(3.235.108.188) 您好!臺灣時間:2021/02/26 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪嘉樺
研究生(外文):Jia-Hua Hung
論文名稱:花壇植物水分逆境耐受性之研究
論文名稱(外文):Study on Water-Stress Tolerance in Bedding Plants
指導教授:葉德銘葉德銘引用關係
指導教授(外文):Der-Ming Yeh
口試委員:羅筱鳳張育森蔡智賢
口試委員(外文):Hsiao-Feng LuoYu-Sen ChangChih-Hsien Tsai
口試日期:2014-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:128
中文關鍵詞:乾旱淹水光合作用乾重
外文關鍵詞:droughtfloodingphotosynthesisdry weight
相關次數:
  • 被引用被引用:9
  • 點閱點閱:308
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
花壇植物大量應用於都市戶外景觀綠美化,但易遭遇乾旱逆境及淹水逆境。本研究將數種臺灣常見之花壇用草花種植於不同介質含水量(volumetric water contents, VWC)處理下,調查其生長狀況及觀賞品質並測量光合作用參數,以判斷參試之花壇植物之耐旱性及耐濕性。
本研究將植物種植於65%與70% VWC潮濕處理、40% VWC處理、20% VWC乾旱處理及20/70%乾旱復水處理下,結果顯示,所有參試植物在40% VWC處理下能有最佳之表現,而20/70%處理之生長量雖未如40% VWC處理佳,但株型較緊湊,也可維持開花及良好觀賞品質。
在夏季草花中,夏菫(Torenia fournieri Lind. ‘Clown Blue and White’)在20% VWC乾旱處理之淨光合作用速率、葉片數、分枝數、開花數、地上部及地下部乾重皆最低、也使下位葉黃化、落葉;但在65% VWC處理下生長良好,淨光合作用速率、花朵數、葉片數、分枝數、地上部乾重皆最高,顯示夏菫為不耐旱但耐濕之植物。天使花(Angelonia salicariifolia Humb. &; Bonpl. ‘Serena Lavender Pink’)對不同VWC處理之反應與夏菫類似,皆以20% VWC處理下花朵數、分枝數、地上部乾重最低,65% VWC處理最高,顯示天使花為不耐旱但耐濕之植物。繁星花[Pentas lanceolata (Forsk.) Schum ‘Skystar Deep Rose’]之葉片數、分枝數及地上部乾重皆以20% VWC處理最低,但仍能維持淨光合作用速率,65%與40% VWC處理間則無差異,顯示繁星花為喜濕之植物。翠蘆莉(Ruellia brittoniana Leonard ‘Emerald Pink’)之分枝數及地上部乾重、淨光合作用速率皆以20% VWC處理最低、65% VWC處理最高,顯示翠蘆莉為不耐旱但耐濕之植物。
夏季草花中,70% VWC處理使雞冠花(Celosia cristata L. ‘New Look Red’)花序及葉片萎凋,葉片數減少,觀賞品質不良,光合作用速率因氣孔因素限制而下降,但20% VWC處理下葉片無明顯逆境表現,淨光合作用速率與40% VWC處理無差異,顯示雞冠花為稍耐旱但不耐濕之植物。黃帝菊[Melampodium paludosum (Pers) DC. ‘Million Gold’]在20% 與70% VWC處理下花朵數、分枝數、地上部乾重、淨光合作用速率皆較40% VWC處理低,觀賞品質不良,顯示黃帝菊為不耐旱、不耐濕之植物。彩葉草[Solenostemon scutellarioides (L.) Codd. ‘Green Cloud’]葉片數、地上部及地下部乾重、觀賞品質皆以70% VWC處理者最高,20% VWC處理之株型較小,但外觀無明顯逆境表現,因此可維持觀賞品質,顯示彩葉草為稍耐旱、喜濕之植物。千日紅(Gomphrena globosa L. ‘Buddy Purple’)在70% VWC處理之地上部乾重較低,且下位葉黃化、落葉,導致觀賞品質不良,淨光合作用速率因氣孔因素及非氣孔因素而下降,而在20%與40% VWC處理之葉片數、地上部乾重、淨光合作用速率無差異,亦能維持觀賞品質,顯示千日紅為稍耐旱不耐濕之植物。
