跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/23 08:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝孟諺
研究生(外文):Meng-Yen Hsieh
論文名稱:臺灣景觀樹木容器苗生產關鍵技術之探討
論文名稱(外文):The Key Techniques for Producing Container-grown Seedlings of Woody Ornamental Plants in Taiwan
指導教授:張育森張育森引用關係
指導教授(外文):Yu-Sen Chang
口試委員:沈榮壽張祖亮羅筱鳳
口試委員(外文):garden@mail.ncyu.edu.tw
口試日期:2013-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:81
中文關鍵詞:景觀樹木容器苗容器種類介質組成
外文關鍵詞:woody ornamental plantcontainer seedlingcontainer typesubstrate composition
相關次數:
  • 被引用被引用:2
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  景觀樹木在園藝產業上具有相當重要之地位,其生產潛力相當可觀。為獲得高品質苗木產品,容器苗為最直接的生產方式,並已成為世界之趨勢。本論文首先以問卷方式對臺灣景觀苗圃業者進行產業技術調查,進而接著研究數種不同育苗容器對景觀苗木生長之影響,並探討田土混合數種常見栽培介質配方對景觀容器苗生長之影響,期能提供產業所需資訊,促進容器苗生產技術之升級。
  產業調查結果顯示,多數景觀苗圃業者採用多樣化的經營型態,同時經營不同階段與規格之苗木生產,產業無分工之情形。苗木產業容器化比例偏低(僅36%以下),其中多數業者採假植型方式生產容器苗,將苗木移至容器且馴化後出貨。國內業者主要以不織布袋生產容器苗木,鮮少業者使用塑膠盆。容器苗介質種類部分,大多使用田土作為主要介質,僅部分業者混合稻殼、腐植堆肥與粗砂等改良田土特性栽培苗木。此外,實際分析業者苗木栽培上遭遇問題,苗圃業者約79%認為生產成本過高,47%認為病蟲害嚴重,較少業者提及技術方面問題。對照歐美國家的技術,臺灣景觀苗圃產業相對落後,且多數苗圃業者仍不具有「優質優價」的觀念,對生產方式僅以簡便與低成本因素做為考量,在技術問題的認知與實際栽培現況仍有許多改進的空間。
  容器試驗選用控根空氣盆(air pot, AP)、不織布袋(non-woven fabric bag, NWB)、塑膠盆(plastic pot, PP)及塑膠盆中盆(plastic pot-in pot, PIP) 4種容器,以地上容器苗方式栽培樟樹[Cinnamomum camphora (L.) J. Presl.]、烏心石[Michelia compressa (Maxim.) Sargent.]、土肉桂[Cinnamomum osmophloeum Kanehira.]、水黃皮[Pongamia pinnata (L.) Pierre ex Merr.]及光蠟樹[Fraxinus griffithii C. B. Clarke]等常見景觀樹木中苗。結果顯示AP之植株在生長量與生長指標中表現最佳,氧氣擴散速率最高,然而其缺點為成本過高,且臺灣取得不易。NWB處理在本試驗中亦具有良好的氧氣擴散速率,其處理植株整體而言品質尚佳,價格低廉且方便取得,惟對根系無阻隔功能,長期使用可能有根系鑽出或內部盤根之慮。PP於試驗過程發現偶而會有排水不良之情形,且其在試驗後檢測氧氣擴散速率偏低,因此推測長期以PP栽培大型景觀苗木會造成植株生長逆境,故其整體效果差,苗木品質低落。PIP雖能有效降低土溫,但材質亦為塑膠盆,使苗木生長情形不佳,與PP類似。
  以田土(soil, S)、田土:稻殼=1:1 (v/v) (soil+rice hull, S+RH)、田土:泥炭苔=1:1 (v/v) (soil+peatmoss, S+P)及田土:椰纖=1:1 (v/v) (soil+coir, S+C) 4種介質配方種植上述臺灣常見之景觀苗木中苗。介質性狀方面,S在栽培前之密度大、保水性與通氣性差,栽培後之硬度大且氧氣擴散速率偏低,因此不適用於容器苗生產;S+RH之通氣性較高、硬度低而氧氣擴散速率高;S+P具有較高保水力且氧氣擴散速率良好。探討植株生長情形,S處理之各種苗木生長狀況皆不佳,顯示以純田土作為容器苗栽培介質對植株生長較不利,且其密度高常有過重情形,不利於容器苗調度。此外,各苗木種類對於介質特性要求不同,如樟樹、烏心石與水黃皮在透氣良好之介質中生長較佳,建議使用S+RH為介質進行栽培;而土肉桂與光蠟樹在保水性良好之介質生長較佳,建議使用S+P為介質栽培。 S+C之保水性與通氣性兼具,在喜通氣性或喜保水性之樹種中均有不錯之表現,因此當面臨對栽培介質特性喜好不甚瞭解之植株時,可用S+C做為一般容器苗生長之介質種類
  總而言之,可歸納出臺灣景觀苗圃產業屬於相對粗放且技術落後之領域,其業者之認知與實際技術層面仍有許多可改進之處。在短期育苗中容器種類以AP表現最佳,NWB表現次之,若考量成本與短期成效,以NWB作為容器種類最為適合。介質種類選用方面,建議依照各樹種特性選用適當介質,若對植株偏好介質特性不熟稔,可選用通氣性與保水性兼具之介質進行栽培,如本試驗中之S+C,能確保苗木具有一定品質。

  Landscape woody ornamentals occupy an important place in the horticultural industry, and its potential of productivity is considerable. Cultivating tree seedlings in containers is the direct method of getting high-quality tree products, and has become a worldwide trend. The aims of this study are to first survey the techniques used in commercial nurseries in Taiwan, then to investigate the effect of different container types and substrate compositions on the growth of trees. It is hoped that this study would provide practical information for nursery owners for upgrading the technology of container tree seedling productions in Taiwan.
