(3.231.29.122) 您好!臺灣時間:2021/02/26 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:姚靜樺
研究生(外文):Jing-Hua Yao
論文名稱:選拔耐高溫淹水花椰菜及其相關形態與生理指標
論文名稱(外文):Selecting Heat- and Flooding-tolerant Cauliflower (Brassica oleracea L. var. botrytis L.) and Related Morphological and Physiological Index
指導教授:羅筱鳳
指導教授(外文):Hsiao-Feng Lo
口試委員:楊雯如林淑怡
口試委員(外文):Wen-Ju Yang.Shu-I Lin.
口試日期:2014-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:91
中文關鍵詞:細胞膜相對熱傷害抗壞血酸過氧化&;#37238;葉綠素 a/b總過氧化物
外文關鍵詞:cell membrane thermostabilityascorbate peroxidasechlorophyll a/btotal peroxidase
相關次數:
  • 被引用被引用:3
  • 點閱點閱:261
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
花椰菜(Brassica oleracea L. var. botrytis L.)為臺灣重要蔬菜,但夏季颱風豪雨常造成產量損失,加速育成夏作耐淹水品種可改善此問題。本研究依據花椰菜20 個品種/系於夏季淹水2 天後之產量,篩選''1702''、''1705''及''嬌雪''為耐高溫淹水品種,其直立葉片數最多、淹水影響指數最低;''1856''、''1858''及''1867''為高溫下不耐淹水之品種,直立葉片數最少、淹水影響指數最低。各材料28 天齡苗以50℃熱處理,''1702''、''1705''及''嬌雪''之細胞膜相對熱傷害值較低,而''1856''、''1858''及''1867''較高。苗株以35/30℃淹水24 小時,''1702''、''1705''及''嬌雪''之抗壞血酸過氧化&;#37238;(ascorbate
peroxidase, APX)活性上升較快,且於排水恢復48 小時皆能維持APX 高活性,而''1856''、''1858''及''1867''之APX 活性低且上升較慢。以35/30℃淹水處理24及48小時,''1702''、''1705''及''嬌雪''之葉綠素a/b 比值顯著較''1856''、''1858''及''1867''高,總過氧化物含量較之低。苗株於35/30℃淹水10 天,''1702''、''1705''及''嬌雪''之地上部相對鮮重皆比''1856''、''1858''及''1867''高。綜上,花椰菜28 天齡苗之葉片細胞膜相對熱傷害值,苗株於35/30℃淹水24 小時之葉片APX 活性、葉綠素a/b、總過氧化物含量、淹水10 天後之地上部鮮重,以及成株之直立葉片數與淹水影響指數,可做為篩選夏作耐淹水花椰菜之生理指標,或可縮短育種時間。

Cauliflower (Brassica oleracea L. var. botrytis L.) is an important vegetable in Taiwan. Typhoons and heavy rains often occur in summer, and result in the loss of cauliflower yield. Breeding cultivars tolerant to flooding at high temperature might improve cauliflower yield in summer. In this research, 20 cultivars/lines of cauliflower
were evaluated according to summer yield after 2-day flooding treatment. ''1702'', ''1705'' and ''Charming Snow'' were heat- and flooding-tolerant with more erect leaves and lower
flooding-affected index. ''1856'', ''1858'' and ''1867'' were heat- and flooding-sensitive with less erect leaves and higher flooding-affected index. In 28-day seedling stage, leaf cell membrane thermostability at 50℃ in ''1702'', ''1705'' and ''Charming Snow'' were lower,
while that in ''1856'', ''1858'' and ''1867'' was higher. After flooding for 24 h at 35/30℃, ascorbate peroxidese (APX) activity of ''1702'', ''1705'' and ''Charming Snow'' raised faster
and remained until draining for 48 h. On the contrary, APX activity of ''1856'', ''1858'' and ''1867'' were lower and also increased slower. At 24 h- and 48 h-flooding at 35/30℃,
''1702'', ''1705'' and ''Charming Snow'' seedlings with higher chlorophyll a/b showed lower total peroxide content. While ''1856'', ''1858'' and ''1867'' with lower chlorophyll a/b
exhibited higher total peroxide contents. On 10-day flooding at 35/30℃, ''1702'', ''1705'' and ''Charming Snow'' had higher relative shoot fresh weight than ''1856'', ''1858'' and
''1867''. In conclusion, leaf cell membrane thermostability at 50℃, leaf APX activity, chlorophyll a/b, total peroxide content after 24 h flooding, shoot fresh weight after 10-day flooding at 35/30℃ of 28-day seedling, erect leaf number and flooding-affected index of adult plant, might be used as physiological index for screening flooding tolerant cauliflower in summer to shorten breeding time.