參試之日日春[Catharanthus roseus (L.) G. Don]六品種中,除‘Mediterranean’外,皆以70% VWC處理之花朵數、花朵直徑、觀賞品質最低,且葉片黃化、落葉。在20% VWC處理之地上部植株較小,但能維持開花及葉片濃綠,觀賞品質較良好。除‘Mediterranean’外,品種間對水分環境之耐受性差異不大。顯示日日春為稍耐旱、不耐濕之花壇植物。而‘Mediterranean’在70% VWC處理仍能維持花朵開放及下位葉不脫落,分枝數及地上部乾重也高於20% VWC處理,可維持觀賞品質良好,顯示‘Mediterranean’品種為日日春品種中稍耐旱且較耐濕者。
在秋冬季草花中,矮牽牛(Petunia ×hybrida Hort. ex E. Vilm. ) ‘Daddy Red’和‘Eagle Blue’皆以70% VWC處理下葉片數、花朵數、分枝數、淨光合作用速率最低,觀賞品質不良,顯示矮牽牛為不耐濕植物,在20% VWC處理下雖植株較小,但仍可維持開花及觀賞品質。非洲鳳仙花(Impatiens walleriana Hook. f.) ‘Accent Rose’和‘Candy Rose’皆以20% VWC處理之葉片數、花朵數、地上部乾重、觀賞品質、淨光合作用速率最低,但以70% VWC處理者最高且與40% VWC處理無差異,顯示非洲鳳仙花為不耐旱、喜濕之植物。四季秋海棠(Begonia semperflorens-cultorum hort.) ‘Party Scarlet’在20%及70% VWC處理下表現相似,但在20% VWC處理之葉色較淡,觀賞品質較低。‘Super Olympia Red’則以70% VWC處理之葉片數、花朵數、地上部乾重高於20% VWC處理,但仍可維持觀賞品質,顯示四季秋海棠為稍耐旱、耐濕之植物,且‘Super Olympia Red’耐濕性較‘Party Scarlet’佳。
在秋冬季草花中,70% VWC處理使一串紅(Salvia splendens Ker-Grawl. ‘Vista Red’)及粉萼鼠尾草(Salvia farinacea Benth. ‘Victoria Blue’)葉片萎凋導致觀賞品質下降,也使一串紅之花序萎凋、脫落,顯示一串紅及粉萼鼠尾草為不耐濕之植物,而兩者在20% VWC處理之地上部乾重及淨光合作用速率下降,但仍能維持觀賞品質。五彩石竹(Dianthus hybrida ‘Super Parfait Strawberry’)之葉片數、花朵數、地上部乾重在各處理間皆無差異,但70% VWC處理使下位葉黃化、成失水狀,導致觀賞品質較低,顯示石竹為稍耐旱、不耐濕之植物。六倍利(Lobelia erinus Thunb. ‘Riviera Mix’)在20% VWC處理之花朵數、花朵直徑、分枝數及地上部乾重最低,但在70% VWC處理者生長良好,與40% VWC處理無差異,顯示六倍利為不耐旱但喜濕之植物。70% VWC處理會使萬壽菊(Tagetes erecta L. ‘Inca Yellow’)及孔雀草(Tagetes patula L. ‘Safari Yellow’)下位葉黃化,也使萬壽菊花朵數較少,孔雀草葉片數減少,導致觀賞品質較低,顯示孔雀草及萬壽菊為不耐濕之植物。天竺葵(Pelargonium ×hortorum Bailey ‘Multibloom Scarlet’)在70% VWC處理之葉片數、分枝數、地上部乾重、淨光合作用速率最低,在20% VWC處理下株型較小,但仍可維持開花且無明顯逆境表現,可維持其觀賞品質,顯示天竺葵為稍耐旱、不耐濕之植物。銀葉菊(Senecio cineraria DC. ‘Silverado’)在70% VWC處理之葉片數、地上部乾重、觀賞品質皆最高,在20% VWC處理雖葉片數、分枝數較低、株型較小,但無明顯逆境表現,因此可維持觀賞品質,顯示銀葉菊為稍耐旱、喜濕之植物。


Bedding plants are widely used in urban landscaping, but urban condtions easily cause drought and flooding stress to the plants. In this research, several common bedding plant species and cultivars in Taiwan were grown under different substrate volumetric water content (VWC) treatments, plant growth, quality, and photosynthesis parameters were measured to have a better understanding of their drought- or moisture-tolerability.
