(54.236.58.220) 您好!臺灣時間:2021/02/27 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳韋汶
研究生(外文):Wei-Wen Chen
論文名稱:不同品種蝴蝶蘭花朵除雄後之乙烯生合成和敏感性之差異
論文名稱(外文):Variations in the Ethylene Biosynthesis and Sensitivity among Phalaenopsis Cultivars after Emasculation
指導教授:王自存
指導教授(外文):Tsu-Tsuen Wang
口試委員:黃肇家李堂察
口試委員(外文):Chao-chia HuangTan-Cha Lee
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:103
中文關鍵詞:蝴蝶蘭除雄乙烯生成敏感性老化
外文關鍵詞:phalaenopsisemasculationethylene productionsensitivitysenescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蝴蝶蘭花朵經除雄處理後會促進花朵之乙烯生成並加速花朵老化反應發生。由本研究室過去之研究得知,蝴蝶蘭花朵經除雄後其老化徵狀出現之時間會依品種而有所不同,且各品種花朵在老化徵狀出現時亦會伴隨乙烯高峰的出現。本試驗之目的在探討蝴蝶蘭花朵除雄反應不相同之品系間,其乙烯生合成之調控是否存在某種差異,因而導致其花朵老化反應發生的時間不同。本研究選取除雄後花朵老化速率快速與緩慢之蝴蝶蘭品系各二種,以帶主梗單朵切花系統,進行除雄處理及乙烯生合成之研究。結果顯示,快速老化型的‘巨寶紅玫瑰’及‘紅不讓’之花朵在除雄後2天即出現老化徵狀,花朵在5天後完全老化;緩慢老化型的‘立匠火鳥’及‘金鑽’在除雄13天才出現老化徵狀,至16天後才完全老化。快速老化型品種花朵在除雄後12小時其乙烯生成即開始上升並在36小時達到高峰。緩慢老化型品種花朵在除雄後11天後其乙烯生成才開始上升並在第14天達到高峰。快速老化型蝴蝶蘭花朵於除雄後6小時,其蕊柱上半部之乙烯生成速率即開始增加,蕊柱下半部則在12時後出現增加,二者均迅速上升,至除雄後36小時由0增加到 > 150 nL C2H4 g-1 hr-1。其蕊柱上下半部之ACO活性亦於除雄後6小時開始增加,至48小時分別達到1500及900 nL C2H4 g-1 hr-1,增加幅度達千倍以上;其蕊柱上半部之ACC含量在除雄後12小時快速增加,至30小時達到高峰。緩慢老化型蝴蝶蘭經除雄處理後8小時,其蕊柱上半部及蕊柱下半部之乙烯生成速率、ACO活性及ACC含量均出現短暫上升,並在24小時後下降至與未除雄組相同,直到第12天後又再度快速上升,於14天後達到高峰,此時增加幅度近千倍。由以上結果得知,快速與緩慢老化型蝴蝶蘭除雄後8至12小時,均會產生微量之創傷乙烯;但是快速老化型蝴蝶蘭之乙烯自動催化(autocatalysis)會被誘發,生成大量乙烯並促進花朵老化;相對地,緩慢老化型蝴蝶蘭花朵在除雄後並未出現乙烯自動催化現象,因此花朵老化延後發生。進一步以外施低濃度乙烯測試二類型蝴蝶蘭花朵對乙烯之敏感性,結果顯示,以0.1 μL.L-1乙烯處理12小時,正常之快速老化型蝴蝶蘭即出現花朵老化徵狀,緩慢老化型蝴蝶蘭則無反應;後者則須處理18小時以上才足以誘導老化徵狀出現反應。另以0.1 μL.L-1乙烯處理除雄後之兩類型蝴蝶蘭;快速老化型蝴蝶蘭對外施乙烯之老化反應與正常除雄者相同,皆在2天內出現老化徵狀;已除雄處理之緩慢老化型蝴蝶蘭,僅需6小時之外施乙烯,即可誘導其老化徵狀出現。由此結果可知,快速老化型蝴蝶蘭對乙烯之敏感性較緩慢老化型高,而除雄處理會增進緩慢老化型蝴蝶蘭花朵對乙烯之敏感性。

In Phalaenopsis flowers, senescence can be advanced by emasculation (remove its pollinia and anther cap) and it is accompanied by a sudden upsurge in ethylene production. Previous study in our laboratory had indicated that there were variations in the duration for the appearance of flower wilting after emasculation among 20 Phalaenopsis cultivars tested; and the upsurge in ethylene production paralleled the timing of flower wilting. The object of this study was to correlate ethylene production with ethylene sensitivity as the possible explanation for this variation in response to emasculation among Phalaenopsis cultivars. Two cultivars from the fast-wilting group: Phal. OX Red Shoe and Dtps. Jiuhbao Red Rose, and two cultivars from the slow-wilting group: Dtps. Lih Jianq Firebird and Dtps. Mei Dar Diamond were used in this study; and the single-flower testing system developed in our lab was used to carry out the experiments. The flowers of the fast-wilting group showed symptom of senescence 2 days after emasculation and wilted completely after 5 days and the flowers of the slow-wilting group showed symptom of senescence 13 days after