|
1.Kanter, G., N.R. Connelly, and J. Fitzgerald, A system and process redesign to improve perioperative antibiotic administration. Anesth Analg, 2006. 103(6): p. 1517-21. 2.葉碧芳, 實用傷口護理 = Practical wound care. 2003, 臺北市: 華杏. 3.Beanes, S.R., et al., Skin repair and scar formation: the central role of TGF-beta. Expert Rev Mol Med, 2003. 5(8): p. 1-22. 4.Broughton, G., 2nd, J.E. Janis, and C.E. Attinger, The basic science of wound healing. Plast Reconstr Surg, 2006. 117(7): p. 12S-34S. 5.Chen, R.N., et al., Development of N,O-(carboxymethyl)chitosan/collagen matrixes as a wound dressing. Biomacromolecules, 2006. 7(4): p. 1058-64. 6.Singer, A.J. and R.A. Clark, Cutaneous wound healing. N Engl J Med, 1999. 341(10): p. 738-46. 7.Ruszczak, Z. and R.A. Schwartz, Modern aspects of wound healing: An update. Dermatol Surg, 2000. 26(3): p. 219-29. 8.Kim, J.B., et al., Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol Pharm Bull, 2007. 30(12): p. 2345-51. 9.Bainbridge, P., Wound healing and the role of fibroblasts. J Wound Care, 2013. 22(8): p. 407-8, 410-12. 10.McDougall, S., et al., Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos Trans A Math Phys Eng Sci, 2006. 364(1843): p. 1385-405. 11.Darby, I.A. and T.D. Hewitson, Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol, 2007. 257(10): p. 143-79. 12.Steinbrech, D.S., et al., Fibroblast response to hypoxia: the relationship between angiogenesis and matrix regulation. J Surg Res, 1999. 84(2): p. 127-33. 13.Enoch, S. and D.J. Leaper, Basic science of wound healing. Surgery (Oxford), 2008. 26(2): p. 31-37. 14.Svensjo, T., et al., Cultured autologous fibroblasts augment epidermal repair. Transplantation, 2002. 73(7): p. 1033-41. 15.Lamme, E.N., et al., Allogeneic fibroblasts in dermal substitutes induce inflammation and scar formation. Wound Repair Regen, 2002. 10(3): p. 152-60. 16.Breitbart, A.S., et al., Accelerated diabetic wound healing using cultured dermal fibroblasts retrovirally transduced with the platelet-derived growth factor B gene. Ann Plast Surg, 2003. 51(4): p. 409-14. 17.Huang, C., K. Jacobson, and M.D. Schaller, MAP kinases and cell migration. J Cell Sci, 2004. 117(Pt 20): p. 4619-28. 18.Kyriakis, J.M. and J. Avruch, Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev, 2012. 92(2): p. 689-737. 19.Pearson, G., et al., Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 2001. 22(2): p. 153-83. 20.Schaeffer, H.J. and M.J. Weber, Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol, 1999. 19(4): p. 2435-44. 21.Ip, Y.T. and R.J. Davis, Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol, 1998. 10(2): p. 205-19. 22.Leppa, S. and D. Bohmann, Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene, 1999. 18(45): p. 6158-62. 23.Morgensztern, D. and H.L. McLeod, PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs, 2005. 16(8): p. 797-803. 24.Ward, S.G. and P. Finan, Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents. Curr Opin Pharmacol, 2003. 3(4): p. 426-34. 25.Medforth, C.J., R.S. Chang, and G.-Q. Chen, A conformational study of diterpenoid lactones isolated from the chinese medicinal herb andrographis paniculata. Perkin Trans, 1990. 2(1): p. 1011-1016. 26.Verma, N. and M. Vinayak, Antioxidant action of Andrographis paniculata on lymphoma. Mol Biol Rep, 2008. 35(4): p. 535-40. 27.Puri, A., et al., Immunostimulant agents from Andrographis paniculata. J Nat Prod, 1993. 56(7): p. 995-9. 28.Kumar, R.A., et al., Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol, 2004. 92(2-3): p. 291-5. 29.Nugroho, A.E., et al., Anti-diabetic effect of a combination of andrographolide-enriched extract of Andrographis paniculata (Burm f.) Nees and asiaticoside-enriched extract of Centella asiatica L. in high fructose-fat fed rats. Indian J Exp Biol, 2013. 51(12): p. 1101-8. 30.Zhang, Y.Z., J.Z. Tang, and Y.J. Zhang, [Study of Andrographis paniculata extracts on antiplatelet aggregation and release reaction and its mechanism]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 1994. 14(1): p. 28-30, 34, 5. 