In this research, bedding plant were grown under 65% and 70% VWC moisture treatment, 40% VWC treatment, 20% VWC drought treatment, and 20/70% VWC drought and rewater treatment. Result showed that, all tested plant species and cultivars grown best under 40% VWC, rather than commonly practice of 20/70% VWC treatment, which could maintain plant compact and flowering and performed desirable plant quality.
Amoung the summer bedding plant species and cultivars tested, Torenia fournieri Lind. ‘Clown Blue and White’ under 20% VWC had the lowest net photosynthesis rate (Pn), leaf number, branch number, shoot dry weight (SDW) and root dry weight (RDW), and exhibited leaf chlorosis and leaf drop, Torenia had best growth and performance and the highest Pn under 65% VWC treatment, Angelonia salicariifolia Humb. &; Bonpl. ‘Serena Lavender Pink’ and Ruellia brittoniana Leonard ‘Emerald Pink’ under various VWC treatments had similar performances to Torenia, thus Torenia, Angelonia and Ruellia were categorized as drought-susceptible and moisture-tolerant species. Pentas lanceolata (Forsk.) Schum ‘Skystar Deep Rose’ had the lowest leaf number, branch number, and SDW when grown under 20% VWC treatment, but had the highest leaf and branch number and SDW under 40% and 65% VWC treatment. However Pn of Pentas did not decrease significantly under 20% VWC treatment, and therefore could be categorized as moisture-loving species. Celosia cristata L. ‘New Look Red’ grown under 70% VWC treatment had wilted inflorescences and leaves, and decreased leaf number, and lead to poor plant quality. Moisture caused decreased Pn mainly due to stomatal limitation. Leave did not express stress symptoms when grown under 20% VWC treatment, and Pn under 20% VWC did not differ to 40% VWC treatement Thus Celosia was categorized as drought-tolerant and moisture-susceptible species. Melampodium paludosum (Pers) DC. ‘Million Gold’ had the lowest flower and branch number, SDW, and Pn when grown under 20% and 70% VWC treatments, and therefore Melampodium was categorized as drought and moisture-susceptible species. Leaf number, SDW, RDW, and plant quality of Solenostemon scutellarioides (L.) Codd. ‘Green Cloud’ were highest under 70% VWC treatments, and lowest under 20% VWC treatment. However, there was had no obvious stress symptom dspite that the plants were smaller under 20% VWC treatment. Therefore Solenostemon was categorized as drought-tolerant and moisture-loving species. Gomphrena globosa L. ‘Buddy Purple’ had the lowest SDW, and plant quality, and lower leaf chlorosis, leaf drop when grown under 70% VWC treatment. Pn was drcreased due to both stomatal and non-stomatal limitation. Gomphrena grown under 20% VWC and 40% VWC treatments did not different in leaf number, SDW, and Pn, Thus Gomphrena was categorized as drought -tolerant and moisture-susceptible species.
Except ‘Mediterranean Rose Halo’, six cultivars of Catharanthus roseus (L.) G. Don had the lowest flower number, flower diameter, plant quality, and leaf chlorosis and leaf drop under 70% VWC treatment. All plants grown under 20% VWC treatment maintained flowering and deep green color leaf, with good plant quality, thus Catharanthus was categorized as drought-tolerant and moisture-susceptible species. ‘Mediterranean Rose Halo’ maintained flowering, with less leaf drop, and good plant quality when grown under 70% VWC treatment, suggesting that ‘Mediterranean Rose Halo’ might be a moisture-tolerant Catharanthus cultivar.
