(3.237.97.64) 您好!臺灣時間:2021/03/09 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳偲豪
研究生(外文):Sz-Hao Wu
論文名稱:鋁合金高速艇之結構疲勞強度與極限強度分析
論文名稱(外文):Fatigue and ultimate strength analysis of Aluminum alloy high speed craft
指導教授:洪振發洪振發引用關係
口試委員:宋家驥王偉輝邱進東周志明
口試日期:2014-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:150
中文關鍵詞:鋁合金結構疲勞強度熱效應區壓擠成型甲板結構極限強度
外文關鍵詞:Aluminum alloyfatigueHAZextrude deck panelultimate strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋁合金材料之密度約為鋼材之1/3,也有較高之抗腐蝕性,常應用於高速艇之材料。高速艇結構在鋼材有完整的設計資料,採用鋁合金結構時,其結構設計常從現有鋼材結構設計,以等效降伏強度比例為依據而轉換為鋁合金結構設計,鋁合金結構除了考慮降伏強度外,必須檢討鋁合金電銲結構熱效應區(Heat affected zone,HAZ),材料強度下降對疲勞強度及極限強度之影響。本文針對一高速三體船結構進行局部疲勞壽命評估。採用Palmgren-Miner 疲勞損害累積法假設去推算結構的疲勞壽命,並探討材料產生初始裂紋時,經過海上航行之循環變動外力作用下,裂紋之擴展速度,以檢視船舶局部構件能否達到疲勞壽命規範之需求,檢討高速三體船之結構設計所需改良之處。並針對船舶之甲板結構受壓縮應力、彎曲力矩下進行極限強度之分析,以及探討壓擠成型三明治甲板結構與傳統肋骨甲板結構之強度差異,評估採用壓擠成型甲板所能減輕結構之重量等。

Recently Aluminum alloy has been applied for high speed vessel because its density is 1/3 of steel, and has good corrosion resistance. For aluminum structure not only the equivalent yield strength need be considered, the strength reduction due to heat affected after welding, and relative lower fatigue strength should be taken account, if the design of aluminum structure member is based on the exsisted desing of steel structure, the fatigue life and the ultimate strength of structure member should be assessed. In this work the Palmgren-Miner rule was used to predict the fatigue life of aluminum of structure member, the crack length within specified time period by the crack growth speed method was also predicted for member with initial crack. After assessment of fatigue strength, the structural member should be modified if its fatigue life is shorter than required service life. Comparrision study of ultimate strength for deck structure between lightweight extrusion deck panel and traditional deck structure by applied displacement control and bending moment control.

中文摘要 I
Abstract III
目 錄 V
圖目錄 IX
表目錄 XVII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
第二章 鋁合金材料應用於艦艇船舶結構的問題 3
2.1 基本材料力學特性 3
2.2 鋁合金材料特性 6
2.3 鋁合金結構設計問題 9
2.4 鋁合金結構之肋骨加強板結構 10
2.5 鋁合金結構殘留應力與扭曲問題 15
第三章 疲勞強度分析 19
3.1 結構材料疲勞 19
3.2 S/N曲線 21
3.3 鋁合金疲勞 25
3.4 疲勞破裂 27
3.4.1 Palmgren-Miner 疲勞損害累積法假設 28
3.5 船體負載之統計分佈 30
3.6 船體結構疲勞壽命推估範例 34
3.7 裂紋擴張 35
第四章 甲板結構之極限強度分析 39
4.1 鋁合金板模型之極限強度 39
4.2 電銲方式 42
4.3 鋁合金材料特性 44
4.4 甲板強度分析:甲板厚度設計 49
4.4.1 傳統肋骨甲板 49
4.4.2 壓擠成型肋骨甲板 53
4.4.3 車輛及貨物負載之靜力分析結果 56
4.5 甲板肋骨結構件極限強度分析 65
4.5.1 壓縮位移 66
4.5.2 彎曲力矩(Bending)應力 75
4.5.3 小節討論 79
4.6 甲板強度分析:實際尺寸之甲板之極限強度 80
4.6.1 材料特性曲線 80
4.6.2 壓縮負載之應力 80
4.6.3 橫向負載之應力 87
4.6.4 小節討論 92
第五章 全船結構設計與疲勞強度分析 93
5.1 分析船體 93
5.2 分析模型 96
5.3 靜態分析 99
5.4 波浪負載分析 113
5.5 最大整體彎曲力矩造成之結構應力分佈 126
5.6 船體結構極限強度分析 132
5.7 強度檢核 137
5.8 小結討論 144
第六章 結論 145
參考文獻 147


