|
References Bai, X., V.M. Correa, T.Y. Toruno, D. Ammar, S. Kamoun, and S.A. Hogenhou, 2009. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol. Plant Microbe Interact 22:18-30. Bai, X, J. Zhang, A. Ewing, SA. Miller, A. Jancso Radek, D.V. Shevchenko, K. Tsukerman, T. Walunas, A. Lapidus, J.W. Campbell, and S.A. Hogenhout, 2006. Living with genome instability: The adaptation of phytoplasmas to divers environments of their insect and plant hosts. J. Bacteriol. 188:3682-3696. Barbara, D.J., A. Morton, M.F. Clark, and D.L. Davies, 2002. Immunodominant yellows and clover phyllody are highly divergent in the major hydrophilic region. Microbiology-Sgm, 148:157-167. Bertaccini, A. 2007. Phytoplasma: diversity, taxonomy, and epidemiology. Front. Biosci 12:673-689. Causier, B., Z. Schwarz-Sommer, and B. Davies. 2010. Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 21: 73-79. Deszeaux, D., A.U. Singer, and J.L. Dangl, 2006. Type III effector proteins: Doppelgangers of bacterial virulence. Curr. Opin. Plant Biol. 9: 376-382. Fornara, F., A. De Montaigu, and G. Coupland. 2010. SnapShot: Control of flowering in Arabidopsis. Cell 141:550. Himeno, M., Y. Neriya, N. Minato, C. Miura, K. Sugawara, Y. Ishii, Y. Yamaji, S. Kakizawa, K. Oshima, and S. Namba. 2011. Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic gens in an organ-specific manner. Plant J. 67: 971-979. Hogenhout, S. A., K. Oshima, D. Ammar el, S. Kakizawa, H. N. Kingdom, and S. Namba. 2008. Phytoplasma: bacteria that manipulate plants and insects. Mol. Plant Pathol 9: 403-23. Hogenhout, S.A., M. Music, 2010. Phytoplasma genomics, from sequencing to comparative and functional genomics: what have we learnt? In Weintraub, P.G., Jones, P. 2010 Phytoplasmas. Genomes, Plant Host and Vectors. Wallingford, UK: CABI. Huang, Y.H. 2013. MiR396-mediated SVP gene expression in floral transition reprogramming and its involvement with phytoplasma effector SAP54. Master Thesis. Department of plant pathology and microbiology, National Taiwan university. Taipai, Taiwan. Kakizawa, S., K. Oshima, T. Kuboyama, H. Nishigawa, H. Jung, T. Sawayanagi, T. Tsuchizaki, S. Miyata, M. Ugaki, and S. Namba, 2001. Cloning and expression analysis of phytoplasma protein translocation genes. Mol. Plant-Microbe Interact. 14: 1043-1050. Kakizawa, S., K. Oshima, H. Nishigawa, H. Jung, W. Wei, S. Suzuki, M. Tanaka, S. Miyata, M. Ugaki, and S. Nanba, 2004. Secreation of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150: 135-142. Kube, M., B. Schneider., H. Kuhl, T. Dandekar, K. Heitmann, A.M. Migdoll, R. Reinhard, and E. Seemuller, 2008. The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics 26:306. Lee, I.M., R.E. Davis, and D.E. Gundersen-Rindal. 2000. Phytoplasma: phytopathogenic mollicutes. Annu. Rev. Microbiol. 54: 221-55. Lewsey, M., F.C. Robertson, T. Canto, P. Palukaitis, and J.P. Carr. 2007. Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J. 50: 240-252. Litt, A., E.M. Kramer. 2010. The ABC model and the diversification of floral organ identity. Semin. Cell Dev. Biol. 21: 129-137. Liu, C., W. Xi, L. Shen, C. Tan, and H. Yu. 2009. Regulation of floral patterning by flowering time genes. Dev. Cell 16: 711-722. MacLean, S.A., O.V. Makarova, K.C. Findlay, V.M. Grive, R. Toth, M. Nicolaisen, and S. A. Hogenhout. 2011. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in arabidopsis plants. Plant Physiology 157: 831. MacLean, A.M., O. Zigmunds, K. Krissana, M.Z. Anna, C.A. Gerco, G.H. Richard, S.A. Immink, and A.H. Saskia. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-Dependent manner. PLOS Bio. 12:1-14. Nielsen, H., J. Engelbrecht, S. Brunak, G. von Heijne, 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10:1-6. Oshima, K, S. Kakizawa, H. Nishigawa, H.Y. Jung, W. Wei, S. Suzuki, R. Arashida, D. Nakata, S. Miyata, M. Ugaki, and S. Namba, 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. NDat. Genet. 36:27-29. Siddique, A.B.M., G.K. Agrawal, N. Alam, and M. Krishna Reddy. 2001. Electron microscopy and molecular characterization of phytoplasmas associated with little leaf disease of Brinjal (Solanum melongena L.) and Periwinkle (Catharanthus roseus) in Bangladesh. J. Phytopathology 149: 237-244. Sugio, A., H.N. Kingdom, A.M. Maclean, V.M. Grieve, and S.A. Hogenhout. 2011a. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. USA. 108: 1254-1263. Sugio, A., A.M. Maclean, H.N. Kingdom, V.M. Grieve, R. Manimekalai, and S.A. Hogenhout. 2011b. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu. Rev. Phytopathol. 49: 175-195. Tran-Nguyen, L.T., M. Kube, B. Schneider, R. Reinhardt, and K.S. Gibb, 2008. Comparative Genome analysis of ‘Candidatus Phytoplasma australiense’ (subgroup tuf-AustraliaI; rp-A) and “ Ca. Phytoplasma asteris” Strain OY-M and AY-WB. J. Bacteriol. 190: 3979-3991.
|