For the winter and spring bedding plant species tested, Petunia ×hybrida Hort. ex E. Vilm. ‘Daddy Red’ and ‘Eagle Blue’ both had the lowest leaf, flower, and branch number, Pn, and poor plant quality when grown under 70% VWC treatment. Petunias maintained flowering and plant quality under 20% VWC treatment though the plants were smaller. Thus, Petunia was categorized as moisture-susceptible species. Leaf, and flower number, SDW, plant quality, and Pn of Impatiens walleriana Hook. f. ‘Accent Rose’ and ‘Candy Rose’ were lowest when grown under 20% VWC treatment and highest under 70% VWC treatment. Therefore, Impatiens was categorized as drought-susceptible and moisture-loving species. Begonia semperflorens-cultorum hort. ‘Party Scarlet’ had similar performance between 20% and 70% VWC treatments, but plants had light green leaves, with lower quality under 20% VWC. Leaf and flower number, and SDW of Begonia ‘Super Olympia Red’ were higher under 70% VWC than 20% VWC treatment. Begonia was categorized as drought-tolerant and moisture-tolerant species. ‘Super Olympia Red’ had higher moisture-tolerance than ‘Party Scarlet’. Salvia splendens Ker-Grawl. ‘Vista Red’ and Salvia farinacea Benth. ‘Victoria Blue’ under 70% VWC had wilted leaves and inflorescences and poor plant quality, and thus Salvia was categorized as moisture-susceptible species. Leaf number and flower number, SDW of Dianthus hybrida ‘Super Parfait Strawberry’ did not differ amount various VWC treatments. However, plants under 70% VWC had leaf chlorosis and wilting in lower leaves, and thus Dianthus was categorized as drought-tolerant and moisture- susceptible species. Lobelia erinus Thunb. ‘Riviera Mix’ had the lowest flower number, flower diameter, branch number, and SDW when grown under 20% VWC treatment, but had the best performance under 70% VWC treatment. Therefore Lobelia was categorized as drought-susceptible and moisture-loving species. Under 70% VWC treatments resulted in decreased leaf and flower number of Tagetes erecta L. ‘Inca Yellow’ and Tagetes patula L. ‘Safari Yellow’. Tagetes was therefore categorized as moisture -susceptible species. Pelargonium hortorum Bailey ‘Multibloom Scarlet’ had the lowest leaf and branch number, SDW, and Pn when grown under 70% VWC treatment. In contrast, although smaller, plants maintained flowering and quality, with no sign of drought stress when grown under 20% VWC treatment, Thus Pelargonium was categorized as drought-tolerant and moisture-susceptible species. Senecio cineraria DC. ‘Silverado’ had the highest leaf number, SDW, and plant quality when grown under 70% VWC treatment. Plants under 20% VWC were smaller, had fewer leaves and branches, but remained good quality without any sign of drought stress. Thus Senecio was categorized as drought-tolerant and moisture-loving species.


目錄
摘要 i
Abstract iv
表目錄 x
圖目錄 xiii
前言(Introduction) 1
前人研究(Literature Review) 3
一、植物對乾旱逆境之生長及生理反應 3
二、淹水逆境對植物生長及生理之影響 11
材料與方法(Materials and Methods) 15
試驗一、介質含水量對夏菫、繁星花、天使花、翠蘆莉光合作用及生長之影響 15
試驗二、介質含水量對雞冠花、黃帝菊、彩葉草、千日紅生長及光合作用之影響 17
試驗三、介質含水量對不同日日春品種生長之影響 18
試驗四、介質含水量對矮牽牛、非洲鳳仙花、四季秋海棠之不同品種生長及光合作用之影響 19
試驗五、介質含水量對一串紅、粉萼鼠尾草、五彩石竹、六倍利、萬壽菊、孔雀草、天竺葵、銀葉菊生長及光合作用之影響 20
結果(Results) 22
試驗一、介質含水量對夏季夏蓳、繁星花、天使花、翠蘆莉生長及光合作用之影響 22
試驗二、介質含水量對夏季草花雞冠花、黃帝菊、彩葉草、千日紅生長及光合作用之影響 24
試驗三、介質含水量對日日春不同品種生長之影響 28
試驗四、介質含水量對冬春季草花矮牽牛、非洲鳳仙花、四季秋海棠生長及光合作用之影響 32
試驗五、介質含水量對冬春季草花一串紅、粉萼鼠尾草、石竹、六倍利、萬壽菊、孔雀草、天竺葵、銀葉菊生長及光合作用之影響 36
討論(Discussion) 106
一、介質含水量對花壇植物生長之影響 106
二、介質含水量對花壇植物光合作用之影響 114
三、花壇植物水分管理及水分耐受性指標 118
參考文獻(References) 120
附錄(Appendix) 128


參考文獻(References)
王貴彥、使秀捧、張建恒、梁衛理. 2000. TDR法、中子法、重量法測定土壤含水量的比較研究. 河北農業大學學報 23:23-26.