  The results of industry survey showed that: most nurseries produce tree seedlings at every stage of cultivation. This indicates that the division of laboring is lacking in landscape nursery industry in Taiwan. In addition, the majority of the nursery owners (64%) still cultivate field-grown seedlings, and only about 36% of the nursery owners apply containerized production. The majority of container trees produced in Taiwan are dug up from the ground, and acclimated in containers for sale. Regarding container types, most nursery owners cultivate tree seedlings in non-woven fabric bags, while some use plastic pots. The substrate used by most nursery owners is field soil, and only in some cases is the substrate property improved by mixing field soil with rice hull, humic substances, and sand. With regards to difficulties encountered during landscape tree production, 79% of nursery owners reported high costs and 49% reported pests as being problem factors, whereas only a small number of nursery owners mentioned problems with cultivation techniques. Compared with the European and American countries, the technique used in tree production is less advanced in Taiwan. Most nursery owners in Taiwan take into account mainly cost minimization and convenience in the production of tree seedlings, while less emphasis is given on product quality. Thus there is still much room for improvement in the techniques and actual status of landscape tree production in Taiwan.
  In an experiment investigating the effect of container type, air pot (AP), non-woven bag (NWB), plastic pot (PP) and plastic pot-in pot (PIP) were used for cultivation of Cinnamomum camphora (L.) J. Presl., Michelia compressa (Maxim.) Sargent., Cinnamomum osmophloeum Kanehira., Pongamia pinnata (L.) Pierre ex Merr. and Fraxinus griffithii C. B. Clarke seedlings. Plants grown in AP performed best both growth rate and growth index, and the substrate in the AP treatment had the highest oxygen diffusion rate (ODR) in the experiment. However, the high cost and difficulty of obtaining AP may make it difficult to popularize its use in Taiwan. NWB treatment also resulted in relatively high ODR, and the plants treated with NWB performed fine. NWB is inexpensive and easy to get in Taiwan, but it may cause root circling or the problem of roots penetrating the container and growing into the ground when using for a long time. In the PP treatment, poor drainage is sometimes observed and low ODR is detected in the substrates. Thus, the use of PP may cause stress to plants in the long run, resulting in poorer overall quality of the product. Even though the use of PIP was found to effectively decrease substrate temperature, the plastic pots used resulted in poor growth similar to that when PP was used.