[1]ABS, 2007, The ABS Guide for Building and Classing High Speed Naval Craft (ABS 2007). Both of these approaches follow an allowable-stress approach for aluminum high-speed vessels.
[2]Aluminum Company of America, (ALCOA), Welding ALCOA Aluminum, 1972.
[3]Aluminum: Properties and Physical Metallurgy, American Society for Metals, 1984.
[4]American Society for Metals, 1984, Aluminum: Properties and Physical Metallurgy, American Society for Metals, 1984.
[5]Beach, Jeffrey E., Robert E. Johnson, Natale S. Nappi, SR., Robert A. Sielski, William A. Palko,Thomas W. Montemarano, and William E. Lukens. A Guide for the Use of Aluminum Alloys in Naval Ship Construction and Design, David W. Taylor Naval Ship Research and Development Center, DTNSRDC 84/015, 1984.
[6]DNV, 2009,The DNV Rules of Classification of High Speed, Light Craft and Naval Surface Craft (DNV 2009)
[7]EN 1999-1-1 :2007+A1 June 2009 Eurocode 9: Design of aluminium structures - Part 1-1 : General structural rules.
[8]EN 1999-1-2 February 2007 Eurocode 9 - Design of aluminium structures - Part 1-2: Structural fire design.
[9]EN 1999-1-3:2007/A1 August 2011 Eurocode 9: Design of aluminium structures - Part 1-3: Structures susceptible to fatigue.
[10]EN 1999-1-4:2007/A1 August 2011 Eurocode 9: Design of aluminium structures - Part 1-4: Coldformed structural sheeting.
[11]Heyburn, R.E. and Riker, D. L., 1994, Effect of High Strength Steels on Strength Considerations of Design and Construction Details of Ships, SSC-374, 1994.
[12]Hval, M., and Raufoss, V. S., A New High Strength Aluminum Alloy for Marine Applications, Collection of articles presented by the Aluminum Association, Nov., 1997.
[13]Kirkhope, K.J.; Bell, R.; Caron L. and Basu, R.I., 1996,Weld Detail Fatigue Life Improvement Techniques, SSC-400, Ship Structure Committee.
[14]Kramer, R.K.; McKesson, C.; McConnell, J.; Cowardin, W.; Samuelsen, B., 2005, Structural Optimization for Conversion of Aluminum Car Ferry to Support Military Vehicle Payload, SSC-438, Ship Structure Committee.
[15]Kramer, R.K.; Rampolla, B.; Magnusson, A, 2000, Fatigue of Aluminum Structural Weldments, SSC-410, Ship Structure Committee.
[16]Michaelson, Robert W., User’s Guide for SPECTRA: Version 8.3. Naval Surface Warfare.
[17]Michaelson, Robert W., User’s Guide for SPECTRA: Version 8.3. Naval Surface Warfare Center, Carderock Division Report NSWCCD-65-TR-2000/07, 2000.
[18]Munse, William H., Thomas W. Wilbur, Martin L. Tellalian, Kim Nicoll, and Kevin Wilson, 1983, Fatigue Characterization of Fabricated Ship Details for Design. Ship Structure Committee Report SSC-318, 1983.
[19]Paik, J. K., 2009, Buckling Collapse Testing on Friction Stir Welded Aluminum Stiffened Plate Structures, SSC-456, Ship Structure Committee.
[20]Paik, J.K; Thayamballi, A. K.; Ryu, J Y; Jang, J. H.; Seo, J. K.; Park, S. W.; Soe, S. K.; Renaud, C. and Kim, N. I., 2008, Mechanical Collapse Testing on Aluminum Stiffened Panels for Marine Applications, SSC-451, Ship Structure Committee.
[21]Sharp, M. L., Nordmark, G. E., and Menzemer, C. G., 1996, Fatigue Design of Aluminum Components &; Structures, McGraw-Hill, 1996.

[22]Sielski, R.A., 2007, Aluminum Marine Structure Design and Fabrication Guide, SSC-452, Ship Structure Committee.
[23]Collete, M.; Wang, X.; Li,J.; Walters,J.; Yen,T., 2008, Ultimate Strength and Optimization of Aluminum Extrusions, SSC-454, Ship Structure Committee.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