口委審定書 I
誌謝 Ⅱ
中文摘要 Ⅲ
英文摘要 Ⅳ
第一章 前言 1
第二章 前人研究
一、花椰菜概述 2
二、高溫逆境對花椰菜花球發育之影響 4
三、淹水逆境對花椰菜花球發育之影響 5
四、耐高溫淹水之生理指標 5
第三章 材料與方法
一、花椰菜概述 13
二、花椰菜10自交系及10雜交品種試驗 14
三、花椰菜6雜交品種苗期高溫淹水試驗 18
四、統計分析 20
第四章 結果
一、花椰菜20自交系秋作試驗 21
二、花椰菜10自交系及10雜交品種試驗 21
三、花椰菜6雜交品種苗期高溫淹水試驗 27
第五章 討論 30
第六章 結論 36
參考文獻 37
表 47
表1. 花椰菜20自交系秋作試驗之葉數、地上部鮮重、球高、球徑與球重 47
表2. 花椰菜20品種/系秋作試驗之葉數、地上部鮮重、球重與球徑 48
表3. 夏作花椰菜20品種/系之園藝性狀 49
表4. 花椰菜20品種/系於夏季淹水試驗之相對SPAD值 50
表5. 花椰菜20品種/系於夏季淹水試驗之相對葉綠素螢光Fv/Fm 52
表6-1. 花椰菜20品種/系夏作無淹水處理之葉片數、莖長度、地上部鮮重、球重、結球率與產 54
表6-2. 花椰菜20品種/系夏作淹水處理之葉片數、莖長度、地上部鮮重、球重、結球率與產量 55
表7. 花椰菜20品種/系夏作淹水2天後之相對SPAD、相對Fv/Fm及淹水影響 56
表8. 花椰菜20品種/系4週苗以50℃水浴處理後之相對熱傷害值 57
表9. 花椰菜20品種/系苗株於25℃淹水、35℃及35℃淹水逆境處理下之地上部相對鮮重 58
表10. 花椰菜20品種/系苗株於25℃淹水、35℃及35℃淹水逆境處理下之地下部相對鮮重 59
表11. 花椰菜20個品種/系苗株於25℃淹水、35℃及35℃淹水逆境處理後之過氧化氫&;#37238;(catalase)相對活性 60
表12. 花椰菜20個品種/系苗株於25℃淹水、35℃及35℃淹水逆境處理後之抗壞血酸過氧化&;#37238;(ascorbate peroxidase)相對活性 61
表 13. 花椰菜6個品種於4週苗25℃淹水處理下之葉綠素a、葉綠素b及葉綠素a/b 62
表 14. 花椰菜6個品種4週苗於35℃處理下之葉綠素a、葉綠素b及葉綠素a/b值 63
表 15. 花椰菜6個品種4週苗於35℃淹水處理下之葉綠素、葉綠素b及葉綠素a/b值 64
表 16. 花椰菜6個品種於4週苗25℃淹水處理下之總過氧化物含(malondiadehyde)含量 65
表 17. 花椰菜6個品種於4週苗35℃處理下之總過氧化物含量及丙二醛(malondiadehyde)含量 66
表 18. 花椰菜6個品種於4週苗35℃淹水處理下之總過氧化物含量及丙二醛(malondiadehyde)含量 67
圖 68
圖1. 花椰菜20品種/系夏作與秋作之花球重 68
圖2. 花椰菜20品種/系夏作淹水與不淹水處理之產量 69
圖3. 花椰菜20品種/系成株直立葉片數與夏季淹水2天後產量間之相關性 70
圖4. 花椰菜20品種/系苗期相對熱傷害值和夏季淹水2天後產量間之相關性 71
圖5. 花椰菜20品種/系苗期35℃淹水5天後地上部相對鮮重與夏季淹水2天後產量間之相 72
圖6. 花椰菜20品種/系苗期35℃淹水10天後地上部相對鮮重與夏季淹水2天後產量間之相關性 73
圖7. 花椰菜20品種/系苗期35℃淹水5天後地下部相對鮮重與夏季淹水2天後產量間之相關性 74
圖8. 花椰菜20品種/系苗期35℃淹水10天後地下部相對鮮重與夏季淹水2天後產量間之相關性 75
圖9. 花椰菜20品種/系苗期35℃淹水24h後之過氧化氫&;#37238;相對活性與夏季淹水產量間之相關性 76
