(3.220.231.235) 您好!臺灣時間:2021/03/07 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅孝甫
研究生(外文):Hsiao-Fu Lo
論文名稱:日日春上調控 CrPR1a 及 CrLOX2 相關轉錄因子之調控網絡之探討
論文名稱(外文):Understanding regulatory network among transcription factors on expression of CrPR1a and CrLOX2 in Catharanthus roseus
指導教授:林長平林長平引用關係
指導教授(外文):Chan-Pin Lin
口試委員:鍾嘉綾洪傳揚詹富智
口試委員(外文):Chia-Lin ChungChwan-Yang HongFuh-Jyh Jan
口試日期:2014-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:53
中文關鍵詞:CrPR1aCrLOX2植物菌質體病毒誘導基因靜默轉錄因子網絡建構
外文關鍵詞:CrPR1aCrLOX2phytoplasmaVIGStranscription factorsregulatory network construction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物菌質體 (phytoplasma) 為寄生在植物篩管內無細胞壁的絕對寄生性原核生物,在世界各地造成嚴重的經濟損失。從日日春的研究中發現,植物抗植物菌質體可能與 PR 基因相關之系統性抗病反應有關。此外,茉莉酸生合成上一重要基因CrLOX2 亦會受植物菌質體感染而誘導表現。因調控CrPR1a 和CrLOX2表現的因子極可能參與對抗植物菌質體,故在本研究中擬透過病毒誘導基因靜默 (virus-induced gene silencing, VIGS)技術,篩選調節CrPR1a和CrLOX2的轉錄因子。我們從台大生技所及植微系團隊所建立之日日春轉錄子資料庫中找出 55群,共 723個轉錄因子。從中選取抗病、抗逆境相關的類群作為篩選目標共6群,152個轉錄因子,分別為ARF (18)、Aux-IAA (8)、bZIP (27)、C2H2 (40)、MYB (45)、MYB-related (14)。其中,我們發現有三個 ARF、一個 Aux-IAA、以及一個 bZIP 類別的轉錄因子的基因靜默可使CrPR1a受 TRV 感染而誘發的表現量改變。為了探討篩選出的轉錄因子與植物抗病機制及與病原菌間之關係,我們檢查了這五個轉錄因子對植物菌質體感染、水楊酸 (salicylic acid, SA)、茉莉酸 (jasmonic acid, JA) 與乙烯 (ethylene, ET) 處理的反應。同時,CrNPR1 與CrNPR3 在調控網絡中的角色與各篩選到轉錄因子彼此間之關係亦納入討論。由本研究的結果發現,正向調控CrPR1a的轉錄因子IAA-6會受到菌質體的感染而被誘導,同時 IAA-6同時會被另一個負向調控CrPR1a的因子,bZIP-7,所調控。此外,我們也發現了ARF-12這個正向調節因子,會受另一正向調節因子ARF-13的正向調控。透過本研究,我們發現了新的CrPR1a 與CrLOX2 調控因子並建構出一調控網絡,使得植物抗植物菌質體所啟動分子路徑上有了更全面的了解,以便日後找出更有效之防治策略。

Phytoplasmas are wall-less prokaryotic obligate plant pathogens that are restricted in phloem. They have caused serious economic loss worldwide. In periwinkle, a PR gene-related defense mechanism was found to be related with defense against phytoplasmas. In addition, CrLOX2, which is a jasmonate-responsive and biosynthesis gene, is also induced by the phytoplasma infection. Because regulators of CrPR1a and CrLOX2 may participate in defense against phytoplasmas, both genes were used as marker genes to construct a defense regulatory network using VIGS. We identified 55 groups of 723 transcription factors from periwinkle transcriptome database generated by NTU research team. Among them, we selected those potentially related to biotic or abiotic stresses, including a total of 6 groups, 152 transcription factors, which are ARF (18)、Aux-IAA (8)、bZIP (27)、C2H2 (40)、MYB (45)、MYB-related (14). Results showed that three ARF, one Aux-IAA, and one bZIP transcription factors were identified to regulate the expression of CrPR1a. Their expressions under phytoplasma infection, different hormone treatments, and CrNPR1 or CrNPR3 gene silencing were examined. Results showed that IAA-6, which is a positive regulator of CrPR1a, was induced under phytoplasma infection. IAA-6 is also positively regulated by a negative regulator of CrPR1a, bZIP-7. In addition, ARF-12, which is a positive regulator of CrPR1a, is positively regulated by another positive regulator of CrPR1a, ARF-13. Through the research, we have discovered novel transcription factors regulating CrPR1a and constructed a transcriptional regulatory network. This might help us to better understand the interaction between phytoplasma and its host plant , which would facilitate the development of more effective control strategies.

