(3.238.7.202) 您好!臺灣時間:2021/03/01 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫瑞
研究生(外文):Ray Sun
論文名稱:SAP54AY 效應蛋白質誘導花器葉化之電顯觀察
論文名稱(外文):Observation of SAP54AY Effector Mediated-Leafy Flower by Scanning Electron Microscopy
指導教授:羅筱鳳
指導教授(外文):Hsiao-Feng Lo
口試委員:楊雯如
口試日期:2014-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:32
中文關鍵詞:翠菊黃萎病植物菌質體(Aster yellows witches’-broomAYWB)阿拉伯芥SAP54花器葉化掃描式電子顯微鏡(SEM)
外文關鍵詞:AYWB phytoplasmaArabidopsisSAP54virescenceleafy flowerSEM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
翠菊黃萎病植物菌質體(Aster yellows witches''-broom, AYWB)是一種由昆蟲傳播的植物病原,罹病植株表現簇葉、花器綠化及花器葉化等病徵。翠菊黃萎病植物菌質體的分泌蛋白中,辨識出56條AY-WB 蛋白 (SAPs),並建立穩定的轉基因阿拉伯芥品系。其中SAP54效應蛋白會調控SAP54轉基因阿拉伯芥表現出花器葉化。SAP54轉基因阿拉伯芥的花器分為三型;第一型為花器部分葉化,但仍保有白色花瓣。第二型表現出花器葉化、綠化,並有數個葉化花芽。第三型花器明顯葉化、綠化,其萼片擴大、形似葉片。本研究利用掃描式電子顯微鏡觀察SAP54轉基因阿拉伯芥。第一型花器產生了額外的花序及毛狀體,細胞大致排列緊密,但形狀不規則。第二型花器從原本主花的雌蕊處產生了許多簇生花亦產生了毛狀體。細胞形狀變得更不規則,且有部分細胞融合。第三型花器的花瓣及萼片變的極似葉片也都在表面產生了毛狀體。細胞呈現大、形狀不規則,且表面光滑;同一片花瓣從邊緣到中心部,葉化趨勢漸趨明顯,花瓣邊緣的細胞小、葉化較不明顯,靠近花瓣中心的細胞較大且葉化。上述結果表示SAP54影響阿拉伯芥花器發育的基因表現。


Abstract
Aster yellows witches’-broom (AYWB) phytoplasma is an insect-transmitted plant pathogen that induces various symptoms, including witches’-broom, virescene and phyllody (leafy flower) in the infected plants. Bai et al. (2009) identified 56 secreted AY-WB proteins (SAPs) and created stable transgenic Arabidopsis lines. In addition, MacLean et al. (2011) identified SAP54 effector, which mediates leafy flower in Arabidopsis SAP54 plants. The floral morphology of SAP54 plants were classified into three Types. Type 1 showed partial phyllody with white petals. Type 2 showed phyllody and virescence with multiple leafy flower buds. Type 3 showed phyllody, virescence, and enlarged leaf-like sepals. In this study, we observed the leafy flower phenotypes on SAP54 plants by scanning electron microscopy (SEM). Results showed that the Type 1 flower produced additional inflorescences and trichomes, cells were arranged approximately in an order with less regular shape. Type 2 leafy flower had multiple flower appeared from the position of pistal in the primary flower and trichomes were seen. Cells became more irregular in shape and some cells seem to be merging. Type 3 flower’s sepals and petals became very leaf-like and both appeared trichomes on their surface. Cells showed irregular cells with large size and smooth surface. Moreover, the conversion of regular cells to leafy flower cells proceeded progressively from the central portion towards the edge portion, resulting elongated cells in the central part and small cells near the edge. These results suggest that SAP54 alters the gene expression on floral organ development.


Contents

中文摘要 II
Abstract III
Contents IV
Introduction 1
Materials and methods 5
Plant materials, growth conditions 5
The tissue fixation 5
Scanning electron microscopy observation 6
Results 8
The observation of flower structure between Col-0 and SAP54AY plants 8
The observation of sepal structures between Col-0 and SAP54AY plants 10
The observation of petal structures between Col-0 and SAP54AY plants 11
The observation of stamen structures between Col-0 and SAP54AY plants 13
The observation of pistil structure between Col-0 and SAP54AY plants 14
Discussions 16
References 20
Figures 25
Appendix 32