emasculation and wilted completely after 16 days. In the fast-wilting group, increase in ethylene production was observed 12 h after emasculation and reached its peak after 36 h, and in the slow-wilting group, increase in ethylene production was observed 11 days after emasculation and reached its peak at the 14th day. The regulation of ethylene biosynthesis in floral parts of the emasculated flower from these two groups was further studied. In the fast-wilting group, ethylene production from the upper column started to increase 6 h after emasculation, and the lower column started to increase after 12 h; both parts reached their peak after 36 h. The ethylene production rate raise from near 0 to >150 nL C2H4 g-1h-1. ACC oxidase activity in the column also started to increase 6 h after emasculation and reached its peak at 48 h. The magnitude of increase was more than a thousand folds. ACC content in the upper column started to increase 12 h after emasculation and reached its peak after 30 h. In the slow-wilting group, a small rise in ethylene production, ACC oxidase activity and ACC content were observed 8 h after emasculation and then declined to the level of non-emasculated control after 24 h. Until 12 days after emasculation, all of them started to increase again and reaching their peak after 14 days. The magnitude of increase was also over thousand-fold. The above result suggested that in both the fast-wiling and the slow-wilting group, a small amount of wound ethylene was produced between 6 to 12 h after emasculation. In the fast-wilting group, autocatalytic ethylene production was induced by the wound ethylene and resulted in the rapid senescence of flower. In the slow-wilting group, autocatalytic ethylene production was not induced by the wound ethylene and therefore flower senescence was delayed until 12 days later when the natural senescence of the flower took place. The difference in ethylene sensitivity of these two groups of Phalaenopsis was tested by applying low concentration of ethylene from 6 to 24 h to the flower. Treating intact flowers with 0.1 μL L-1 ethylene for 12 h induced the appearance of wilting symptom in 2 days in the fast-wilting group but had no effect in the slow-wilting group. The latter required at least 18 h of ethylene treatment to induce flower wilting. Treating emasculated flowers with 0.1 μL L-1 ethylene did not affect the wilting response in the fast-wilting group, but it induced flower wilting in the slow-wilting group with a 6 h treatment. These results indicated that the fast-wilting Phalaenopsis had higher sensitivity toward ethylene than the slow-wilting Phalaenopsis, and emasculation could increase the ethylene sensitivity in the slow-wilting Phalaenopsis.

目錄
誌謝 i.
中文摘要 ii.
英文摘要 iv.
目錄 vi.
圖目錄 viii.
表目錄 xii.