圖10. 花椰菜20品種/系苗期35℃淹水48 h後之過氧化氫&;#37238;相對活性與夏季淹水產量間之相關性 77
圖11. 花椰菜20品種/系苗期35℃淹水48 h後恢復48 h之過氧化氫&;#37238;相對活性與夏季淹水產量間之相關性 78
圖12. 花椰菜20品種/系苗期35℃淹水24 h後抗壞血酸過氧化&;#37238;相對活性與夏季淹水產量間之相關性 79
圖13. 花椰菜20品種/系苗期35℃淹水48 h後抗壞血酸過氧化&;#37238;相對活性與夏季淹水產量間之相關性 80
圖14. 花椰菜20品種/系苗期35℃淹水48 h後恢復48 h之抗壞血酸過氧化&;#37238;相對活性與夏季淹水產量間之相關性 81
圖15. 花椰菜6品種苗期35℃淹水24 h後葉綠素a/b與夏季淹水產量間之相關性 82
圖16. 花椰菜6品種苗期35℃淹水48 h後葉綠素a/b與夏季淹水產量間之相關性83
圖17. 花椰菜6品種苗期35℃淹水48 h後恢復48 h之葉綠素a/b與夏季淹水產量間之相關性 84
圖18. 花椰菜6品種苗期35℃淹水24 hr後總過氧化物含量與夏季淹水產量間之相關性 85
圖19. 花椰菜6品種苗期35℃淹水48 h後總過氧化物含量與夏季淹水產量間之相關性 86
圖20. 花椰菜6品種苗期35℃淹水48 h後恢復48 h之總過氧化物含量與夏季淹水產量間之相關性 87
圖21. 花椰菜6品種苗期35℃淹水24hr後丙二醛含量與夏季淹水產量間之相關性88
圖22. 花椰菜6品種苗期35℃淹水48 h後丙二醛含量與夏季淹水產量間之相關性89
圖23. 花椰菜6品種苗期35℃淹水48 hr後恢復48 hr之丙二醛含量與夏季淹水產量間之相關性 90
附圖 91
附圖1.花椰菜20品種/系夏作淹水試驗淹水影響指數(0~5) 91


石佩玉. 2011. 花椰菜對高溫淹水之生理反應. 國立臺灣大學園藝暨景觀學系研究所碩士論文. 76 pp.
行政院農委會. 2012. 農業災害-農作物被害狀況-花椰菜. p. 226. 刊於:行政院農委會編著. 農業統計年報101年. 行政院農委會編印. 臺北.
李伯年. 1987. 蔬菜育種與採種. 國立編譯館印行. p. 68-77.
李成&;#29756;、宋洪元、雷建軍、宋明、任雪松、向珣. 1998. 甘藍耐熱性鑒定研究. 西南農業大學學報 20:298-301. 
吳維岳、鄭亦平. 1857. 花椰菜栽培技術. p. 26-39. 花椰菜栽培. 科學技術出版社. 上海.
吳國勝、王永健、曹宛虹、姜亦巍、張&;#63880;蓉. 1995. 大白菜熱害發生規&;#63960;及耐熱性篩選方法的研究. 華&;#63843;農學報 1:111-115.
林楨祐、邱金春、陳甘澍. 2010. 芥藍耐熱選育之評鑑方向. 農業試驗所技術服務 80:10-12.
苗琛、利容千、王建波. 1994. 甘藍熱脅迫葉片細胞的超微結構研究. 植物學報. 36:730-732.
郁宗雄. 1992. 臺灣早生花椰菜的栽培要點. 刊於:農友種苗股份有限公司編輯. 郁宗雄先生著作選集第二集. 郁維強、郁維珍刊印. 高雄.
高景輝. 2002. 淹水逆境. 中華農藝學報12:185~198.
陳添來. 1995. 花菜類栽培現況與展望. 臺灣蔬菜產業改進研討會專輯. 臺中區農業改良場編印. p. 167-176.
陳甘澍、林照能. 2005. 花椰菜. p. 445-450. 刊於:臺灣農家要覽增修訂三版策劃委員會編著. 臺灣農家要覽 農作篇(二). 財團法人豐年社. 臺北.
陳葦&;#63917;、郭孚燿、陳榮五. 2008. 淹水逆境對於&;#63847;同栽培品種小白菜種子發芽及植株生長之影響. 臺中區農業改&;#63868;場研究彙報. 100:1-12.