摘要 ii
Abstract ii
Introduction 1
Materials and Methods 11
Plant Materials and Growth Conditions 11
Chemical treatments 11
Identification of Putative Transcription Factors from Periwinkle Transcriptome Database 11
Plasmid construction 12
Agrobacterium-mediated virus-induced gene silencing 13
RNA extraction and semi-quantitative RT-PCR 14
Establishment of CrPR1a and CrLOX2 regulatory network 15
Results 16
Data mining of putative periwinkle transcription factors 16
CrPR1a is regulated by five transcription factors transcriptionally 16
No current transcription factors selected for screening regulates CrLOX2 transcriptionally 18
Construction of regulatory network involving hormonal regulation, responses to phytoplasma infection, and related to CrNPR1, CrNPR3 18
Construction of regulatory network among candidate factors 19
Discussion 20
Tables and Figures 25
References 43


1.Ahmad, J. N., and Eveillard, S. 2011. Study of the expression of defense related protein genes in stolbur C and stolbur PO phytoplasma-infected tomato. Bull. Insectol. 64:S159-S160.
2.Askari, N. 2011. Evaluation of anti-phytoplasma properties of surfactin and tetracycline towards lime witches’ broom disease using real-time PCR. J. Microbiol. Biotechnol. 21:81-88.
3.Baulcombe, D. C. 1999. Fast forward genetics based on virus-induced gene silencing. Curr. Opin. Plant Biol. 2:109-113.
4.Bertaccini, A., and Duduk, B. 2010. Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol. Mediterr. 48:355-378.
5.Bradel, B. G., Preil, W., and Jeske, H. 2000. Remission of the Free-branching Pattern of Euphorbia pulcherrima by Tetracycline Treatment. J. Phytopathol. 148:587-590.
6.Cao, H., Bowling, S. A., Gordon, A. S., and Dong, X. 1994. Characterization of an arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell. 6:1583-1592.
7.Chen, W.-Y., Huang, Y.-C., Tsai, M.-L., and Lin, C.-P. 2011. Detection and identification of a new phytoplasma associated with periwinkle leaf yellowing disease in Taiwan. Australas. Plant Pathol. 40:476-483.
8.Chicas, A., and Macino, G. 2001. Characteristics of post-transcriptional gene silencing. EMBO Rep. 2:992-996.
9.Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell. 124:803-814.
10.Christensen, N. M., Axelsen, K. B., Nicolaisen, M., and Schulz, A. 2005. Phytoplasmas and their interactions with hosts. Trends Plant Sci. 10:526-535.
11.Curkovic Perica, M. 2008. Auxin-treatment induces recovery of phytoplasma-infected periwinkle. J. Appl. Microbiol. 105:1826-1834.
12.Curkovic Perica, M., Lepedus, H., and Seruga Music, M. 2007. Effect of indole-3-butyric acid on phytoplasmas in infected Catharanthus roseus shoots grown in vitro. FEMS Microbiol. Lett. 268:171-177.
13.Di Stilio, V. S. 2011. Empowering plant evo-devo: Virus induced gene silencing validates new and emerging model systems. Bioessays. 33:711-718.
14.Doi, Y., Teranaka, M., Yora, K., and Asuyama, H. 1967. Mycoplasma- or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches'' broom, aster yellows, or paulownia witches'' broom. Jp. J. Phytopathol. 33:259-266.
15.Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1:316-323.
16.Dunoyer, P., Himber, C., and Voinnet, O. 2005. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat. Genet. 37:1356-1360.
17.Durrant, W. E., and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185-209.
18.Ellis, C. M., Nagpal, P., Young, J. C., Hagen, G., Guilfoyle, T. J., and Reed, J. W. 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development. 132:4563-4574.