邱奕璇. 2012. 菊花耐淹水指標與水分生理. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 臺灣.
梁哲軍、陶洪斌、王璞. 2009. 淹水解除後玉米幼苗型態及光合生理特徵恢復. 生態學報 29:3978-3986.
陳錦木、李&;#31379;明、葉德銘. 2011. 台灣花壇植物產業現況與展望. 綠色城市與花卉產業國際研討會論文集. p.154-167
Alvarez, S., A. Navarro, S. Banon, and M.J. Sanchez-Blanco. 2009. Regulated deficit irrigation in potted Dianthus plants: Effects of severe and moderate water stress on growth and physiological responses. Scientia Hort.122:579-585.
Alvarez, S. and M.J. Sanchez-Blanco. 2013. Changes in growth rate, root morphology and water use efficiency of potted Callistemon citrinus plants in response to different levels of water deficit. Scientia Hort. 156:54-62.
Anyia, A.O. and H. Herzog. 2004. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Europ. J. Agr. 20:327-339.
Auge, R.M., A.J.W. Stodola, J.L. Moore, W.E. Klingeman, and X.R. Duan. 2003. Comparative dehydration tolerance of foliage of several ornamental crops. Scientia Hort. 98:511-516.
Baghalian, K., Sh. Abdoshah, F. Khalighi-Sigarodi, and F. Paknejad. 2011. Physiological and phytochemical response to drought stress of German chamomile (Matricaria recutita L.). Plant Physiol. Biochem. 49:201-207.
Betsy, C. 1997. A book of Salvias. Timber Press, Portland, Oregon.
Blanusa, T., E. Vysini, and R.W. Cameron. 2009. Growth and flowering of petunia and impatiens: Effects of competition and reduced water content within a container. HortScience 44:1302-1307.
Bradford, K.J. and T.C. Hsiao. 1982. Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiol. 70:1508-1513.
Bradford, K.J. 1983. Effects of soil flooding on leaf gas exchange of tomato plants. Plant Physiol. 73:475-479.
Brestic, M., G. Cornic, M.J. Freyer, and N.R. Baker. 1995. Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta 196:450-457.
Brodribb, T. 1996. Dynamics of changing intercellular CO2 concentration (ci) during drought and determination of minimum functional ci. Plant Physiol. 111:179-185.
Burnett, S.E. and M.W. van Iersel. 2008. Morphology and irrigation efficiency of Gaura lindheimeri grown with capacitance sensor-controlled irrigation. HortScience 43:1555-1560.
Cameron, R.W.F., R.S. Harrison-Murray, and M.A. Scott. 1999. The use of controlled water stress to manipulate growth of container-grown Rhododendron cv. Hoppy. J. Hort. Sci. Biotechnol. 74:161-169.
Chaves, M.M. 1991. Effects of water deficits on carbon assimilation. J. Expt. Bot. 42:1-16.
Chaves, M.M., J.S. Pereira, J. Maroco, M.L. Rodrigues, C.P.P. Ricardo, M.L. Osorio, I. Carvalho, T. Faria, and C. Pinheiro. 2002. How plants cope with water stress in the field. photosynthesis and growth. Ann. Bot. 89:907-916.
Chyli&;#324;ski, W.K., A.J. &;#321;ukaszewska, and K. Kutnik. 2007. Drought response of two bedding plants. Acta. Physiol. Plant 29:399-406.
Cruz de Carvalho, M.H., D. Laffray, and P. Louguet. 1998. Comparison of the physiological responses of Phaseolus vulgaris and Vigna unguiculata cultivars when submitted to drought conditions. Environ. Expt. Bot. 40:197-207.
Eakes, D.J., R.D. Wright, and J.R. Seiler. 1991. Moisture stress conditioning effects on Salvia splendens ‘Bonfire’. J. Amer. Soc. Hort. Sci. 166:716-179.
Ehleringer, J.R. and C.S. Cook. 1984. Photosynthesis in Encelia farinosa Gray in response to decreasing leaf water potential. Plant Physiol. 75:688-693.