壹、 前言 1
貳、 前人研究 3
一.蝴蝶蘭概論 3
二.高等植物中乙烯之生理作用及其生合成途徑與訊息傳遞 4
三.高等植物對乙烯敏感性之差異 7
四.除雄處理對花朵老化之影響 11
五.花朵衰老生理與生化之變化 14
參、 材料與方法 17
一.植物材料 17
二.試驗儀器與設備 17
三.試驗藥品 18
四.帶主梗單朵切花系統 18
五.花朵處理 18
六.試驗方法及測定項目 19
七.圖表繪製 22
八.瓶插環境 22
肆、 結果 23
一.除雄後快速及緩慢老化型蝴蝶蘭經除雄處理後之老化反應 23
二.除雄後快速及緩慢老化型蝴蝶蘭除雄後花朵各部位乙烯生合成路徑調控之分析 24
三.快速及緩慢老化型蝴蝶蘭與乙烯敏感性間之關係 28
伍、 討論 32
一.除雄後快速及緩慢老化型蝴蝶蘭除雄後乙烯生合成之主要位置 32
二.除雄後快速及緩慢老化型蝴蝶蘭蕊柱上半部與蕊柱下半部乙烯生合成能力之差異 35
三.除雄後快速及緩慢老化型蝴蝶蘭對乙烯敏感性之差異 39
四.除雄處理對快速及緩慢老化型蝴蝶蘭乙烯敏感性之影響 40
陸、 結論 43
參考文獻 90
附錄 103


王自存. 2008. 園產品處理學與實習講義. 國立台灣大學園藝系. 台北.
李哖、林雨森 1992. 蝴蝶蘭花朵之呼吸作用. 中國園藝. 38(4):228-240.
李哖. 2005. 蘭科植物. 台灣農家要覽增修訂三版. 899-902 pp.
李彬志. 2000. 蝴蝶蘭葉片黃斑、花朵壽命及花朵對乙烯敏感度之研究. 國立臺灣大學園藝學研究所碩士論文.
沈再木、徐善德 2007. 蝴蝶蘭栽培. 國立嘉義大學編印, 127PP.
林思潔. 2005. 溫度、乙烯與黑暗貯運對紅花朵麗蝶蘭開花品質之影響. 國立臺灣大學園藝學研究所碩士論文.
林鄉薰、李哖、張天鴻. 2003. 乙烯與1-MCP前處理對台灣蝴蝶蘭盆花花朵萎凋之影響. 中國園藝. 49(2):199-210.
黃肇家. 1998. 文心蘭切花之乙烯生成以及外加乙烯與去除花藥蓋對花朵品質之影響. 中華農業研究. 47(2):125-134.
黃敏展 2002 .亞熱帶花卉學總論. 國立中興大學園藝系編製. 366pp.
陳敏綺. 2013. 不同品系蝴蝶蘭花朵之除雄反應與乙烯敏感性之相關性. 國立臺灣大學園藝學研究所碩士論文.
張綺恂、李哖、張天鴻. 2003. 乙烯與黑暗引起蝴蝶蘭盆花花朵及花苞的萎凋. 中國園藝 49:173-182.
張綺恂. 2002. 乙烯、黑暗貯運及1-MCP對蝴蝶蘭盆花品種產後品質開花之影響. 台大園藝系碩士論文.
楊玉婷. 2010. 全球蘭花發展現況與未來展望兼論我國蝴蝶蘭與文心蘭發展策略. 台灣經濟研究月刊. 33(3):33-41.
Abeles, F., P. Morgan,and M. Saltveit. 1992. Ethylene in Plant Biology. San Diego:Academic. 414 pp. 2nd ed.
Adams, D. O. and S. F. Yang. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76:170–174.
Arditti, J., and R. L. Knauft. 1969. The effect of auxin, actinomycin D, ethionine, and puromyvin on post-pollination behavior by Cymbidium (Orchidaceae) flowers. Amer. J. Bot. 56:620-628.
Arditti, J., N. M. Hogan, and A. V. Chadeick. 1973. Post-pollination phenomena in orchid flowers IV. effects of ethylene. Amer. J. Bot. 60:883-888.
Arditti, J., and B. H. Flick. 1976. Post-pollination phenomena in orchid flowers.VI. excised floral segments of Cymbidium. Amer. J. Bot. 63:201-211
Attri, L. K., H. Hayyar, R. K. Bhanwra, and A. Pehwal. 2008. Post-pollination changes in the floral organs of two Cymbidium species. Biologia Plantarum 52:787-791.