19.Garnier, M. 1997. Non-cultivable phytopathogenic mycoplasmas: characterization, detection and perspectives for control. Wien. Klin. Wochenschr. 109:613-617.
20.Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H., Tada, Y., Zheng, N., and Dong, X. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature. 486:228-232.
21.Guilfoyle, T. J., and Hagen, G. 2007. Auxin response factors. Curr. Opin. Plant Biol. 10:453-460.
22.Guo, A., He, K., Liu, D., Bai, S., Gu, X., Wei, L., and Luo, J. 2005. DATF: a database of Arabidopsis transcription factors. Bioinformatics. 21:2568-2569.
23.Hogenhout, S. A., Oshima, K., Ammar, E.-D., Kakizawa, S., Kingdom, H. N., and Namba, S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9:403-423.
24.Huang, T. J., and Lin, C. P. 2011. Current status on important crop diseases induced by phytoplasmas in Taiwan. Proceedings of the Symposium on Integrated Management Technology of Insect Vectors and Insect-Borne Diseases 152:63-71.
25.Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. 2002. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7:106-111.
26.Kaltdorf, M., and Naseem, M. 2013. How many salicylic acid receptors does a plant cell need? Sci. Signal. DOI: 10.1126/scisignal.2003944.
27.Kelley, D. R., Arreola, A., Gallagher, T. L., and Gasser, C. S. 2012. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development. 139:1105-1109.
28.Kim, H. S., and Delaney, T. P. 2002. Over-expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR-independent resistance in Arabidopsis thaliana to Peronospora parasitica. Plant J. 32:151-163.
29.Kunkel, B. N., and Brooks, D. M. 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325-331.
30.Kusano, T., Berberich, T., Harada, M., Suzuki, N., and Sugawara, K. 1995. A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol. Gen. Genet. 248:507-517.
31.Landi, L., and Romanazzi, G. 2011. Seasonal variation of defense-related gene expression in leaves from Bois noir affected and recovered grapevines. J. Agric. Food Chem. 59:6628-6637.
32.Lee, B. J., Park, C. J., Kim, S. K., Kim, K. J., and Paek, K. H. 2006. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter. Biochem. Biophys. Res. Commun. 344:55-62.
33.Lee, I.-M., Gundersen-Rindal, D. E., Davis, R. E., and Bartoszyk, I. M. 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 48:1153-1169.
34.Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., Bottner, K. D., Marcone, C., and Seemuller, E. 2004. ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int. J. Syst. Evol. Microbiol. 54:1037-1048.
35.Leon-Reyes, A., Van der Does, D., De Lange, E. S., Delker, C., Wasternack, C., Van Wees, S. C., Ritsema, T., and Pieterse, C. M. 2010. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta. 232:1423-1432.
36.Li, P. C., Yu, S. W., Shen, J., Li, Q. Q., Li, D. P., Li, D. Q., Zheng, C. C., and Shu, H. R. 2014. The transcriptional response of apple alcohol acyltransferase (MdAAT2) to salicylic acid and ethylene is mediated through two apple MYB TFs in transgenic tobacco. Plant Mol. Biol. (in press).
37.Liscombe, D. K., and O’Connor, S. E. 2011. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry. 72:1969-1977.
38.Liu, L. Y., Tseng, H. I., Lin, C. P., Lin, Y. Y., Huang, Y. H., Huang, C. K., Chang, T. H., and Lin, S. S. 2014. High-throughput transcriptome analysis of the leafy flower transition of catharanthus roseus induced by Peanut Witches''-Broom Phytoplasma infection. Plant Cell Physiol. 55:942-957.
39.Liu, Y., Schiff, M., and Dinesh-Kumar, S. P. 2002. Virus-induced gene silencing in tomato. Plant J. 31:777-786.
40.Lu, H. C., Hsieh, M. H., Chen, C. E., Chen, H. H., Wang, H. I., and Yeh, H. H. 2012. A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid. Mol. Plant-Microbe Interact. 25:738-746.
41.Lu, H. C., Chen, H. H., Tsai, W. C., Chen, W. H., Su, H. J., Chang, D. C., and Yeh, H. H. 2007. Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143:558-569.
42.Musetti, R., di Toppi, L. S., Ermacora, P., and Favali, M. A. 2004. Recovery in apple trees infected with the apple proliferation phytoplasma: an ultrastructural and biochemical study. Phytopathology. 94:203-208.