陳美蘭. 2010. 青花菜AV531耐熱特性之探討. 國立臺灣大學園藝學系碩士論文. 臺北. 113pp.
陳葦伶. 2012. 作物耐熱性篩選指標之建立. 臺中區農業改&;#63868;場一○一&;#63886;專題討&;#63809;專集. p. 217-220.
陳葦&;#63917;、蕭政弘、蕭瑞展. 2013. 高溫逆境下青花菜之生&;#63972;、組織結構變化及開花表現之研究. 臺中區農業改良場研究彙報 121: 9-24.
曹幸之、羅筱鳳. 2001. 花椰菜. p. 127-134. 蔬菜(Ⅱ). 復文書局. 臺南.
張連宗. 1998. 臺灣十字花科蔬菜品種改良. 十字花科蔬菜產業發展研討會專刊. 桃園區農業改良場編印. p. 35-53.
廖公益. 1993. 臺灣之花椰菜. 臺灣蔬菜演進四十年專刊. 農業試驗所出版. p. 202-211.
廖飛雄、潘瑞&;#28861;. 2001. 熱脅迫下菜心脯胺酸含量變化及其在耐熱中的作用. 華南師範大學學報 2:45-49.
韓笑冰、&;#63965;容千、王建波. 1997. 熱脅迫下&;#63760;蔔&;#63847;同耐熱性品種細胞組織結構比較. 武漢植物學研究 15:173-178.
蔣永正、蔣慕琰. 2004. 植物抗氧化系統與除草劑之氧化性毒害. 行政院農業委員會農業藥物毒物試驗所專題報導. 行政院農委會農業藥物毒物試驗所編印. p.1-12.
劉林艷、呂長平、成明亮、莫寧婕. 2008. 植物耐濕性研究發展. 黑龍江農業科學 2:135-138.
羅志平. 2006. 小白菜經植物生長物質前處理對淹水逆境之反應. 國立臺灣大學園藝暨景觀學系研究所碩士論文. 110pp.
謝明憲、&;#63943;依昌、許涵鈞、&;#63988;棟樑、王仕. 2008. 十字花科蔬菜耐熱育種及採種. 2008. 農業生技產業應用研討會. p.67-78.
謝明芳. 2011. 結球白菜高溫淹水耐受性之篩選及生理反應. 國立臺灣大學園藝暨景觀學系研究所碩士論文. 100pp.
Ahmed, S., E. Nawata, M. Hosokawa, Y. Domae, and T. Sakuratani. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163:117-123.
Alscher, R.G., N. Erturk, and L.S. Heath. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plant. J. Expt. Bot. 53:1331-1341.
Anton, J.M., C.H. Marjolein, J.B., A.M. Robert, B. Jordi, and A.C.Laurentius. 2002. Submergence research using Rumex palustris as a model; Looking back and going forward. J. Exp. Bot. 53:391-398.
Barrs, H.D. and P.E. Weatherley. 1962. A re-examination of leaves. Aust. J. Biol. Sci. 15:413-428.
Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp.
Bot. 55:1607-1621.
Bowler, C., M.V. Montagu, and D. Inze. 1992. Superoxide dismutases and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116.
Bj&;ouml;rkman, O. and B. Demming. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504.
Chauhan, Y.S. and T. Senboku. 1996. Thermostabilities of cell membrane and photosynthesis in cabbage cultivars differing in heat tolerance. J. Plant Physiol. 149:729-734.
Camejo, D., P. Rodriguez, M. A. Morales, J. M. D. Amico, A. Torrecillas, and J. J. Alarc&;oacute;n. 2005. High temperature effect on photosynthesis activity of two tomato
cultivars with different heat susceptibility. J. Plant Physiol. 162: 281-289.
Colom, M. R. and C. Vazzana. 2003. Photosynthesis and PSⅡ functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Env. Exp. Bot. 49:135-144.
Dixon G.R. 2007. Origins and diversity of Brassica and its relatives, p. 1-33. In: G.R. Dixon (ed.). Vegetable Brassica and related curcifers. CAB International, London.
Rahman, H. U., P. Hadley, and S. Pearson. 2007. Relationship between temperature and cauliflower (Brassica oleracea L. var. botrytis) growth and development after curd initiation. Plant Growth Requl 52:61-72.
FAOSTAT. 2012. Food and Agriculture Commodities Production: Cauliflowers and Broccoli. Italy. 01 July, 2012. <http://faostat.fao.org/site/339/default.aspx>.