Avadhani, P. N., H. Nair, J. Arditti, and C. S. Hew. 1994. “Physiology of orchid flowers,” inOrchid Biology: Reviews and Perspectives, Vol. VL, ed. J. Arditti. John Wiley, New York, USA. pp. 189-358.
Bieleski, R. L., 1995. Onset of phloem export from senescent petals of daylily. Plant Physiology 109: 557–565.
Bleecker, A.B., and H. Kende. 2000. Ethylene: A gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16:1-18.
Celikel, F. G. and W. G. van Doorn. 1995. Solute leakage, lipid peroxidation, and protein degradationduring the senescence of Iris tepals. Plant Physiology 94: 515–521.
Chapin, L. J. and M. L. Jones. 2007. Nutrient remobilization during pollination-induced corollasenescence in Petunia. Acta Horticulturae 755: 181–190.
Christenson, E. A., 2001. Phalaenopsis:A Monograph Timber Press, Inc.
Eisinger, W. 1997. Role of cytokinins in carnation flower senescence. Plant Physiol. 59:707-709.
Evans, A. C., G. K. Burge, R. P. Littlejohn, M. H. Douclas, R. A. Bicknell,and R. E. Lill. 2002. MountCook lily (Ranunculus lyallii)–a potential cut flower? Newzealand Journal of Crop and HorticulturalScience 30: 69–78.
Firn, R.D., 1986. Growth substance sensitivity: The need for clearer ideas, precise terms and purposeful experiments. Physiologia Plantarum 67:267-272.
Finger, F. L., T. F. Carneiro,and J. G. Barbosa. 2004. Post-harvest senescence of inflorescencias ofesporinha (Consolida ajacis). Brasilia 39(6): 533–537.
Fischer, A., R. Brouquisse and P. Raymond. 1998. Influence of senescence and of carbohydrate levels onthe pattern of proteases in purple nutsedge (Cyperus rotundus). Physiologia Plantarum 102: 385–395.
Fujino, D. W., M. S. Reid,and S. F. Yang. 1980. Effects of aminooxyacetic acid on postharvestcharacteristics of carnation. Acta Horticulturae 113: 59–64.
Gilissen, L. J. W. 1976. The role of style as a snese-organ in realtion to wilting of the flower. Planta 131:201-202.
Goh, C. J., A. H. Halevy, R. Engel, and A. M. Kofranek. 1985. Ethylene evolution and sensitivity in cut orchid flowers. Scientia Horticulturae. 26:57-67
Hall, I. V. and F. R. Forsyth. 1967. Production ofethylene by flowers following pollinationand treatments with water and auxin. Can.J. Bot. 45:1163–1166.
Halevy, A. H. and S. Mayak. 1979. Senescence and postharvest physiology of cut flowers. Part I.Hort. Rev. 1: 204–236.
Halevy, A. H., C. S. Whitehead, and A. M. Kofranek.1984. Does pollination induce corolla abscissionof cyclamen flowers by promotingethylene production? Plant Physiol. 75:1090–1093.
Halevy A. H. 1986. Pollination-induced corolla senescence. Acta. Horticulturae. 181:25-32.
Harkema, H. and P. F. Struijlaart. 1989. Effect of amino acid on coloration of the labellum and longevity of cut Cymbidium flowers. Acta. Hort. 113:59-64.
Heyes, J. A., and J. W. Johnston. 1998. 1-methylcyclopropene extends Cymbidium orchid vaselife and prevents damaged pollinia from accelerating senescence. New Zealand Journal of crop and Horticultural Science. 26:319-324.
Hua, J., C. Chang, Q. Sun, and E. M. Meyerowitz. 1995. Ethylene insensitivity conferred byArabidopsis ERS gene. Science 269:1712–1714.
Hua, J. and E. M. Meyerowitz. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261.