  In an experiment investigating the effect of substrate composition, soil (S), soil:rice hull = 1:1 (v/v) (S+RH), soil:peatmoss = 1:1 (v/v) (S+P) and soil:coir = 1:1 (v/v) (S+C) were used for cultivation of C. camphora, M. compressa, C. osmophloeum, P. pinnata and F. griffithii seedlings in NWB. Investigation of substrate properties showed that S had the highest density with poor water holding capacity and low air-filled porosity. After a period of cultivation, S had the highest degree of hardness and the lowest ODR among the four substrates. The substrate S+RH had the highest air filled porosity among the four substrates, as well as low hardness and high oxygen diffusion rate ODR. The substrate S+P had high container capacity and high ODR. As for plant growth performance, all types of plants grew poorly in S treatment, and it can be concluded that is not suitable to use only S as substrate to cultivate tree seedlings. Moreover, due the high density of S, it is not easy to transport in bulk container seedlings with only S as substrate. Moreover, seedlings of different species require different substrate properties. In this experiment, C. camphora, M. compressa and P. pinnata favored S+RH, which is a ventilated substrate, while C. osmophloeum and F. griffithii favored S+P, which is a substrate with high water retention. The substrate S+C has both retention and ventilation properties, and resulted in good quality in plants favoring retention or ventilation. Therefore, if the preferred substrate of the trees is unclear, S+C might be applicable as a general substrate for container tree seedlings.
  It can be concluded from the results above: 1.) Woody ornamental nurseries in Taiwan is still relatively backward within the horticultural industry, and there is still much room for improvement on nursery owners’ perception and the actual technical aspect. 2.) In this research, AP is the best container for cultivation of tree seedlings, and NWB is the next. Considering the cost and acquirement, NWB is the most suitable container for the cultivation of tree seedlings in the short run. 3.) It is better to apply substrates in accordance with plant preference for cultivation of container tree seedlings. If the preference for substrate is unknown, substrates with retention and ventilation such as S+C in this experiment can be used to produce good quality tree seedlings.


