(3.237.178.91) 您好!臺灣時間:2021/03/04 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江柏慶
研究生(外文):Po-Ching Chiang
論文名稱:馬拉巴栗新栽培模式
論文名稱(外文):An Approach of New Seeding Production in Malabar Chestnut
指導教授:張育森張育森引用關係
指導教授(外文):Yu-Sen Chang
口試委員:沈榮壽張祖亮朱玉
口試委員(外文):Rong-Show ShenTsu-Liang ChangYu Chu
口試日期:2014-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:97
中文關鍵詞:馬拉巴栗水耕
外文關鍵詞:Malabar ChestnutPachira marcocarpahydroponic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
馬拉巴栗(Pachira marcocarpa)原生於中美墨西哥一帶,屬於木棉科(Bombacaceae)的熱帶喬木,農民多以田土露天育苗及栽培。馬拉巴栗以外銷為主,自民國95到102年,其出口總金額高達51,105千美元。雖馬拉巴栗生長勢強且容易栽培,但若管理不當容易感染疫病與根腐病,而帶病植株日後編辮苗也會因為失編而失去其商品價值。因此,本研究以研發新式栽培法取代慣行栽培,以改善產業現況,首先探討無土介質栽培馬拉巴栗對植株生長之影響,接著再探討以水耕栽培馬拉巴栗合適之育苗無土介質,之後再進一步討論馬拉巴栗以水耕養液栽培生長之影響,最後再探討養液中添加釋氧物質之可行性。
使用無土介質栽培馬拉巴栗實生苗,若要使用單一無土介質,推薦使用泥炭苔(P),可得最佳株高、莖徑、CMR、NDVI、葉綠素螢光、地上部及地下部乾重,但泥炭苔為非再生性之資源,而椰纖(C)處理植株所得之植株外觀和乾重,皆與泥炭苔處理組無顯著差異,故若考慮到環保,也可選擇使用椰纖搭配肥培管理。單一介質無法應付所有環境,且理化特性難以調整,因此選擇混合介質之生長較佳,故試驗結果以PVPe221在DQI與QI上表現皆最優。
以液體作為育苗介質之自來水處理容易腐敗、通氣水處理和流動水處理則因下胚軸皆呈現彎曲不規則,品質不如固體介質育苗,因此馬拉巴栗育苗時期仍是採用固體介質育苗較佳。以蛭石(V)、水苔(S)及1-P栽培土(1-P)等固體介質育苗後之QI值相差不大,但馬拉巴栗根系易與水苔糾纏,使得後期移植水耕栽培時反而費工,因此推薦以蛭石或1-P栽培土作為最佳馬拉巴栗水耕前適用育苗介質。低光環境(100 μmol·m-2·s-1)下種植馬拉巴栗,以山崎萵苣養液配方表現最佳,臺中場養液配方次之,而Hoagland養液配方表現最差,因此推薦處理結果最佳之山崎萵苣養液配方作為水耕養液。高光環境(1100 μmol·m-2·s-1)下種植馬拉巴栗以臺中場養液配方表現最佳,然以QI值來看,臺中場養液配方處理數值6.83與山崎萵苣養液配方之6.63差距不大,且皆超過6級分;以試藥等級配置成本為例,山崎萵苣養液配方藥劑成本明顯低於臺中場養液配方,為故推薦使用山崎萵苣養液配方為水耕養液最佳。
一次水中加入0.01 g·L-1之釋氧物質時,水中pH值從原本的6.01上升到9.33,濃度提高至0.02 g·L-1之釋氧物質時,水中pH值則是上升到10.98,呈強鹼性。水中加入釋氧物質並調整pH (ORC+pH)處理後的水中溶氧量(DO)於調查其間皆維持最高,而水中打入空氣處理(WA)與水中加入釋氧物質處理(ORC)差異不顯著,純水處理(W)則是最低。試驗結束時,ORC處理之DO值顯著高於W處理,與前人研究結果相同。
綜合以上,馬拉巴栗無土實生苗栽培介質選用PVPe221其生長品質最優。而水耕馬拉巴栗前,最好以蛭石(V)或1-P栽培土(1-P)作為介質育苗,而後移入水時,在低光度(100 μmol·m-2·s-1)與高光度(1100 μmol·m-2·s-1)環境下則是以養液成本最低且處理結果佳之日本山崎萵苣配方(Y)作為推薦之養液配方。釋氧物質加入水中雖會使溶液呈強鹼性,但DO值也會上升;ORC+pH處理組之DO值表現最佳,而ORC處理能取代打氣,可節省打氣機具器材支出,又能達到節能減碳之附加價值。


Malabar chestnut [Pachira macrocarpa (Cham. &; Schltdl.) Walp.] (Bombacaceae) is a tropical small tree native to Mexico to central America. Growers in Taiwan usually use field soil for nursery and culture of this species. Most Malabar chestnut plants were exported and total valued 51,105 thousand U.S. dollars from 2006 to 2013. Malabar chestnut has strong growth and can be easily cultured, however, Phytophthora and Lasiodiplodia infection may cause severe lose due to stem rot and braid loss. Therefore, developing new culturing system to overtake the conventional one is expected. This study was aimed to 1) test the effect of soilless medium on growth of Malabar chestnut, 2) find the optimal nursery medium for subsequent hydroponic culture, 3) elucidate the effect of nutrient solution of hydroponic culture on growth of plants, and 4) test the feasibility of additional oxygen releasing compounds to the nutrient solution.