Hunter, D. A., B. C. Steele,and M. S. Reid. 2002. Identification of genes associated with perianth senescence in daffodil (Narcissus pseudonarcissus L. ‘Dutch master’). Plant Science 163: 13–21.
Ichimura, K, M. Shimamura, and T. Hisamatsu. 1998. Role of ethylene in senescence of cut Eustoma flowers. Postharvest Biology and Technology 14:193–198.
Israel, H. W. and Y. Sagawa. 1964. Post-pollination ovule development in Dendrobium orchids II. fine structure of the nucellar and archesporial phases. Caryologia 17:301-316.
Johnson, P.R. and J.R. Ecker. 1998. The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet. 32:227–254.
Jones, M., P. B. Larsen,and W. R. Woodson. 1995. Ethylene regulated expression of a carnation cysteineproteinase during flower petal senescence. Plant Molecular Biology 28: 505–512.
Kende, H. 1993. Ethylene biosynthesis. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 44-283-307.
Ketsa, S., and K. Luangsuwalai. 1996. The relationship between 1-aminocyclopropane -1- carboxylic acid content in pollinia, ethylene production and senescence of pollinated Dendrobium orchid flowers. Postharvest Biology and Technology 8:57-64.
Ketsa, S., and A. Rugkong. 1999. Senescence of Dendrobium ‘Pompadour’ flowers following pollination. Journal of Horticultural Science and Biotechnology. 74:608-613.
Ketsa, S., and A. Rugkong. 2000. The role of ethylene in enhancing the initial ovary growth of Dendrobium ‘Pompadour’ following pollination. Journal of Horticulture Science and Biotechnology. 75:451-454.
Ketsa, S. and A. Rugkong. 2000. Ethylene production, senescence and ethylene sensitivity of Dendrobium ‘Pompadour’ flowers following pollination. Journal of Horticultural Science and Biotechnology. 75:149-153.
Ketsa, S., K. Bunya-atichart, and W. G. van Doorn. 2001. Ethylene production and post-pollination development in Dendrobium flowers treated with foreign pollen. Aust. J. Plant Physiol. 28:409-415.
Kesta, S., A. Wisutiamonkul, and W. G. van Doorn. 2006. Auxin is required for pollination-induced ovary growth in Dendrobium orchids. Functional Plant Biology. 33:887-892.
Klee, H. J. and D. G. Clark. 2010. Ethylene signal transduction in fruits and flowers. Plant Hormones. pp 377-398.
Lay-yee, M., A. D. Stead,and M. S. Reid. 1992. Flower senescence in daylily (Hemerocallis). PhysiologiaPlantarum 86: 308–314.
Lerslerwong, L., and S. Ketsa. 2008. Autocatalytic ethylene production by Dendrobium flowers during senescence induced by exogenous ethylene. Tai Journal of Agricultural Science. 41:91-99
Luangsuwalai, K., S. Ketsa, A. Wisutiamonkul, and W. G. van Doorn. 2008. Lack of visible post-pollination effects in pollen grains of two Dendrobium cultivars: relationship with pollinia ACC, pollen germination, and pollen tube growth. Functional Plant Biology. 35:152-158.
Luangsuwalai, K., S. Ketsa, and W. G. van Doorn. 2011. Ethylene-regulated hastening of perianth senescence after pollination in Dendrobium flowers is not due to an increase in perianth ethylene production. Postharvest Biology and Technology 62:338-341.
Mazliak, P., 1981. Regulation of a court terme et a long terme de I activite des enzymes mambranaires parla temperature. Physiologia Vegetarian 19: 543–563.
McMurchie, E., W. McGlasson, and I. Eaks, 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237:235-236.
Miyazaki, J. H. and S. F. Yang. 1987. The methioninesalvage pathway in relation to ethyleneand polyamine biosynthesis. Physiol. Plant69:366–370.
Muller, R., B. M. Stummann, A. S. Andersen, and M. Serek. 1999. Invulvement of ABA in postharvest life of miniature potted roses. Plant Grotw Regulation. 29:143-150.