目錄 vii
表目錄 x
圖目錄 xii
第一章 前言 1
第二章 前人研究 3
一、 容器苗 3
(一) 容器苗木定義 3
(二) 常見苗木生產方式 3
(三) 容器苗木應用 4
(四) 容器苗木優點 5
(五) 容器苗木缺點 5
二、 容器苗生產關鍵技術 6
(一) 常用容器種類對容器苗木生長之影響 6
(二) 常用介質種類對容器苗木生長之影響 7
(三) 氮肥模式對容器苗木生長之影響 8
三、 苗木品質鑑定指標 8
(一) 外觀及生長量 8
(二) Dickson品質指數 9
(三) 取樣葉片生理測值 9
(四) 葉綠素計讀值 9
(五) 葉綠素螢光 10
(六) 常態化差異植生指數 10
第三章 臺灣景觀苗圃產業之技術現況調查與檢討 11
摘要 (Abstract) 11
一、 前言 (Introduction) 12
二、 問卷設計 (Quastionare design) 13
(一) 調查項目 13
(二) 調查對象 13
(三) 調查方式 13
(四) 回收率 13
(五) 統計方式 13
三、 結果 (Results) 14
(一) 臺灣景觀苗圃之經營型態 14
(二) 臺灣苗木容器化情形與容器苗栽培形式 14
(三) 臺灣容器苗採用容器之種類 14
(四) 臺灣容器苗採用之介質種類 14
(五) 臺灣苗圃產業面臨之栽培技術上之問題 15
四、 討論 (Discussion) 16
五、 結論 (Conclusion) 18
第四章 不同容器種類對容器景觀苗木生長之影響 24
摘要 (Abstract) 24
一、 前言 (Introduction) 25
二、 材料與方法 (Materials and methods) 26
(一) 植物材料與準備 26
(二) 試驗處理 26
(三) 調查項目 26
(四) 統計分析 28
三、 結果 (Results) 29
(一) 樟樹容器苗於4種容器中之生長變化量與植株生長指標 29
(二) 烏心石容器苗於4種容器中之生長變化量與植株生長指標 29
(三) 土肉桂容器苗於4種容器中之生長變化量與植株生長指標 30
(四) 水黃皮容器苗於4種容器中之生長變化量與植株生長指標 30
(五) 光蠟樹容器苗於4種容器中之生長變化量與植株生長指標 31
(六) 介質於試驗後之性質 31
(七) 不同盆器中介質之溫度變化 31
四、 討論 (Discussion) 32
五、 結論 (Conclusion) 34
第五章 不同介質組成對容器景觀苗木生長之影響 47
摘要 (Abstract) 47
一、 前言 (Introduction) 48
二、 材料與方法 (Materials and methods) 49
(一) 植物材料與準備 49
(二) 試驗處理 49
(三) 調查項目 49
(四) 統計分析 51
三、 結果 (Results) 52
(一) 育苗介質之物理與化學性狀分析 52
(二) 樟樹容器苗於4種介質中之生長變化量與植株生長指標 52
(三) 烏心石容器苗於4種介質中之生長變化量與植株生長指標 52
(四) 土肉桂容器苗於4種介質中之生長變化量與植株生長指標 53
(五) 水黃皮容器苗於4種介質中之生長變化量與植株生長指標 53
(六) 光蠟樹容器苗於4種介質中之生長變化量與植株生長指標 54
(七) 各介質於試驗後之性質 54
四、 討論 (Discussion) 55
五、 結論 (Conclusion) 58
第六章 結論與建議 71
參考文獻 (References) 72
附錄 (Appendix) 77

王瑞章、孫文章、謝桑煙. 1998. 苗木容器栽培技術. 臺南區農業專訊 26:3-8.
王銘琪. 2004. 倡導容器苗木技術、催生景觀苗木產銷專區. 臺灣花卉園藝 200:74-82.
近藤三雄、加藤守宏、小池英憲、河村止. 1998. 都市綠化用樹木的生產技術與綠化. 地景企業股份有限公司. 台北.
林楨佑. 1999. 黑板樹和樟樹容器苗木生產技術之研究. 國立臺灣大學園藝學系碩士論文. 臺北.
馬常耕. 1994. 世界容器苗研究、生產現狀和我國發產對策. 世界林業研究 5:33-39.
張濟棠. 2004. 苗圃事業20年經驗與前景展望. 臺灣花卉園藝 200:62-65.
張旻宜. 2008. 盆中盆育苗模式及反射光譜技術在苗木生產之應用. 國立臺灣大學園藝學系碩士論文. 臺北.
張耿衡. 2011. 栽培介質及營養管理對火鶴花生育之影響. 國立臺灣大學農業化學研究所博士論文. 臺北.
張育森、謝孟諺. 2012. 臺灣苗木之發展現況與改進方向. 臺灣花卉園藝. 300:32-39.
許啟德. 2010. 我國園林容器育苗的容器應用進展. 中國園藝文摘. 8:115-117.
許原瑞、蔡佳彬. 2011. 苗圃管理與苗木健化-介質、肥料及水分管理. 林業研究專訊 18:11-14.
陳昱心. 2012. 介質特性與栽培管理對綠屋頂植物生育之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
黃有財、莊光明. 2005. 花木容器苗木規格化栽培推廣手冊. 財團法人七星環境綠化基金會. 臺灣.