Flohr, R.C. and C.A. Conover. 1994. Production and postproduction watering schedule effects on plant growth, quality and blooming of pansies and petunias. Proc. Fla. State Hort. Soc. 107:414-416.
Hamed, Y., G. Samy, and M. Persson. 2006. Evaluation of the WET sensor compared to time domain reflectometry. Hydrological Sci. J. 51:671-681.
Henson, D.Y. 2005. Performance of 19 species of bedding plants and kentucky bluegrass grown at decreasing levels of irrigation. M.S. Thesis, Dept. Horticulture &; Landscape Architecture, Colorado State Univ., CO, USA.
Henson, D.Y., S.E. Newman, and D.E. Hartley. 2006. Performance of selected herbaceous annual ornamentals grown at decreasing levels of irrigation. HortScience 41:1481-1486.
Hsiao, T.C. and E. Acevedo. 1974. Plant responses to water deficits, water-use efficiency and drought resistance. Agr. Meteorol. 14:59-84.
Hsiao, T.C. 1973. Plant responses to water stress. Annu. Rev. Plant Physiol. 24:519-570.
Ismail, M.R. and K.M. Noor. 1996. Growth and physiological processes of young starfruit (Averrhoa carambola L.) plants under soil flooding. Scientia Hort. 65:229-238.
Jaleel, C.A., R. Gopi, B. Sankar, M. Gomathinayagam, and R. Panneerselvam. 2008. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comptes Rendus Biol. 331:42-47.
Klamkowski, K. and W. Treder. 2008. Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J. Fruit Orna. Plant Res. 16:179-188.
Kramer, P.J. 1951. Causes of injury to plants resulting from flooding of the soil. Plant Physiol. 26:722-736.
Li, R.H., P.G. Guo, B. Michael, G. Stefania, and C. Salvatore. 2006. Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agr. Sci. China 5:751-757.
Liu, S., J. Liu, J. Cao, C. Bai, R. Shi. 2006. Stomatal distribution and character analysis of leaf epidermis of jujube under drought stress. J. Anhui Agr. Sci. 34:1315–1318.
Liao, C.T. and C.H. Lin. 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Council, R.O.C. 25:148-157.
Larson, K.D., B. Schaffer, and F.S. Davies. 1991. Flooding, leaf gas exchange, and growth of mango in containers. J. Amer. Soc. Hort. Sci. 116:156-160.
Malik, A.I., T.D. Colmer, H. Lambers, and M. Schortemeyer. 2001. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Aust. J. Plant Physiol 28:1121-1131.
Malik, A.I., T.D. Colmer, H. Lambers, T.L. Setter, and M. Schortemeyer. 2002. Short&;#8208;term waterlogging has long&;#8208;term effects on the growth and physiology of wheat. New Phytol. 153:225-236.
Meng, L., L. Li, W. Chen, Z. Xu, L. Liu. 1999. Effect of water stress on stomatal density, length, width and net photosynthetic rate in rice leaves. J. Shenyang Agr. Univ. 30:477-480.
Nemali, K.S. and M.W. van Iersel. 2004. Moisture stress for growth control: Physiological responses of salvia (Salvia splendens) and vinca (Catharanthus roseus). Proc. South. Nursery Assn. Res. Conf. 49:618-622.
Nemali, K.S. and M.W. van Iersel. 2008. Physiological responses to different substrate water contents: Screening for high water-use efficiency in bedding plants. J. Amer. Soc. Hort. Sci. 133:333-340.
Nezami, A., H.R. Khazaei, Z. Boroumand Rezazadeh, and A. Hosseini. 2008. Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. Desert 12:99-104.
Niu, G., D.S. Rodriguez, and Y.T. Wang. 2006. Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse conditions. HortScience 41:1408-1411.
Niu, G., D.S. Rodriguez, L. Rodriguez, and W. Mackay. 2007. Effect of water stress on growth and flower yield of big bend bluebonnet. HortTechnology 17:557-560.
Pankovi&;#263;, D., Z. Saka&;#269;, S. Kevre&;#353;an, and M. Plesni&;#269;ar. 1999. Acclimation to long-term water deficit in the leaves of two sunflower hybrids: Photosynthesis, electron transport and carbon metabolism. J. Expt. Bot. 330:127-138.