Nadeau,J. A., X. S. Zhang, H.Nair, and S. D. O’Neill.1993. Temporal and spatial regulation of1-aminocyclopropane carboxylate oxidasein the pollination induced senescence oforchid flowers. Plant Physiol. 103:31–39.
Nichols, R. 1966. Ethylene production during senescence of flowers. Journal of Horticultural Science 41:279–290.
Nichols, R., 1968. The response of carnations(Dianthus caryophyllus) to ethylene.J. Hortic. Sci. 43:335–439.
Nichols, R., 1977. Sites of ethylene productionin the pollinated and unpollinated senescingcarnation (Dianthus caryophyllus)inflorescence. Planta 135:155–159.
Nichols, R. and L. C. Ho. 1975. An effect of ethylene on the distribution of 14C-sucrose from petals to otherflower parts in the senescent cut inflorescence of Dianthus caryophyllus. Annals of Botany 39: 433–438.
Nichols, R., G. Bufler, Y. Mor, D. W. Fujino, and M. S. Reid. 1983. Changes in ethylene productionand 1-aminocyclopropane-1-carboxylicacid content of pollinated carnationflowers. J. Plant Growth Regul. 2:1–8.
O’Neill, S. D., J. A. Nadeau, X. S. Zhang, A. Q. Bui, and A. H. Halevy. 1993. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5:419-432.
O’Neill, S. D. 1997. Pollination regulation of flower development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:547-574.
Orzaez, D. and A. Granell. 1997a. DNA fragmentation is regulated by ethylene during petal senescence inPisum sativum. The Plant journal 11: 137–144.
Orzaez, D. and A. Granell. 1997b. The plant homologue of the defender against apoptotic death gene isdownregulated during senescence of flower petals. FEBS Letter 404: 275–278.
Paliyath, G. and M. J. Droillard. 1992. The mechanism of membrane deterioration and disassemblyduring senescence. Plant Physiology and Biochemistry 30: 789–812.
Paulin, A., 1986. Influence of exogenous sugars on the evolution of some senescence parameters offlowers. Acta Horticulturae 181: 183–193.
Porat, R., A. Borochov, A. H. Halevy, and S. D. O’Neill. 1994. Pollination-induced senescence of Phalaenopsis petals. Plant Growth Regulation 15:129-136.
Porat, R., A. H. Halevy, M. Serek, and A. Borochov. 1995. An increase in ethylene sensitivity following pollination is the initial event triggering an increase in ethylene production and enhances senescence of Phalaenopsis orchid flowers. Physiologia Plantarum 93:778-784.
Porat, R., J. A. Nadeau, J. A. Kirby, E. G. Sutter, and S. D. O’Neill. 1998. Characterization of primary pollen signal in the postpollination syndrome of Phalaenopsis flowers. Plant Growth Regulation 24:109-117.
Rattanawisalanon, C., S. Ketsa, and W. G. van Doorn. 2003. Effect of aminooxyacetic acid and sugar on vase life of Dendrobium flowers. Postharvest Biology and Technology. 29:93-100.
Razali, Z., A. N. Boyce, H. Nair, and S. Chandran. 2013. Cell wall enzymes and changes in sugar content in pollinated orchids treated with ethylene inhibitors and sugars. Scientia Horticulturae. 159:143-151.
Reid, M. S., and M. J. Wu. 1992. Ethylene and flower senescence. Plant Growth Regulation. 11:37-43.
Rubinstein, B., 2000. Regulation of cell death in flower petals. Plant Molecular Biology 44:303–318.
Sakai, H., J. Hua, Q. G. Chen, C. Chang, and L. J. Medrano. 1998. ETR2 is an ETR1-like gene involvedin ethylene signaling in Arabidopsis.Proc. Natl. Acad. Sci. USA 95:5812–5817.
Saltveit, M. E. 1999. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest biology and technology. 15:279-292.
Serek, M., E. C. Sisler,and M. S. Reid. 1994. Novel gaseous ethylene binding inhibitor prevents ethyleneeffects in potted flowering plants. Journal of American Society for Horticultural Science 119: 1230–1233.