黃&;#28702;頤. 2011. 土壤介質添加保水劑對花壇植物生育及水分利用之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
黃正翰. 2011. 公共工程常用植栽手冊. 4th ed. 財團法人臺灣營建研究院. 新北.
楊志維、許明晃、黃文達、楊智旭、蔡養正、楊棋明、張新軒. 2003. 水稻營養生長期農藝性狀與衛星遙測植生指數NDVI之關聯分析. 作物、環境與生物資訊 3:199-206.
蔡瑜卿、戴子閔、周明燕、黃少鵬. 2011. 2010年臺灣園藝景觀苗圃產業現況調查與分析. 種苗科技專訊 75:15-19.
鄧華平. 2008. 林木容器育苗技術. 中國農業出版社. 北京.
Arenas, M., C.S. Vavrina, J.A. Cornell, E.A. Hanlon, and G.J. Hochmuth. 2002. Coir as an alternative to peat in media for tomato transplant production. HortScience 37:309-312.
Barnes, E.M., T.R. Clarke, S.E. Richards, P.D. Colaizzi, J. Haberland, M. Kostrzewski, P. Waller, C. Choi, E. Riley, T. Thompson, R.J. Lascano, H. Li., and M.S. Moran. 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. Intl. Conf. Precision Agr. 5th, Bloomington, MN. p.16-19.
Bilderback, T.E., S.L. Warren, J.S. Owen, and J.P. Albano. 2005. Healthy substrates need physicals too. HortTechnology 15:747-751.
Binotto, A.F., A.D. Lucio, and S.J. Lopes. 2010. Correlations between growth variables and the Dickson quality index in forest seedlings. Cerne. Lavras. 16:457-464.
Brooker J., D. Eastwood, C. Hall, K. Morris, A. Hodges, and J. Haydu. 2005. Trade flows and marketing practices within the United States nursery industry: 2003. South. Coop. Bull. 404:1-21.
Buckstrup, M.J. and N.L. Bassuk. 2000. Transplanting success of balled-and-burlapped versus bare-root trees in the urban landscape. J. Arbor. 26:298-308.
Dickson, A., A.L. Leaf, and J.F. Hosner. 1960. Seedling quality - soil fertility relationships of white spruce and red and white pine in nurseries. For. Chron. 36:237-241.
Dole, J.M. and H.F. Wilkins. 2005. Floriculture: Principles and species. 2nd. ed. Prentice Hall, Upper Saddle River, N.J.
Evans, M.R. and J.K. Iles. 1997. Growth of Viburnum dentatum and Syringa×prestoniae ‘Donald Wyman’ in sphagnum peat and coir dust-based substrates. J. Environ. Hort. 15:156-159.
Fonseca, E.P., S.V. Valeri, E. Miglioranza, N.A.N. Fonseca, and L. Couto. 2002. Padrao de qualidade de mudas de Trema micrantha (L.) Blume, produzidas sob diferentes periodos de sombreamento. Rev. Arvore. 2:515-523.
Fonteno, W.C. and T.E. Bilderback. 1993. Impact of hydrogel on physical properties of coarse-structured horticultural substrates. J. Amer. Soc. Hort. Sci. 118:217-222.
Gilman, E.F., C. Harchick, and M. Paz. 2010a. Effect of container type on root form and growth of red maple. J. Environ. Hort. 28:1-7.
Gilman, E.F., C. Harchick, and M. Paz. 2010b. Effect of tree size, root pruning, and production method on establishment of Quercus virginiana. Arbor. Urban For. 36:183-190.
Girard, S., A. Clement, H. Cochard, B.B. Gercourt, and J.M. Guehl1 1996. Effects of desiccation on post-planting stress in bare-root Corsican pine seedlings. Tree Physiol. 17:429-435.