43.Musetti, R., Paolacci, A., Ciaffi, M., Tanzarella, O. A., Polizzotto, R., Tubaro, F., Mizzau, M., Ermacora, P., Badiani, M., and Osler, R. 2010. Phloem cytochemical modification and gene expression following the recovery of apple plants from apple proliferation disease. Phytopathology. 100:390-399.
44.Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N., and Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39:500-507.
45.Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 36:27-29.
46.Patui, S., Bertolini, A., Clincon, L., Ermacora, P., Braidot, E., Vianello, A., and Zancani, M. 2013. Involvement of plasma membrane peroxidases and oxylipin pathway in the recovery from phytoplasma disease in apple (Malus domestica). Physiol. Plant. 148:200-213.
47.Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S. C. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-316.
48.Ramanna, H., Ding, X. S., and Nelson, R. S. 2013. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing. Methods Mol. Biol. 975:15-32.
49.Reed, J. W. 2001. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci. 6:420-425.
50.Rook, F., Gerrits, N., Kortstee, A., van Kampen, M., Borrias, M., Weisbeek, P., and Smeekens, S. 1998. Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. Plant J. 15:253-263.
51.Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology. 14:340-358.
52.Santi, S., De Marco, F., Polizzotto, R., Grisan, S., and Musetti, R. 2013. Recovery from stolbur disease in grapevine involves changes in sugar transport and metabolism. Front Plant Sci. 4:171.
53.Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9:671-675.
54.Senthil-Kumar, M., and Mysore, K. S. 2011. New dimensions for VIGS in plant functional genomics. Trends Plant Sci. 16:656-665.
55.Senthil-Kumar, M., Lee, H. K., and Mysore, K. S. 2013. VIGS-mediated forward genetics screening for identification of genes involved in nonhost resistance. J. Vis. Exp. DOI:10.3791/51033.
56.Shi, H., Wang, X., Ye, T., Cheng, F., Deng, J., Yang, P., Zhang, Y., and Chan, Z. 2014. The Cys2/His2-type zinc finger transcription factor ZAT6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and CBFs in Arabidopsis. Plant Physiol. (in press).
57.Spoel, S. H., Koornneef, A., Claessens, S. M., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Metraux, J. P., Brown, R., Kazan, K., Van Loon, L. C., Dong, X., and Pieterse, C. M. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell. 15:760-770.
58.Sung, Y. C., Lin, C. P., and Chen, J. C. 2014. Optimization of virus-induced gene silencing in Catharanthus roseus. Plant Pathol. DOI:10.1111/ppa.12186.
59.Tai, C. F., Lin, C. P., Sung, Y. C., and Chen, J. C. 2013. Auxin influences symptom expression and phytoplasma colonisation in periwinkle infected with periwinkle leaf yellowing phytoplasma. Ann. Appl. Biol. 163:420-429.
60.Tan, P. Y., and Whitlow, T. 2001. Physiological responses of Catharanthus roseus (periwinkle) to ash yellows phytoplasmal infection. New Phytol. 150:757-769.
61.Turner, J. G., Ellis, C., and Devoto, A. 2002. The jasmonate signal pathway. Plant Cell. 14 Suppl:S153-164.
62.Van Loon, L. C. 1997. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103:753-765.
63.Van Loon, L. C., Rep, M., and Pieterse, C. M. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162.
64.Walters, D., and Heil, M. 2007. Costs and trade-offs associated with induced resistance. Physiol. Mol. Plant Pathol. 71:3-17.
65.Wang, Q., Xing, S., Pan, Q., Yuan, F., Zhao, J., Tian, Y., Chen, Y., Wang, G., and Tang, K. 2012. Development of efficient catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechnol. 12:34.
66.Weintraub, P. G., and Beanland, L. 2005. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51:91-111.
67.Yang, J., Tian, L., Sun, M. X., Huang, X. Y., Zhu, J., Guan, Y. F., Jia, Q. S., and Yang, Z. N. 2013. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in arabidopsis. Plant Physiol. 162:720-731.
68.Zhou, J. M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., and Klessig, D. F. 2000. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol. Plant-Microbe Interact. 13:191-202.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