Malabar chestnut plants had the highest growth performance and dry mass when grown with peatmoss without other soilless medium. Plants grown with coir dust had similar appearance and dry weight compared to the peatmoss-grown. Coir dust could be a substitute for peatmoss based on eco-friendly consideration. However, coir dust did not suit for all environments and was difficult for physical and chemical adjustment. Thus, soilless mixture PVPe221 was recommended because of the plants had the best Dickson quality index (DQI) and quality index (QI) value.
Seedlings easily rotted during tap water nursery. Aerated tap water and running tap water treatments resulted in curved hypocotyls. Seedling quality was better when grown with solid medium than liquids. Seedlings grown with vermiculite (V), moss (S), and 1-P soilless mix (1-P) had similar QI value. But moss could not remove easily from root system and could increase transplanting labor cost. Malabar chestnut were recommended to nursed with V or 1-P before hydroponic culture. Under low light condition (100 μmol·m-2·s-1), plants had best performance when fertilized with Yamazaki lettuce nutrient (Y) solution, Taichung (T) solution was the second, and Hoagland solution treatment resulted in worst plant growth. Under high light condition (1,100 μmol·m-2·s-1), the best was with T solution. However, QI value was not significantly different between T solution (6.83) and Y solution (6.63). Y solution had lower chemical cost than T solution. Therefore, Y solution was recommended for hydroponic culture of Malabar chestnut.
When 0.01 g oxygen releasing compound (ORC) was added to distilled water, pH increased from 6.01 to 9.33, and pH to 10.98 when 0.02 g ORC was added. Dissolve oxygen (DO) maintained the highest during experiment period after adding ORC and pH adjustment (ORC+pH). Aerated distilled water had similar DO with ORC+pH. Distilled water without ORC or aeration had significant lower DO.
In summary, Malabar chestnut could be grown with soilless mix PVPe221 to achieve the best plant quality. Seedlings should be nursed with vermiculite or 1-P soilless mix before hydroponic culture. During hydroponic culture, Yamazaki lettuce nutrient solution was recommended both under low (100 μmol·m-2·s-1) and high (100 μmol·m-2·s-1) light conditions for better growth and lower cost. Additional oxygen releasing compounds (ORC) resulted in higher pH and dissolve oxygen (DO). ORC plus pH adjustment had the highest DO. ORC treatment could be a substitute for aeration system and had lower energy cost.


