|
[1]ABS, 2007, The ABS Guide for Building and Classing High Speed Naval Craft (ABS 2007). Both of these approaches follow an allowable-stress approach for aluminum high-speed vessels. [2]Aluminum Company of America, (ALCOA), Welding ALCOA Aluminum, 1972. [3]Aluminum: Properties and Physical Metallurgy, American Society for Metals, 1984. [4]American Society for Metals, 1984, Aluminum: Properties and Physical Metallurgy, American Society for Metals, 1984. [5]Beach, Jeffrey E., Robert E. Johnson, Natale S. Nappi, SR., Robert A. Sielski, William A. Palko,Thomas W. Montemarano, and William E. Lukens. A Guide for the Use of Aluminum Alloys in Naval Ship Construction and Design, David W. Taylor Naval Ship Research and Development Center, DTNSRDC 84/015, 1984. [6]DNV, 2009,The DNV Rules of Classification of High Speed, Light Craft and Naval Surface Craft (DNV 2009) [7]EN 1999-1-1 :2007+A1 June 2009 Eurocode 9: Design of aluminium structures - Part 1-1 : General structural rules. [8]EN 1999-1-2 February 2007 Eurocode 9 - Design of aluminium structures - Part 1-2: Structural fire design. [9]EN 1999-1-3:2007/A1 August 2011 Eurocode 9: Design of aluminium structures - Part 1-3: Structures susceptible to fatigue. [10]EN 1999-1-4:2007/A1 August 2011 Eurocode 9: Design of aluminium structures - Part 1-4: Coldformed structural sheeting. [11]Heyburn, R.E. and Riker, D. L., 1994, Effect of High Strength Steels on Strength Considerations of Design and Construction Details of Ships, SSC-374, 1994. [12]Hval, M., and Raufoss, V. S., A New High Strength Aluminum Alloy for Marine Applications, Collection of articles presented by the Aluminum Association, Nov., 1997. [13]Kirkhope, K.J.; Bell, R.; Caron L. and Basu, R.I., 1996,Weld Detail Fatigue Life Improvement Techniques, SSC-400, Ship Structure Committee. [14]Kramer, R.K.; McKesson, C.; McConnell, J.; Cowardin, W.; Samuelsen, B., 2005, Structural Optimization for Conversion of Aluminum Car Ferry to Support Military Vehicle Payload, SSC-438, Ship Structure Committee. [15]Kramer, R.K.; Rampolla, B.; Magnusson, A, 2000, Fatigue of Aluminum Structural Weldments, SSC-410, Ship Structure Committee. [16]Michaelson, Robert W., User’s Guide for SPECTRA: Version 8.3. Naval Surface Warfare. [17]Michaelson, Robert W., User’s Guide for SPECTRA: Version 8.3. Naval Surface Warfare Center, Carderock Division Report NSWCCD-65-TR-2000/07, 2000. [18]Munse, William H., Thomas W. Wilbur, Martin L. Tellalian, Kim Nicoll, and Kevin Wilson, 1983, Fatigue Characterization of Fabricated Ship Details for Design. Ship Structure Committee Report SSC-318, 1983. [19]Paik, J. K., 2009, Buckling Collapse Testing on Friction Stir Welded Aluminum Stiffened Plate Structures, SSC-456, Ship Structure Committee. [20]Paik, J.K; Thayamballi, A. K.; Ryu, J Y; Jang, J. H.; Seo, J. K.; Park, S. W.; Soe, S. K.; Renaud, C. and Kim, N. I., 2008, Mechanical Collapse Testing on Aluminum Stiffened Panels for Marine Applications, SSC-451, Ship Structure Committee. [21]Sharp, M. L., Nordmark, G. E., and Menzemer, C. G., 1996, Fatigue Design of Aluminum Components &; Structures, McGraw-Hill, 1996.
[22]Sielski, R.A., 2007, Aluminum Marine Structure Design and Fabrication Guide, SSC-452, Ship Structure Committee. [23]Collete, M.; Wang, X.; Li,J.; Walters,J.; Yen,T., 2008, Ultimate Strength and Optimization of Aluminum Extrusions, SSC-454, Ship Structure Committee.
|