Serek, M., and M. S. Reid. 2000. Ethylene and postharvest performance of potted kalanchoe. Postharvest Biology and Technology 18:43-48.
Serek, M., E. J. Woltering, E. C. Sisler, S. Frello, and S. Sriskandarajah. 2006. Biotechnology Advances. 24:368-381.
Shahri, W., and I. Tahir. 2011. Flower secescence-strategies and some associated events. Bot. Rev. 77:152-184.
Shillo, R., Y. Mor and A. H. Halevy. 1980. Prevention of flower drop in cut sweet peas and delphiniums.Hassade 61: 274–276.
Simon, E. W., 1974. Phospholipids and plant membrane permeability. New Phytologist 73: 377–420.
Sisler, E. C., E. Dupille, and M. Serek. 1996. Effect of 1-methylcyclopropene and methylenecyclopropaneon ethylene binding and ethylene action on cut carnations. Plant GrowthRegul. 18:79-86.
Sisler, E. and M. Serek, 1997. Inhibitors of ethylene responses in plants at the receptor level: recent development. Physiologia Plantarum. 100:577-582.
Solomon, M., B. Belenghi, M. Delledonne, E. Menachem,and A. Levine. 1999. The involvement ofcysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants.The Plant Cell 11: 431–443.
Stimart, D. P., D. J. Brown,and T. Solomos. 1983. Development of flowers and changes in carbondioxide, ethylene, and various sugars of cut Zinnia elegans. Journal of American Society forHorticultural Science 108: 651–655.
Strauss, M. S. and J. Arditti. 1984. Postpollination phenomena in orchid flower. XII. effects of pollination, emasculation, and auxin treatment on flowers of Cattleya porcia ‘cannizaro‘ and the rostellum of Phalaenopsis. Bot. Gaz. 145:43-49.
Stead, A. D. and K. G. Moore. 1983. Studies on flower longevity in Digitalis- the role of ethylene in corollaabscission. Planta 157: 15–21.
Sultan, M. and S. Farooq. 1997. Effect of cycloheximide in some physiological changes associated withsenescence of detached flowers of iris germanica L. Acta Physiologia Plantarum 19(1): 41–45.
Sum, Y., B. Christensen, F. Liu, H. Wang, and R. Muller. 2009. Effects of ethylene and 1-MCP (1-methylcyclopropene) on bud and flower drop in mini Phalaenopsis cultivars. Plant Growth Regul. 59:83-91.
Thompson, J., 1988. The molecular basis for membrane deterioration during senescence. Pp 51–83. In:L. D. Nooden &; A. C. Leopold (eds). Senescence and Aging in Plants. Academic, Newyork.
Thompson, J. E., C. D. Froese, E. Madey, M. D. Smith,and Y. Hong. 1998. Lipid metabolism duringplant senescence. Progress in Lipid Science 37: 119–141.
Trewavas, A. J. 1982. Growth substance sensitivity: The limiting factor in plant development. Physiol. Plant. 55:60-72.
Tripathi, S. K., and N. Tuteja. 2007. Integrated signaling in flower senescence. Plant Signaling and Behavior. 2:437-445.
Tsai, W. C., Y. Y. Hsiao, Z. J. Pan, C. S. Kuoh, W. H. Chen, and H. H. Chen. 2008. The role of ethylene in orchid ovule development. Plant Science. 175:98-105.
Uthaichay, N., S. Ketsa, and W.G.van Doorn. 2007. 1-MCP pretreatment bud and flower abscission in Dendrobium orchids. Postharvest Biology and Technology. 43:374-380.
van Doorn, W. G. 1997. Effects of pollination on floral attraction andlongevity. Journal of Experimontal Botany. 48(314):1615-1622.
van Doorn, W. G. and E. J. Woltering.2008. Physiology and molecular biology of petal senescence. Journal of ExperimentalBotany 59(3): 453–480.
van Staden, J. 1979. The effect of emasculation on the ebdogenous cytokinin levels of Cymbidium flowers. Scientia Horticulturae. 10:277-284.