摘要 i
Abstract iii
第一章 前言 9
第二章 前人研究 11
第三章 馬拉巴栗最適無土栽培介質之探討 18
摘要(Abstract) 18
一、前言(Introduction) 19
二、材料與方法(Materials and Methods) 20
試驗一、馬拉巴栗種植於單一無土介質之影響 20
試驗二、馬拉巴栗種植於混合無土介質之影響 22
三、結果(Result) 23
四、討論(Discussion) 26
五、結論(Conclusion) 30
第四章 水耕對馬拉巴栗生長之影響 40
摘要(Abstract) 40
一、前言(Introduction) 41
二、材料與方法(Materials and Methods) 42
試驗一、最適馬拉巴栗水耕栽培育苗無土介質之探討 42
試驗二、低光環境下三種水耕養液配方對馬拉巴栗水耕栽培生長之影響 44
試驗三、高光環境下四種水耕養液配方對馬拉巴栗水耕栽培生長之影響 45
三、結果(Result) 47
四、討論(Discussion) 50
五、結論(Conclusion) 56
第五章 釋氧物質與新栽培法 66
摘要(Abstract) 66
一、前言(Introduction) 67
二、材料與方法(Materials and Methods) 68
試驗一、釋氧物質性質之探討 68
試驗二、馬拉巴栗最適栽培法之探討 68
三、結果(Result) 71
四、討論(Discussion) 74
五、結論(Conclusion) 77
第六章 結論 83
參考文獻(References) 85


王銀波. 1988. 養液栽培之肥料與管理. p. 59-69. 刊於:沈再發、許淼淼編著. 養液栽培技術講習會專刊第一輯. 臺灣省農業試驗所鳳山熱帶園藝試驗分所. 高雄.
何明昱. 2012. 室內植物移除二氧化碳能力之研究. 國立臺灣大學生物園藝研究所碩士論文. 臺北.
沈再發、許淼淼. 1989. 作物的營養特性及影響養液組成之因素. p. 44-59. 刊於:沈再發、許淼淼、徐森彥編著. 養液栽培技術講習會專刊第二輯. 臺灣省農業試驗所鳳山熱帶園藝試驗分所. 高雄.
沈榮壽. 2005. 馬拉巴栗. p877-882. 刊於:黃美華、方怡丹、林鈴娜. 臺灣農家要覽農作篇(二),增修訂三版.財團法人豐年社. 台北.
李郁淳. 2006. 氯化銨處理對尖葉萵苣及小白菜生育及硝酸鹽含量之影響. 國立中興大學園藝學研究所碩士論文. 臺中.
李金龍、傅季郁. 1988. 本省養液栽培之發展方向與重點. p 1-5. 刊於:沈再發、許淼淼編著. 養液栽培技術講習會專刊第一輯. 臺灣省農業試驗所鳳山熱帶園藝試驗分所. 高雄.
林昭儀. 2006. 遮光、溫度與無機養分對擎天鳳梨‘Cherry’生長之影響. 國立臺灣大學生物園藝研究所碩士論文. 臺北.
徐善德、廖玉婉譯. William, G. Hopkins and Norman P.A. Huner 編著. 2005. 第十二章:植物與無機養分. p. 225-294. 植物生理學第三版. 偉明圖書有限公司. 臺北.
黃敏展. 2002. 亞熱帶花卉學總論. 第十三章:花卉之土壤. p. 265-266. 中興大學園藝系. 臺中.
蔡宛育、陳彥樺. 2012. 馬拉巴栗. 臺灣中部地區外銷作物產業專集. 112:148-153.
蔡淳瑩. 1999. 栽培介質及肥料對四季蘭假球莖增殖之影響. 行政院農業委員會花蓮區農業改良場研究彙報. 17:65-71.
廖文偉、何偉真、廖玉珠. 1989. 介質對馬鈴薯瓶苗扦插及種薯生產之影響. 中國園藝. 36(1):35-42.
戴振洋、蔡宜&;#23791;. 2008. 不同養液肥料對介質栽培東方甜瓜之影響. 臺中區農業改良場研究彙報. 99:61-72.
謝孟諺. 2014. 臺灣景觀樹木容器苗生產關鍵技術之探討. 國立臺灣大學生物園藝研究所碩士論文. 臺北.
謝清祥. 1993. 文心蘭的栽培介質. 臺灣之種苗. 10:39-41.
蘇俊&;#23791;. 2012. 馬拉巴栗病害簡介與整合管理. 行政院農業委員會農業試驗所技術服務季刊. 91:15-18
Abad, Z.G., F.J. Louws, G.E. Fernandez, and L.M. Ferguson. 2002. Predominance and pathoge-nicity of fungi and stramenopiles associated with black root rot (BRR) of strawberries. Phytopathology 92:S1.
Abad, M., F. Fornes, C. Carrion, and V. Noguera. 2005. Physical properties of coconut coir dusts compared to peat. HortSci. 40(7):2138-2144.
Alen, M.M. 1960. Actions and interactions of temperature, light intensity and nutrient concentration on the growth of the green alga, Chlamydomonas reinhardi Dangeard. J. Fisheries Res. Board Can. 17: 871-894.
