|
Airaksinen, M. S. and Saarma, M. (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci, 3, 383-394. Airaksinen, M. S., Titievsky, A. and Saarma, M. (1999). GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci, 13, 313-325. Arighi, E., Borrello, M. G. and Sariola, H. (2005). RET tyrosine kinase signaling in development and cancer. Cytokine &; Growth Factor Reviews, 16, 441-467. Bassett, E. A., Korol, A., Deschamps, P. A., Buettner, R., Wallace, V. A., Williams, T. and West-Mays, J. A. (2012). Overlapping expression patterns and redundant roles for AP-2 transcription factors in the developing mammalian retina. Dev Dyn, 241, 814-829. Baudet, C., Pozas, E., Adameyko, I., Andersson, E., Ericson, J. and Ernfors, P. (2008). Retrograde signaling onto Ret during motor nerve terminal maturation. J Neurosci, 28, 963-975. Brantley, M. A., Jr., Jain, S., Barr, E. E., Johnson, E. M., Jr. and Milbrandt, J. (2008). Neurturin-mediated ret activation is required for retinal function. J Neurosci, 28, 4123-4135. Carniti, C., Belluco, S., Riccardi, E., Cranston, A. N., Mondellini, P., Ponder, B. A., Scanziani, E., Pierotti, M. A. and Bongarzone, I. (2006). The Ret(C620R) mutation affects renal and enteric development in a mouse model of Hirschsprung''s disease. Am J Pathol, 168, 1262-1275. Chen, X., Nelson, C. D., Li, X., Winters, C. A., Azzam, R., Sousa, A. A., Leapman, R. D., Gainer, H., Sheng, M. and Reese, T. S. (2011). PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci, 31, 6329-6338. Chien, C. L. and Liem, R. K. (1995). The neuronal intermediate filament, alpha-internexin is transiently expressed in amacrine cells in the developing mouse retina. Exp Eye Res, 61, 749-756. Clark, M. E. and Kraft, T. W. (2012). Measuring rodent electroretinograms to assess retinal function. Methods Mol Biol, 884, 265-276. Cuenca, N., Pinilla, I., Sauve, Y. and Lund, R. (2005). Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats. Eur J Neurosci, 22, 1057-1072. Demb, J. B. and Singer, J. H. (2012). Intrinsic properties and functional circuitry of the AII amacrine cell. Vis Neurosci, 29, 51-60. Dorval, K. M., Bobechko, B. P., Fujieda, H., Chen, S., Zack, D. J. and Bremner, R. (2006). CHX10 targets a subset of photoreceptor genes. J Biol Chem, 281, 744-751. Druillennec, S., Dorard, C. and Eychene, A. (2012). Alternative splicing in oncogenic kinases: from physiological functions to cancer. J Nucleic Acids, 2012, 639062. Fisher, S. K., Lewis, G. P., Linberg, K. A. and Verardo, M. R. (2005). Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Prog Retin Eye Res, 24, 395-431. Fontana, X., Hristova, M., Da Costa, C., Patodia, S., Thei, L., Makwana, M., Spencer-Dene, B., Latouche, M., Mirsky, R., Jessen, K. R., Klein, R., Raivich, G. and Behrens, A. (2012). c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol, 198, 127-141. Frasson, M., Picaud, S., Leveillard, T., Simonutti, M., Mohand-Said, S., Dreyfus, H., Hicks, D. and Sabel, J. (1999). Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci, 40, 2724-2734. Gargini, C., Terzibasi, E., Mazzoni, F. and Strettoi, E. (2007). Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J Comp Neurol, 500, 222-238. Goetze, B., Schmidt, K. F., Lehmann, K., Altrock, W. D., Gundelfinger, E. D. and Lowel, S. (2010). Vision and visual cortical maps in mice with a photoreceptor synaptopathy: reduced but robust visual capabilities in the absence of synaptic ribbons. Neuroimage, 49, 1622-1631. Greferath, U., Grunert, U. and Wassle, H. (1990). Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol, 301, 433-442. Grondin, R. and Gash, D. M. (1998). Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson''s disease. J Neurol, 245, P35-42. Hammang, J. P., Behringer, R. R., Baetge, E. E., Palmiter, R. D., Brinster, R. L. and Messing, A. (1993). Oncogene expression in retinal horizontal cells of transgenic mice results in a cascade of neurodegeneration. Neuron, 10, 1197-1209. Hansford, J. R. and Mulligan, L. M. (2000). Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J Med Genet, 37, 817-827. Hauck, S. M., Kinkl, N., Deeg, C. A., Swiatek-de Lange, M., Schoffmann, S. and Ueffing, M. (2006). GDNF family ligands trigger indirect neuroprotective signaling in retinal glial cells. Mol Cell Biol, 26, 2746-2757. Hayashi, H., Ichihara, M., Iwashita, T., Murakami, H., Shimono, Y., Kawai, K., Kurokawa, K., Murakumo, Y., Imai, T., Funahashi, H., Nakao, A. and Takahashi, M. (2000). Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene, 19, 4469-4475. Jain, S., Golden, J. P., Wozniak, D., Pehek, E., Johnson, E. M., Jr. and Milbrandt, J. (2006). RET is dispensable for maintenance of midbrain dopaminergic neurons in adult mice. J Neurosci, 26, 11230-11238. Jijiwa, M., Fukuda, T., Kawai, K., Nakamura, A., Kurokawa, K., Murakumo, Y., Ichihara, M. and Takahashi, M. (2004). A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol Cell Biol, 24, 8026-8036. Jomary, C., Darrow, R. M., Wong, P., Organisciak, D. T. and Jones, S. E. (2004). Expression of neurturin, glial cell line-derived neurotrophic factor, and their receptor components in light-induced retinal degeneration. Invest Ophthalmol Vis Sci, 45, 1240-1246. Jomary, C., Thomas, M., Grist, J., Milbrandt, J., Neal, M. J. and Jones, S. E. (1999). Expression patterns of neurturin and its receptor components in developing and degenerative mouse retina. Invest Ophthalmol Vis Sci, 40, 568-574. Jones, B. W., Kondo, M., Terasaki, H., Lin, Y., McCall, M. and Marc, R. E. (2012). Retinal remodeling. Jpn J Ophthalmol, 56, 289-306. Kaneda, M. (2013). Signal processing in the mammalian retina. J Nippon Med Sch, 80, 16-24. Keeley, P. W., Luna, G., Fariss, R. N., Skyles, K. A., Madsen, N. R., Raven, M. A., Poche, R. A., Swindell, E. C., Jamrich, M., Oh, E. C., Swaroop, A., Fisher, S. K. and Reese, B. E. (2013). Development and plasticity of outer retinal circuitry following genetic removal of horizontal cells. J Neurosci, 33, 17847-17862. Keller-Peck, C. R., Feng, G., Sanes, J. R., Yan, Q., Lichtman, J. W. and Snider, W. D. (2001). Glial cell line-derived neurotrophic factor administration in postnatal life results in motor unit enlargement and continuous synaptic remodeling at the neuromuscular junction. J Neurosci, 21, 6136-6146. Koulen, P., Fletcher, E. L., Craven, S. E., Bredt, D. S. and Wassle, H. (1998). Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina. J Neurosci, 18, 10136-10149. Koyasu, T., Kondo, M., Miyata, K., Ueno, S., Miyata, T., Nishizawa, Y. and Terasaki, H. (2008). Photopic electroretinograms of mGluR6-deficient mice. Curr Eye Res, 33, 91-99. Kramer, E. R., Knott, L., Su, F., Dessaud, E., Krull, C. E., Helmbacher, F. and Klein, R. (2006). Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor-axon pathway selection in the limb. Neuron, 50, 35-47. Kretz, A., Jacob, A. M., Tausch, S., Straten, G. and Isenmann, S. (2006). Regulation of GDNF and its receptor components GFR-alpha1, -alpha2 and Ret during development and in the mature retino-collicular pathway. Brain Res, 1090, 1-14. Li, X., Glubrecht, D. D. and Godbout, R. (2010). AP2 transcription factor induces apoptosis in retinoblastoma cells. Genes Chromosomes Cancer, 49, 819-830. Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S. and Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 260, 1130-1132. Lu, B. and Je, H. S. (2003). Neurotrophic regulation of the development and function of the neuromuscular synapses. J Neurocytol, 32, 931-941. MacNeil, M. A. and Masland, R. H. (1998). Extreme diversity among amacrine cells: implications for function. Neuron, 20, 971-982. Masland, R. H. (2012). The neuronal organization of the retina. Neuron, 76, 266-280. McBride, J. L. and Kordower, J. H. (2002). Neuroprotection for Parkinson''s disease using viral vector-mediated delivery of GDNF. Prog Brain Res, 138, 421-432. Miura, G., Wang, M. H., Ivers, K. M. and Frishman, L. J. (2009). Retinal pathway origins of the pattern ERG of the mouse. Exp Eye Res, 89, 49-62. Mograbi, B., Bocciardi, R., Bourget, I., Busca, R., Rochet, N., Farahi-Far, D., Juhel, T. and Rossi, B. (2001). Glial cell line-derived neurotrophic factor-stimulated phosphatidylinositol 3-kinase and Akt activities exert opposing effects on the ERK pathway: importance for the rescue of neuroectodermic cells. J Biol Chem, 276, 45307-45319. Nag, T. C. and Wadhwa, S. (2001). Differential expression of syntaxin-1 and synaptophysin in the developing and adult human retina. J Biosci, 26, 179-191. Naughton, C. K., Jain, S., Strickland, A. M., Gupta, A. and Milbrandt, J. (2006). Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod, 74, 314-321. Ohnaka, M., Miki, K., Gong, Y. Y., Stevens, R., Iwase, T., Hackett, S. F. and Campochiaro, P. A. (2012). Long-term expression of glial cell line-derived neurotrophic factor slows, but does not stop retinal degeneration in a model of retinitis pigmentosa. J Neurochem, 122, 1047-1053. Oppenheim, R. W., Houenou, L. J., Parsadanian, A. S., Prevette, D., Snider, W. D. and Shen, L. (2000). Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: regulation of programmed cell death among motoneuron subtypes. J Neurosci, 20, 5001-5011. Ostenfeld, T., Tai, Y. T., Martin, P., Deglon, N., Aebischer, P. and Svendsen, C. N. (2002). Neurospheres modified to produce glial cell line-derived neurotrophic factor increase the survival of transplanted dopamine neurons. J Neurosci Res, 69, 955-965. Paratcha, G. and Ledda, F. (2008). GDNF and GFRalpha: a versatile molecular complex for developing neurons. Trends Neurosci, 31, 384-391. Pinto, L. H., Invergo, B., Shimomura, K., Takahashi, J. S. and Troy, J. B. (2007). Interpretation of the mouse electroretinogram. Doc Ophthalmol, 115, 127-136. Prasad, S. and Galetta, S. L. (2011). Anatomy and physiology of the afferent visual system. Handb Clin Neurol, 102, 3-19. Rowan, S. and Cepko, C. L. (2004). Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Dev Biol, 271, 388-402. Sakai, T., Wakizaka, A., Matsuda, H., Nirasawa, Y. and Itoh, Y. (1998). Point mutation in exon 12 of the receptor tyrosine kinase proto-oncogene RET in Ondine-Hirschsprung syndrome. Pediatrics, 101, 924-926. Salvatore, D., Barone, M. V., Salvatore, G., Melillo, R. M., Chiappetta, G., Mineo, A., Fenzi, G., Vecchio, G., Fusco, A. and Santoro, M. (2000). Tyrosines 1015 and 1062 are in vivo autophosphorylation sites in ret and ret-derived oncoproteins. J Clin Endocrinol Metab, 85, 3898-3907. Samuel, M. A., Zhang, Y., Meister, M. and Sanes, J. R. (2011). Age-related alterations in neurons of the mouse retina. J Neurosci, 31, 16033-16044. Shirato, S., Maeda, H., Miura, G. and Frishman, L. J. (2008). Postreceptoral contributions to the light-adapted ERG of mice lacking b-waves. Exp Eye Res, 86, 914-928. Sonntag, S., Dedek, K., Dorgau, B., Schultz, K., Schmidt, K. F., Cimiotti, K., Weiler, R., Lowel, S., Willecke, K. and Janssen-Bienhold, U. (2012). Ablation of retinal horizontal cells from adult mice leads to rod degeneration and remodeling in the outer retina. J Neurosci, 32, 10713-10724. Tanabe, K., Takahashi, Y., Sato, Y., Kawakami, K., Takeichi, M. and Nakagawa, S. (2006). Cadherin is required for dendritic morphogenesis and synaptic terminal organization of retinal horizontal cells. Development, 133, 4085-4096. Taylor, L., Arner, K., Engelsberg, K. and Ghosh, F. (2013). Effects of glial cell line-derived neurotrophic factor on the cultured adult full-thickness porcine retina. Curr Eye Res, 38, 503-515. Thoreson, W. B. and Mangel, S. C. (2012). Lateral interactions in the outer retina. Prog Retin Eye Res, 31, 407-441. Ueno, S., Nishiguchi, K. M., Tanioka, H., Enomoto, A., Yamanouchi, T., Kondo, M., Yasuma, T. R., Yasuda, S., Kuno, N., Takahashi, M. and Terasaki, H. (2013). Degeneration of Retinal ON Bipolar Cells Induced by Serum Including Autoantibody against TRPM1 in Mouse Model of Paraneoplastic Retinopathy. PLoS One, 8, e81507. Uesaka, T., Jain, S., Yonemura, S., Uchiyama, Y., Milbrandt, J. and Enomoto, H. (2007). Conditional ablation of GFRalpha1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung''s disease phenotype. Development, 134, 2171-2181. Voigt, T. (1986). Cholinergic amacrine cells in the rat retina. J Comp Neurol, 248, 19-35. Wang, C. Y., Yang, F., He, X. P., Je, H. S., Zhou, J. Z., Eckermann, K., Kawamura, D., Feng, L., Shen, L. and Lu, B. (2002). Regulation of neuromuscular synapse development by glial cell line-derived neurotrophic factor and neurturin. J Biol Chem, 277, 10614-10625. Wang, X. (2013). Structural studies of GDNF family ligands with their receptors-Insights into ligand recognition and activation of receptor tyrosine kinase RET. Biochim Biophys Acta, 1834, 2205-2212. Wells, S. A., Jr. and Santoro, M. (2009). Targeting the RET pathway in thyroid cancer. Clin Cancer Res, 15, 7119-7123. Yang, F., Feng, L., Zheng, F., Johnson, S. W., Du, J., Shen, L., Wu, C. P. and Lu, B. (2001). GDNF acutely modulates excitability and A-type K(+) channels in midbrain dopaminergic neurons. Nat Neurosci, 4, 1071-1078.
|