Fujime, Y. 1983. Studies on thermal conditions of curd formation and development in cauliflower and broccoli, with special reference to abnormal curd development. In: Memoirs of The Faculty of Agriculture Kagkwa University, No. 40. MiKi-tyo, Kagawaken, Japan. p.117-123.
Fujime, Y. and N. Okuda. 1996. The physiology of flowering in Brassicas, especially about cauliflower and broccoli. Acta Hort. 407:247-254.
Gulias, J., J. Flexas, A.Abadia, and H. Medrano. 2002. Photosynthetic response to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, an endemic Balearic species. Tree Physiol. 22:687-697.
Halliwell, B. and J.M.C. Gutteridge. 1989. Free radicals in biology and medicine. 2nd Ed. Oxford university press, New York.
Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplast: I-kinetics and biochemistry of fatty acid peroxidation. Archs Biochem. Biophys. 125:189-198.
Huang, B., J. W. Johnson, S. Nesmith, and D. C. Bridges. 1994. Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J. Exp. Bot. 45:193-202.
Ismail, A.M. and A.E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762-1768.
Kautsky, H. and A. Hirsch. 1934. Chlorophyll fluoreszenz and Kohlensaureassimililation I. Das Flureszenzverhalten gruner Pflanzen Biochem. Zeitchrift. 274:423-434.
Issarakraisila, M., Q. Ma, and D.W. Turner. 2007. Photosynthetic and growth respoaes of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachineais) to waterlogging and water deficit. Scientific Hort. 111:107-113.
Kato, M. and S. Shimizu. 1987. Chlorophyll metabolism in higher plants. VⅡ. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Can. J. Bot. 65:729-735.
Kele&;#351;, Y. and I. Oncel. 2002. Respoae of antioxidative defence system to temperature and water stress combinatioa in wheat seedlings. Plant Sci. 163:783-790.
Kooten, O. and J.H.F. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosyn. Res. 25:147-150.
Kuo, C.G. and J.S. Tsay. 1981. Physiological responses of Chinese cabbage under high temperature. p. 217-224. In: Talekar, N.S. and Griggs, T.D. (eds). Chinese cabbage, Proc. 1st Intl. Symp. Asian Vegetable Research and Development Center. Shanhua, Taiwan.
Leshem, Y. Y. 1988. Plant senescence processes and free radicals. Free Rad. Biol. Med. 5:39-49.
Leul, M. and W. J. Zhou. 1999. Alleviation of waterlogging damage in winter rape by uniconazole application: effect on enzyme activity, lipid peroxidation, and membrane integrity. J. Plant Growth Regul. 18:9-14.
Liu, X. and B. Huang. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40: 503-510.
Lichtenthaler, HK and AR Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Soc. Trans. 11:591-592.
Lin, K.H., H.C. Huang, and C.Y. Lin. 2010. Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant Cell Rpt. 29:575-593.
Liu, W.X. and S.C. Cao. 1992. Influences of high temperature on cell membrane permeability, peroxidase activity and other biochemical indices in non-heading Chinese cabbage. J. Nanjing Agr. Univ. 15:115-117.
Lu, C.M. and J.H. Zhang. 1999. Heat-induced multiple effects on PSⅡ in wheat plants. J. Plant Physiol. 156:259-265.
Marcum, K.B. 1997. Cell membrane thermostability and whole-plant heat tolerance of Kentucky bluegrass. Crop Sci. 38:1214-1218.
Martineau, J.R., J.E. Specht, J.H. Williams, and C.Y. Sullivan. 1979. Temperature tolerance in soybeans. I. Educaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78.
Meng, H.W., Y.F. Zhang, Z.H. Cheng, J. Su, and H.W. Cui. 2000. The physiological reaction to heat stress and screening of heat tolerance index in cucumber. Acta Agri. Sinica 9:96-99.
Mohanty, N., J. Vass, and S. Demeter. 1989. Impairment of photosystemⅡ activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zine ions. Physiol. Plant. 76:386-390.
NaKano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880.
Nestle M. 1998. Broccoli sprouts in cancer prevention. Nutr. Rev. 56:127-130.
Nowbuth R.D. and S. Pearson. 1998. The effect of temperature and shade on curd initiation in temperature and tropical cauliflower. Acta Hort. 459:79-86.
Nyarko, G., P.G. Alderson, J. Craigon, E. Murchie, and D.L. Sparkers. 2008. Comparison of cell membrane thermostability and chlorophyll fluorescence parameters for the determination of heat tolerance in ten cabbage lines. J. Hort. Sci. Biotechnol. 83:678-682.