31.Jiang, C.G., et al., Andrographolide inhibits the adhesion of gastric cancer cells to endothelial cells by blocking E-selectin expression. Anticancer Res, 2007. 27(4b): p. 2439-47. 32.Lim, J.C., et al., Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer. Clin Exp Pharmacol Physiol, 2012. 39(3): p. 300-10. 33.Najib Nik, A.R.N., et al., Antimalarial activity of extracts of Malaysian medicinal plants. J Ethnopharmacol, 1999. 64(3): p. 249-54. 34.Yun, K.J., et al., Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation. J Agric Food Chem, 2008. 56(21): p. 10265-72. 35.Zaidan, M.R., et al., In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop Biomed, 2005. 22(2): p. 165-70. 36.Wiart, C., et al., Antiviral properties of ent-labdene diterpenes of Andrographis paniculata nees, inhibitors of herpes simplex virus type 1. Phytother Res, 2005. 19(12): p. 1069-70. 37.Thamlikitkul, V., et al., Efficacy of Andrographis paniculata, Nees for pharyngotonsillitis in adults. J Med Assoc Thai, 1991. 74(10): p. 437-42. 38.Iruretagoyena, M.I., et al., Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J Pharmacol Exp Ther, 2005. 312(1): p. 366-72. 39.Panossian, A., et al., Effect of Andrographis paniculata extract on progesterone in blood plasma of pregnant rats. Phytomedicine, 1999. 6(3): p. 157-61. 40.Handa, S.S. and A. Sharma, Hepatoprotective activity of andrographolide from Andrographis paniculata against carbontetrachloride. Indian J Med Res, 1990. 92(8): p. 276-83. 41.Woo, A.Y., et al., Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury. J Pharmacol Exp Ther, 2008. 325(1): p. 226-35. 42.Zhu, X.K., et al., Anti-AIDS agents. Part 61: Anti-HIV activity of new podophyllotoxin derivatives. Bioorg Med Chem, 2004. 12(15): p. 4267-73. 43.Uttekar, M.M., et al., Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur J Med Chem, 2012. 56(3): p. 368-74. 44.Akbarsha, M.A. and P. Murugaian, Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: effect on the testis and the cauda epididymidal spermatozoa. Phytother Res, 2000. 14(6): p. 432-5. 45.Jayakumar, T., et al., Experimental and Clinical Pharmacology of Andrographis paniculata and Its Major Bioactive Phytoconstituent Andrographolide. Evid Based Complement Alternat Med, 2013. 2013(2013) p. 846740. 46.Al-Bayaty, F.H., et al., Effect of Andrographis paniculata leaf extract on wound healing in rats. Nat Prod Res, 2012. 26(5): p. 423-9. 47.Castilho, R.M., C.H. Squarize, and J.S. Gutkind, Exploiting PI3K/mTOR signaling to accelerate epithelial wound healing. Oral Dis, 2013. 19(6): p. 551-8. 48.Jiang, Q., et al., EGF-induced cell migration is mediated by ERK and PI3K/AKT pathways in cultured human lens epithelial cells. J Ocul Pharmacol Ther, 2006. 22(2): p. 93-102. 49.Hough, C., M.R. , and J.J.E.D., TGF-Beta Induced Erk Phosphorylation of Smad Linker Region Regulates Smad Signaling. PLoS ONE, 2012. 7(8). p. 1-10 50.Chen, J.C., et al., NGF Accelerates Cutaneous Wound Healing by Promoting the Migration of Dermal Fibroblasts via the PI3K/Akt-Rac1-JNK and ERK Pathways. Biomed Res Int, 2014. 32(2) p. 547187. 51.Regan, M.C., et al., The wound environment as a regulator of fibroblast phenotype. J Surg Res, 1991. 50(5): p. 442-8. 52.Ehrlich, H.P. and T.M. Krummel, Regulation of wound healing from a connective tissue perspective. Wound Repair Regen, 1996. 4(2): p. 203-10. 53.Gabbiani, G., The myofibroblast in wound healing and fibrocontractive diseases. The Journal of pathology, 2003. 200(4): p. 500-503. 54.Pomerantz, R.J., et al., Lipopolysaccharide is a potent monocyte/macrophage-specific stimulator of human immunodeficiency virus type 1 expression. J Exp Med, 1990. 172(1): p. 253-61. 55.Li, W., et al., Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol, 2008. 76(11): p. 1485-9. 56.Zhang, B., et al., CHP1002, a novel andrographolide derivative, inhibits pro-inflammatory inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW264.7 macrophages via up-regulation of heme oxygenase-1 expression. Int Immunopharmacol, 2013. 15(2): p. 289-95.
|