oscillators," Applied Physics Letters, vol. 104, p. 191903, 2014.
[31]C.-C. Tsai, "The study of relevant parameters for traffic-induced vibration and low frequency noise radiated from box-girder bridges," Master, Science in Systems Engineering and Naval Architecture, Nation Taiwan Ocean University, Taiwan, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top