Porra, R.J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosyn. Res. 73: 149-156.
Raison, J.K., and R.G. Hiller. 1980. The fluidity of chloroplast thylakoid membranes and their constituent lipids: A comparative study by ESR. Biochim. Biophys. Acta. 559:63-72.
Rahman, H.U., P. Hadley, S. Pearson, and M.D. Dennett. 2007. Effect of incidient radiation integral on cauliflower growth and development after curd initiation. Plant Growth Regulat. 51:41-52.
Rusting, R.L. 1992. Trends in biology: Why do we age? Sci. Amer. 267:131-141.
Smiroff, N. 1995. Antioxdant systems and plant response to the environment. In N. Smirnoff (ed.) Environment and plant metabolisms: Flexibility and acclimation. Bios Scientific Publ, UK. p. 217-243.
Szabados, L. and A. Savoure. 2009. Proline: a multifunctional amino acid. Trends Plant Sci. 15:89-97.
Taiz, L. and E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Associates, Inc., Sunderland, MA. Wang, B.L., M. Xu, Q.H. Shi, and J.S. Cao. 2004. Effects of high temperature stress on antioxidant systems, chlorophyll and chlorophyll fluorescence parameters in early cauliflower leaves. Scientia Agr. Sinica 37:1245-1250.
Ushimaru, T., M. Shibasaka, and H. Tsuji. 1992. Development of the O2‧- detoxification system during adaptation to air of submerged rice seedlings. Plant Cell Physiol. 33:1065-1071.
Wang, B.L., M. Xu, Q.H. Shi, and J. S. Cao. 2004. Effects of high temperature stress on antioxidant systems, chlorophyll and chlorophyll fluorescence parameters in early cauliflower leaves. Scientia Agr. Sinica 37:1245-1250.
Welker, O.A. and S, Furuya. 1994. Influence of heat stress on growth and leaf epicuticular structure of cabbages. J. Agron. Crop Sci. 174:53-62.
Webb, J.A. and R.A. Fletcher. 1996. Paclobutrazol protects wheat seedlings from injury due to waterlogging. Plant Growth Regulat. 18:201-206.
Willits, D.H. and M.M. Peet. 2001. Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: Laboratory and greenhouse comparisons. J. Amer. Soc. Hort. Sci. 126:188-194.
Wurr, D.C.E., J.R. Fellows, K. Phelps, and R.J. Reader. 1993. Vernalization in summer/autumn cauliflower (Brassica oleracea L. botrytis L.). J. Exp. Bot. 44:1507-1514.
Wurr D.C.E., J.R. Fellows, K. Phelps, and R.J. Reader. 1993. Vernalization in summer/autumn cauliflower (Brassica oleracea var. botrytis L.). J. Exp. Bot. 44: 1507-1514.
Wurr, D.C.E., J.R. Fellows, and K. Phelps. 1996. Investigating trends in vegetable crop response to increasing temperature associated with climate change. Scientia Hort. 66:225-263.
Yan, B., Q. Dai, X. Liu, S. Huang, and Z. Wang. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil. 179:261-268.
Yao, Y.G., X.H. Shi, J.G. Yang, and S.Y. Wang. 2000. Relations of the permeability of plasma membrane of leaves and the contents of several biochemical matter to heat tolerance of pepper. J. Hunan Agr. Univ. 26:97-99.
Ye, C.L., Y.Q. Ke, and W. Chen. 1997. A study on the physiology of heat tolerance in Chinese cabbage Ⅲ. Ability to scavenge active oxygen of emzyme and nonemzyme system and heat tolerance. J. Fujian Agri. Univ. 26:498-501.
Yeh, D.M. and H.F. Lin. 2003. Thermostability of cell membrane as a measure of heat tolerance and relationshop to flowering delay in chrysanthemum. J. Amer. Soc. Hort. Sci. 128:656-660.
Yin, X.G., Q.X. Luo, W.Q. Wang, Y. Zhang, G.H. Pan, Q.F. Yang, and S.L. Yin. 2001. Studies on method for identification of heat tolerance of tomato. Southwest China J. Agr. Sci. 14:62-65.
Yin H., Q. Chen, and M. Yi. 2008. Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorim. Plant Growth Regul. 54:45-54.
Yordanov, R.Y. and L.P. Popova. 2007. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol. Plant. 29:535-541.
Zeng, C.,D. Jiang, F. Liu, T.Dia, Q. Jing, and W. Cao. 2009. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci. 176:575-582.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