References
Bai, X., V.M. Correa, T.Y. Toruno, D. Ammar, S. Kamoun, and S.A. Hogenhou, 2009. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol. Plant Microbe Interact 22:18-30.
Bai, X, J. Zhang, A. Ewing, SA. Miller, A. Jancso Radek, D.V. Shevchenko, K. Tsukerman, T. Walunas, A. Lapidus, J.W. Campbell, and S.A. Hogenhout, 2006. Living with genome instability: The adaptation of phytoplasmas to divers environments of their insect and plant hosts. J. Bacteriol. 188:3682-3696.
Barbara, D.J., A. Morton, M.F. Clark, and D.L. Davies, 2002. Immunodominant yellows and clover phyllody are highly divergent in the major hydrophilic region. Microbiology-Sgm, 148:157-167.
Bertaccini, A. 2007. Phytoplasma: diversity, taxonomy, and epidemiology. Front. Biosci 12:673-689.
Causier, B., Z. Schwarz-Sommer, and B. Davies. 2010. Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 21: 73-79.
Deszeaux, D., A.U. Singer, and J.L. Dangl, 2006. Type III effector proteins: Doppelgangers of bacterial virulence. Curr. Opin. Plant Biol. 9: 376-382.
Fornara, F., A. De Montaigu, and G. Coupland. 2010. SnapShot: Control of flowering in Arabidopsis. Cell 141:550.
Himeno, M., Y. Neriya, N. Minato, C. Miura, K. Sugawara, Y. Ishii, Y. Yamaji, S. Kakizawa, K. Oshima, and S. Namba. 2011. Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic gens in an organ-specific manner. Plant J. 67: 971-979.
Hogenhout, S. A., K. Oshima, D. Ammar el, S. Kakizawa, H. N. Kingdom, and S. Namba. 2008. Phytoplasma: bacteria that manipulate plants and insects. Mol. Plant Pathol 9: 403-23.
Hogenhout, S.A., M. Music, 2010. Phytoplasma genomics, from sequencing to comparative and functional genomics: what have we learnt? In Weintraub, P.G., Jones, P. 2010 Phytoplasmas. Genomes, Plant Host and Vectors. Wallingford, UK: CABI.
Huang, Y.H. 2013. MiR396-mediated SVP gene expression in floral transition reprogramming and its involvement with phytoplasma effector SAP54. Master Thesis. Department of plant pathology and microbiology, National Taiwan university. Taipai, Taiwan.
Kakizawa, S., K. Oshima, T. Kuboyama, H. Nishigawa, H. Jung, T. Sawayanagi, T. Tsuchizaki, S. Miyata, M. Ugaki, and S. Namba, 2001. Cloning and expression analysis of phytoplasma protein translocation genes. Mol. Plant-Microbe Interact. 14: 1043-1050.
Kakizawa, S., K. Oshima, H. Nishigawa, H. Jung, W. Wei, S. Suzuki, M. Tanaka, S. Miyata, M. Ugaki, and S. Nanba, 2004. Secreation of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150: 135-142.
Kube, M., B. Schneider., H. Kuhl, T. Dandekar, K. Heitmann, A.M. Migdoll, R. Reinhard, and E. Seemuller, 2008. The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics 26:306.
Lee, I.M., R.E. Davis, and D.E. Gundersen-Rindal. 2000. Phytoplasma: phytopathogenic mollicutes. Annu. Rev. Microbiol. 54: 221-55.
Lewsey, M., F.C. Robertson, T. Canto, P. Palukaitis, and J.P. Carr. 2007. Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J. 50: 240-252.
Litt, A., E.M. Kramer. 2010. The ABC model and the diversification of floral organ identity. Semin. Cell Dev. Biol. 21: 129-137.
Liu, C., W. Xi, L. Shen, C. Tan, and H. Yu. 2009. Regulation of floral patterning by flowering time genes. Dev. Cell 16: 711-722.
MacLean, S.A., O.V. Makarova, K.C. Findlay, V.M. Grive, R. Toth, M. Nicolaisen, and S. A. Hogenhout. 2011. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in arabidopsis plants. Plant Physiology 157: 831.
MacLean, A.M., O. Zigmunds, K. Krissana, M.Z. Anna, C.A. Gerco, G.H. Richard, S.A. Immink, and A.H. Saskia. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-Dependent manner. PLOS Bio. 12:1-14.
Nielsen, H., J. Engelbrecht, S. Brunak, G. von Heijne, 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10:1-6.
Oshima, K, S. Kakizawa, H. Nishigawa, H.Y. Jung, W. Wei, S. Suzuki, R. Arashida, D. Nakata, S. Miyata, M. Ugaki, and S. Namba, 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. NDat. Genet. 36:27-29.
Siddique, A.B.M., G.K. Agrawal, N. Alam, and M. Krishna Reddy. 2001. Electron microscopy and molecular characterization of phytoplasmas associated with little leaf disease of Brinjal (Solanum melongena L.) and Periwinkle (Catharanthus roseus) in Bangladesh. J. Phytopathology 149: 237-244.
Sugio, A., H.N. Kingdom, A.M. Maclean, V.M. Grieve, and S.A. Hogenhout. 2011a. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. USA. 108: 1254-1263.
Sugio, A., A.M. Maclean, H.N. Kingdom, V.M. Grieve, R. Manimekalai, and S.A. Hogenhout. 2011b. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu. Rev. Phytopathol. 49: 175-195.
Tran-Nguyen, L.T., M. Kube, B. Schneider, R. Reinhardt, and K.S. Gibb, 2008. Comparative Genome analysis of ‘Candidatus Phytoplasma australiense’ (subgroup tuf-AustraliaI; rp-A) and “ Ca. Phytoplasma asteris” Strain OY-M and AY-WB. J. Bacteriol. 190: 3979-3991.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