Veen, H. and S. C. van de Geijn. 1978. Mobility and ionic form of silver as related to longevity of cutcarnations. Planta 140: 93–96.
Wagstaff, C., M. K. Leverentz, G. Griffiths, B. Thomas, U. Chanasut, A. D. Stead,and H. J. Rogers.2002. Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeriapetals. Journal of Experimental Botany 53(367): 233–240.
Wagstaff, C., P. Malcolm, A. Rafiq, M. Leverentz, G. Griffiths, B. Thomas, A. Stead,and H. Rogers. 2003.Programmed cell death (PCD) processes begin extremely early in Alstroemeria petal senescence. New Phytologist 160: 49–59.
Whitehead, C. S., A. H. Halevy, and M. S. Reid. 1984. Control of ethylene synthesis during development and senescence of carnation petals. J. Amer. Soc. Hort. Sci. 109:473-475.
Whitehead, C. S., L. O’Reilly, J. Weerts, M. M. Zaayman, and W. Gaum. 2006. The effect of sucrose pulsing on senescing climacteric cut flowers. Acta. Hort. 599:549-557.
Woltering, E. J., and W. G. van Doorn. 1988. Role of ethylene in senescence of petal – morphological and taxonomical relationships. Journal of Experimental Botany. 39(208):1605-1616.
Woltering, E. J. 1989. Lip coloration in Cymbidium flowers by emasculation and by lip-produced ethylene. Acta. Horticulturae 261:145-150.
Woltering, E. J., and F. Harren. 1989. Role of Rostellum Desiccation in Emasculation-induced Phenomena in Orchid Flowers. J. Exp. Bot. 40:907-912.
Woltering, E. J., and D. Somhorst. 1990. Regulation of anthocyanin in Cymbidium flowers: effects of emasculation and ethylene. J. Plant Physiol. 136:295-299.
Woltering, E. J. 1990. Interrelationship between the Different Flower Parts during Emasculation-Induced Senescence in Cymbidium Flowers. J. Exp. Bot. 41:1021-1029.
Woltering, E. J. 1990. Inter-organ Translocation of 1-Aminocyclopropane –1–Carboxylic Acid and Ethylene Coordinates Senescence in Emasculated Cymbidium Flowers. Plant Physiol. 92:837-845.
Woltering, E. J., D. Somhorst, and P. van der Veer. 1995. The role of ethylene in interorgan signaling during flower senescence. Plant Physiol. 109:1219-1225.
Woodson, W.R., K. Y. Park, A. Drory, P. B. Larsen, and H. Wang. 1992. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers. Plnat Physiol. 99:0526-0532.
Woodson, W. R. and K. A. Lawton. 1988. Ethylene-induced gene expression in carnation petals. Plant Physiology87: 498–503.
Wu, M. J., L. Zacarias, and M. S. Reid. 1991. Variation in the senescence of carnation(Dianthus caryophyllus L. ) cultivars. II.Comparison of sensitivity to exogenous ethyleneand of ethylene binding. Scientia Horticulturae 48:109-116.
Xu, Y. and M. R. Hanson. 2000. Programmed cell death during pollination-induced senescence in Petunia.Plant Physiology 122: 1323–1333.
Xu, X., T. Gookin, C. Jiang,and M. S. Reid. 2007. Genes associated with opening and senescence ofMirabilis jalapa flowers. Journal of Experimental Botany 58: 2193–2201.
Yang, S. F., 1980. Regulation of ethylene biosynthesis. HortScience 15: 238-243.
Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. AnnualReview of Plant Physiology 35: 155–189.
Yang, S. F., 1985. Biosynthesis and action of ethylene. HortScience 20: 41-45.
Yu, Y. B., D. O. Adams, and S. F.Yang. 1979. 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Archives of Biochenistry and Biophysics. 198(1):280-286.
Zhang, X. S., and S. D. O’Neill. 1993. Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell 5:403-418.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