Paknejad, F., M. Nasri, H.R.T. Moghadam, H. Zahedi, and M.J. Alahrnadi. 2007. Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. J. Biol. Sci. 7:841-847.
Penuelas, J., S. Munne-Bosch, J. Llusia, and I. Filella. 2004. Leaf reflectance and photo- and antioxidant protection in field-grown summer-stressed Phillyrea angustifolia. Optical signals of oxidative stress? New Phytol. 162:115-124.
Rodrigues, M.L., C.M.A. Pacheco, and M.M. Chaves. 1995. Soil-plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. J Expt. Bot. 46:947-956.
Sanchez-Rodriguez, E., M. Rubio-Wilhelmi, L.M. Cervilla, B. Blasco, J.J. Rios, R. Leyva, L. Romero, and J.M. Ruiz. 2010. Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant Soil 335:339-347.
Sanchez-Blanco, M.J., S. Alvarez, A. Navarro, and S. Banon. 2009. Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. J. Plant Physiol. 166:467-476.
Silva, M.d.A., J.L. Jifon, J.A.G.d. Silva, and V. Sharma. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz. J. Plant Physiol. 19:193-201.
Smethurst, C.F. and S. Shabala. 2003. Screening methods for waterlogging tolerance in lucerne: Comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 30:335-343.
Starman, T. and L. Lombardini. 2006. Growth, gas exchange, and chlorophyll fluorescence of four ornamental herbaceous perennials during water deficit conditions. J. Amer. Soc. Hort. Sci. 131:469-475.
Stegman, E.C. 1982. Corn grain yield as influenced by timing of evapotranspiration deficits. Irr. Sci. 3:75-87.
Tezara, W., V. Mitchell, S. Driscoll, and D. Lawlor. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914-917.
Ueda, A., M. Kanechi, Y. Uno, and N. Inagaki. 2003. Photosynthetic limitations of a halophyte sea aster (Aster tripolium L) under water stress and NaCl stress. J. Plant Res. 116:65-70.
U.S. Department of Agriculture. 2013. Floriculture crops 2013 summary. USDA, National Agricultural Statistics Service, Washington, DC.
van Iersel, M.W. and K.S. Nemali. 2004. Drought stress can produce small but not compact marigolds. HortScience 39:1298-1301.
van Iersel, M.W., S. Dove, J.G. Kang, and S.E. Burnett. 2010. Growth and water use of petunia as affected by substrate water content and daily light integral. HortScience. 45:277-282.
Visser, E., L. Voesenek, B. Vartapetian, and M. Jackson. 2003. Flooding and plant growth. Ann. Bot. 91:107-109.
Webb, J.A. and R. Fletcher. 1996. Paclobutrazol protects wheat seedlings from injury due to waterlogging. Plant Growth Regulat. 18:201-206.
Wolfe, D.W., D.W. Henderson, T.C. Hsaio, and A. Alvino. 1988. Interactive water and nitrogen effects on senescence of maize: II. Photosynthetic decline and longevity of individual leaves. Agr. J. 80:865-870.
Xu, Z. and G. Zhou. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Expt. Bot. 59:3317-3325.
Xu, Z., G. Zhou, and H. Shimizu. 2010. Plant responses to drought and rewatering. Plant Signaling Behavior 5:649-654.
Yang, H.M. and G.X. Wang. 2001. Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment. Acta Phytoecologica Sinica 25: 312-316.
Yordanov, V.V. and T. Tsonev. 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38:171-186.
Yordanova, R.Y. and L.P. Popova. 2007. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol. Plant. 29:535-541.
Zhang, J.H. and W.J. Davies. 1986. ABA in roots and leaves of flooded pea plants. J. Expt. Bot. 38:649-659.
Zhang, M.Q., G.J. Li, and R.K. Chen. 2001. Photosynthesis characteristics in eleven cultivars of sugarcane and their responses to water stress during the elongation stage. Proc. Intl. Soc. Sugar Cane Technol. 24:642-643.
Zhou, W. and X. Lin. 1995. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Res. 44:103-110.
Zollinger, N., R. Kjelgren, T. Cerny-Koenig, K. Kopp, and R. Koenig. 2006. Drought responses of six ornamental herbaceous perennials. Scientia Hort. 109:267-274.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