Alt, D. and A.M. Full. 1988. Control of the nitrogen status of lettuce by nitrate analysis of plant sap. Acta Hort. 222:23-27.
Awang, Y., A.S. Shaharom, R.B. Mohamad, and A. Selamat. 2009. Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. Amer. J. Agr. Biol. Sci. 4:63-71.
Barneix, A.J. 1990. Yield variation in wheat: nitrogen accumulation, light interception and harvest index, p. 87-100. In: Lambers H. Cambridge M.L., Konings H., and Pons T.L. (eds.). Causes and consequences of variation in growth rate and productivity of higher plants. The Hague: SPB Academic Publishing.
Bilderback, T.E., S.L. Warren, J.S. Owen, and J.P. Albano. 2005. Healthy substrates need physicals too. HortTechnology 15:747-751.
Binotto, A.F., A.D. Lucio, and S.J. Lopes. 2010. Correlations between growth variables and the dickson quality index in forest seedlings. Cerne. Lavras. 16:457-464.
Brian, E.L. and R.T. Kenneth. 1981. Experimental outdoor study with Ulva fasciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. J. Expt. Marine Biol. Ecol. 53:135-152.
Bunt, A.C. 1983. Physical properties of mixtures of peats and minerals of different particle size and bulk density for potting substrates. Acta Hort. 150:143-153.
Cantliffe D.J. 1973. Nitrate accumulation in spinach cultivars and plant introductions. Can. J. Plant Sci. 53:365-367.
Chaerle, L. and D. Van Der Straeten. 2000. Imaging techniques and the early detection of plant stress. Trends in plant science 5:495-501.
Chang, G. H., T. E. Dai, S. C. Huang, C. Y. Tsao, W. T. Tsai, F. N. Wang, A. H. Chang, and F. W. How. 2006. Application of artifical textile fiber as growing medium for Phalaenopsis cultivation. J. Taiwan Soc. Hortic. Sci. 52:71-80. (in Chinese with English abstract)
Chang, X., P.G. Alderson, and C.J. Wright. 2008. Solar irradiance level alters the growth of basil (Ocimum basilicum L.) and its content of volatile oils. Environ. Expt. Bot. 63:216-223.
Chang, Y.J., Y.T. Chang, and H.J. Chen. 2007. A method for controlling hydrogen sulfide in water by adding soild phase oxygen. Bioresourse Technol. 98:478-483.
Corine, C. de G., L.F.M. Marcelis, R. van den Boogaard, and H. Lambers. 2002. Interactive effects of nitrogen and irradiance on growth and partitioning of dry mass and nitrogen in young tomato plants. Funct. Plant Biol. 29:1319-1328.
De Boodt, M. and O. Verdonck. 1972. The physical properties of the substrates in horticulture. Acta Hort. 26:37-44.
Dole, J.M. and H.F. Wilkins. 2005. Floriculture : principles and species. 2nd ed. Prentice Hall, Upper Saddle River, N.J.
Eriksen, F.I. and A.S. Whitney. 1981. Effects of light intensity on forage species: I. interaction of light intensity and nitrogen fertilization on six forage grasses. Agron. J. 73:427-433.
Evans, M.R., R.H. Stamps. 1996. Growth of beeding plants in sphagnum peat and coir dust-based substrate. J. Environ. Hort. 14:187-190.
Fonseca, E.P., S.V. Valeri, E. Miglioranza, N.A.N. Fonseca, and L. Couto. 2002. Padrao de qualidade de mudas de Trema micrantha (L.) Blume, produzidas sob diferentes periodos de sombreamento. Rev. A rvore. 2:515-523.
Goward, S.N., K.F. Huemmrich, and R.H. Waring. 1994. Visible-near infrared spectral reflectance of landscape components in western Oregon. Remote Sensing of Environment. 47:190-203.
Grillas, S., M. Lucas, E. Bardopolou, S. Sarafopoulos, and M. Voulgari. 2001. Perlite based soilless culture system: current commercial applications and prospects. Acta Hort. 548:105-113.
Grindlay D.J.C. 1997. Towards an explanation of crop nitrogen demand based on the optimisation of Leaf nitrogen per unit Leaf area. J. Agr. Sci. 128:377-396.
Handreck, K.A. 1993. Properties of coir dust, and its use in the formulation of soilless potting media. Commun. Soil. Sci. Plant Anal. 24:349-33.