Jackson, D.P., R.K. Dumroese, and J.P. Barnett. 2012. Nursery response of container Pinus palustris seedlings to nitrogen supply and subsequent effects on outplanting performance. For. Ecol. Mgt. 265:1-12.
Johnson, J.D., and M. L. Cline 1991. Seedling quality of southern pines, p.143-162. In: M.L. Duryea and P.M. Dougherty. (eds.). Forestry re-generation manual. Kluwer Academic. The Netherlands.
Kang, J.G. and S.U. Chon. 2010. Combined effects of container volume and fertilizer level on plant growth, physiological characteristics, and nutrient uptake of vinca plant (Catharanthus roseus). Korean J. Crop Sci. 3:268-274.
Lilly, S.J. 2010. Arborists’ certification study guide. 3rd. ed. Intl Soc. Arbor, Champaign, IL, U.S.A.
Lin, C.Y. and Y.S. Chang. 2006. Copper hydroxide improved root quality of Palimara alstonia in plastic containers. HortTechnology 16:357-357.
Majsztrik, J., A. Ristvey, and J. Lea-Cox. 2011. Water and nutrient management in the production of container-grown ornamentals. Hort. Rev. 38:253-297.
Marianthi, T. 2006. Kenaf (Hibiscus cannabinus L.) core and rice hulls as components of container media for growing Pinus halepensis M. seedlings. Bioresouece Tech. 97:1631-1639.
Norman, A.G. 1964. Advances in agronomy. Acedemic Press Inc., London, U.K.
NeSmith, D.S. and J.R. Duval. 1998. The effect of container size. HortTechnology 8:495-499.
Percival, G.C., I.P. Keary, and K. Noviss. 2008. The potential of a chlorophyll content SPAD meter to quantify nutrient stress in foliar tissue of sycamore (Acer pseudoplatanus), English oak (Quercus robur), and European beech (Fagus sylvatica). Arbor. Urban For. 34:89-100.
Ruehie, J.L., D.H. Marx, J.P. Barnett, and W.H. Pawuk. 1981. Survival and growth of container-grown and bare-root shortleaf pine seedlings with Pisolithus and Thelephora ectomycorrhizae. South. J. Appl. For. 5:20-24.
Ribeiro, H.M., A.M. Romero, H. Pereira, P. Borges, F. Cabral, and E. Vasconcelos. 2007. Evaluation of a compost obtained from forestry wastes and solid phase of pig slurry as a substrate for seedlings production. Bioresour. Technol. 8:3294-3297.
Schluckebier, J.G. and C.A. Martin. 1997. Effects of above-ground pot-in-pot (PIP) placement and humic acid extract on growth of crape myrtle. J. Envir. Hort. 15:41-44.
Siegel-Issem, C.M., J.A. Burger, R.F. Powers, F. Ponder, and S.C. Patterson. 2005. Seedling root growth as a function of soil density and water content. Soil Sci. Soc. Amer. J. 69:215-226.
South, D.B., S.W. Harrisa, J.P. Barnett, M.J. Haindsa, and D.H. Gjerstada. 2005. Effect of container type and seedling size on survival and early height growth of Pinus palustris seedlings in Alabama, U.S.A. For. Ecol. Mgt. 204:385-398.
Timmer, V.R. and B.D. Miller. 1991. Effects of contrasting fertilization and moisture regimes on biomass, nutrients, and water relations of container grown red pine seedlings. New For. 5:335-348.
Tinus, R.W. and P.W. Owston. 1984. Physiology research made forestation with container-grown seedlings successful, p.143-155. In: M.L. Duryea and G.N. Brown (eds.). Seedling physiology and reforestation success.
Whitcomb, C.E. and C.A. Martin. 1985. Innovations and the nursery industry. J. Envir. on Hort. 3:33-38.
Young, T.P. and R.Y. Evans. 2000. Container stock versus direct seeding for woody species in restoration sites. Intl. Plant Propag. Soc. 50:577-582.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top