Henriques, A.R.D. and L.F.M. Marcelis. 2000. Regulation of growth at steady-state nitrogen nutrition in lettuce (Lactuca sativa L.): Interactive effects of nitrogen and irradiance. Ann. Bot. 86:1073–1080.
Jean, M., N. Tremblay, and A. Gosselin. 1991. Nitrogen fertilization and HPS supplementary lighting influence vegetable transplant production. I. transplant growth. J. Amer. Soc. Hort. Sci. 116:594-598.
Johnson, J.D., and M. L. Cline 1991. Seedling quality of southern pines, p.143-162. In: M.L. Duryea and P.M. Dougherty. (eds.). Forestry re-generation manual. Kluwer Academic. The Netherlands.
Madakadze, I.C., K.A. Stewart, R.M. Madakadze, P.R. Peterson, B.E. Coulman, and D.L. Smith. 1999. Field evaluation of the chlorophyll meter to predict yield and nitrogen concentration of switchgrass. J. Plant Nutr. 22:1001-1010.
Mahmoudi, M. and M.E. Gershwin. 2000. Sick Building Syndrome III stachybotrys chartaarum. J ASTHMA. 37:191-198.
Matrinez, V. and A. Cerda. 1989. Nitrate reductase activity in tomato and cucumber leaves as influenced by NaCl and N source. J. Plant Nutri. 12: 1335-1350.
Meerow, A.W. 1994. Growth of two subtropical ornamentals using coir (coconut mesocarp pith) as a peat substitute. HortScience 29:1484-1486.
Mengel, K. and E.A. Kirkby. 2001. Principles of plant nutrition. 5th ed. Kluwer Academic, Switzerland.
Mohanry, N.I.V. and S. Demeter. 1989. Plant Physiol. 90:175-179.
Nelson, P.V. 2003. Greenhouse operation and management. Prentice Hall, Englewood Cliffs, N.J.
Niven, R.M.L., A.M. Fletcher, and C.A.C. Pickering. 2000. Building sickness syndrome in healthy and unhealthy buildings: an epidemiological and environmental assessment with cluster analysis. OEM. 57:627-634.
Novoa, R. and R.S. Loomis. 1981. Nitrogen and plant production. Plant and Soil 58:177- 204.
Olympios, C.M., 1992. Soilless Media Under Protected Cultivation Rockwool, Peat, Perlite and Qther Substrates. Acta Hort. 323:215-234.
Ouzounidou, G., M. Moustakas, and R. Lannoye. 1995. Physiol. Plant 93:551-557.
Penuelas, J. and I. Filella. 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in plant science 3:151-156.
Scagel, C.F. 2003. Growth and nutrient use of ericaceous plants grown in media admended with sphagnum moss peat or coir dust. Hort. Sci. 38(1):46-54.
Seidner, A. 1999. Sick building syndrome. Hosp Pract (Minneap). 34:127-129.
Siddiqi, M.Y., B. Malhotra, X. Min, and A. D.M. Glass. 2002. Effect of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. J. Plant Nutri. Soil Sci. 165: 191-197.
Smillie, R.M. and R. Nott. 1982. Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo. Plant Physiol. 70: 1049-1054.
Spomer, A.L. 1975. Small soil containers as experimental tools : soil water relations. Commun. Soil Sci. Plant Anal. 6:21-26.
Stoley, L.H., Zentmyer, G.A., Klotz, L.J., and C.K. Labanauskas. 1967. Oxygen diffusion, water, and Phytophthora cinnamomi in root decay and nutrition of avocados. Proc. Amer. Soc. Hort. Sci. 90:67-76.
Taiz, L. and E. Zeiger. 2006. Plant physiology. 4th ed. Sinauer Press, Inc., Sunderland. MA.
Tung, H. T. 1980. New Orchid Culture. IV, N. F. publisher. 332 pp. Taipei
Veenendaal, E.M., M.D. Swaine, R.T. Lecha, M.F. Walsh, I.K. Abebrese, and K.Owusu-Afriyie. 1996. Responses of west african forest tree seedlings to irradiance and soil fertility. Functional Ecol. 10:501-511.
Verdonck, O., R. Penninck, and M. De Boodt. 1983. The physical properties of different horticultural substrate . Acta Hort. 150:155-160.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