(3.236.175.108) 您好!臺灣時間:2021/02/28 03:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:米洛許
研究生(外文):Milos Cernilovsky
論文名稱:個人本體論之塑模、建構與演進
論文名稱(外文):Personal Ontology: Modeling, Construction and Evolution
指導教授:李允中李允中引用關係
口試委員:劉立頌許永真歐陽明李信杰
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:87
中文關鍵詞:個人化本體論查詢擴充塑模建構演進視覺化編輯器
外文關鍵詞:personalontologyqueryextensionmodelingconstructionevolutionvisualizationeditor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Nowadays, personalization plays a crucial role in many software applications and in commercial advertisements. Different people have different views towards the world they perceive. By personalization, we can achieve a higher chance that people obtain the results they expect, which may further lead to improved user experience. Moreover, personalization also serves as an important basis for advertisements. Advertisement tailored to meet personal preference increases the likelihood that the target product or service attracts the attention of the target audiences, and therefore, may result in a higher product profit.
The goal of this thesis is to create a system that generates users’ Personal Ontologies based on their personal data, for example the history of their log queries and results selected after submitting these queries. These ontologies are used for refining users’ queries by keywords the users are interested in and that are semantically related to those queries. A graphical editor is also designed for viewing, editing and visualizing these ontologies. The visualization transforms the ontology into a graph. Multiple layout algorithms provided by Gephi [1] are supported. The editor can also be used for testing the query refinement.
This research is focused on three important aspects: ontology modeling, construction and evolution. Ontology modeling describes the model used in this approach and its notation. Ontology construction focuses on the way how the information is retrieved and saved in the ontology. Ontology evolution allows for changes in users’ preferences and reflects these changes in their ontologies.
The innovative approach to query refinement process is based on unique formulas, which use not only TF/IDF, but also employ time decay and word similarity metric so that the real meaning of the words contained in the ontology is taken into account. The thesis also shows strengths and abilities of the solution in several scenarios.

ACKNOWLEDGMENTS I
ABSTRACT II
LIST OF FIGURES VII
LIST OF TABLES X
LIST OF EQUATIONS XII
1 INTRODUCTION 1
1.1 PERSONAL ONTOLOGY 1
2 RELATED WORK 3
3 ONTOLOGY MODELING 5
3.1 OWL BASICS 6
3.1.1 Class 6
3.1.2 Individuals 7
3.1.3 Properties 8
3.2 PERSONAL ONTOLOGY MODEL 8
3.2.1 Document 9
3.2.2 Keyword 10
3.2.3 Keyword Instance 10
3.2.4 Ontology Info 11
3.2.5 Similarity 12
3.2.6 Stem 14
3.2.7 Overall Ontology model 16
4 ONTOLOGY CONSTRUCTION 18
4.1 INFORMATION RETRIEVAL 18
4.1.1 WSDL Parser 18
4.1.2 Tokenization 19
4.1.3 Stop words removal 21
4.1.4 Stemming 21
4.2 SIMILARITY CALCULATION 22
4.2.1 Values used in word similarity calculation 22
4.2.2 Hirst and St-Onge 23
4.2.3 Leacock-Chodorow 24
4.2.4 Resnick 24
4.2.5 Jiang-Conrath 25
4.2.6 Lin 25
4.2.7 Comparison of the similarity metrics 25
4.2.8 Similarity metric used in Personal Ontology 26
4.2.9 Normalized Leacock &; Chodorow 27
4.3 ONTOLOGY UPDATE 27
4.3.1 Local Transitive Frequency 29
5 ONTOLOGY EVOLUTION 30
5.1 TERM FREQUENCY / INVERSE DOCUMENT FREQUENCY (TF/IDF) 30
5.2 TIME DECAY 31
6 QUERY REFINEMENT 33
6.1 INFORMATION RETRIEVAL 33
6.2 KEYWORD RANKS CALCULATION 34
6.3 DOCUMENT SCORES CALCULATIONS 35
6.4 KEYWORD EXTRACTION 36
7 PERSONAL ONTOLOGY EDITOR 38
7.1 EDITOR TAB 38
7.2 VISUALIZATION TAB 39
7.3 QUERY REFINEMENT TAB 40
8 WHAT MAKES THE ONTOLOGY “PERSONAL”: SCENARIOS 42
8.1 HOW THE “PERSONALIZATION” IS ACHIEVED 42
8.2 PERSONALIZING SEARCH RESULTS 43
8.3 ONTOLOGY EVOLUTION 45
8.4 ADVANTAGES OF LOCAL TRANSITIVE FREQUENCY 49
9 DESIGN AND IMPLEMENTATION 53
9.1 REQUIREMENTS 53
9.1.1 Functional Requirements 53
9.1.2 Interface Requirements 63
9.2 SYSTEM ARCHITECTURE 67
9.3 DESIGN 68
9.3.1 Personal Ontology 68
9.3.2 Personal Ontology Editor 71
9.4 DESIGN ISSUES 71
9.5 REDESIGN 73
9.6 UNIT TESTING AND TEST COVERAGE 76
9.7 ANDROID VERSION 76
9.7.1 Porting to Android: Issues and Solutions 76
9.7.2 Optimizations 77
10 COMPARISON 80
11 CONCLUSION AND FUTURE WORKS 82
12 REFERENCES 84
13 APPENDIX A: PERSONAL ONTOLOGY API MANUAL 86

[1] M. Bastian, S. Heymann and M. Jacomy, "Gephi: an open source software for exploring and manipulating networks," in International AAAI Conference on Weblogs and Social Media, 2009.
[2] I.-E. e. a. Liao, "A personal ontology model for library recommendation system.," in Digital Libraries: Achievements, Challenges and Opportunities, Springer Berlin Heidelberg, 2006, pp. 173-182.
[3] V. e. a. Katifori, "OntoPIM: how to rely on a personal ontology for Personal Information Management," in Semantic Desktop Workshop, 2005.
[4] S. Calegari and G. Pasi, "Personal ontologies: Generation of user profiles based on the YAGO ontology," Information Processing and Management 49, pp. 640-658, 2013.
[5] S. Gauch and J. Chaffee, "Ontology-based personalized search and browsing," Web Intelligence and Agent Systems: An international journal 1, pp. 219-234, 2003.
[6] M. Golemati, A. Katifori, C. Vassilakis, G. Lepouras and C. Halatsis, "Creating an Ontology for the User Profile: Method and Applications," in Proceedings of the first RCIS conference, 2007.
[7] M. N. Huhns and L. M. Stevens, "Personal ontologies," Internet Computing, IEEE 3.5, pp. 85-87, 1999.
[8] C.-H. L. Lee, A. Liu and J.-S. Hung, "Service Quality Evaluation by Personal Ontology," Journal of Information Science and Engineering 25, pp. 1305-1319, 2009.
[9] I. B. Arpinar, R. Zhang, B. Aleman-Meza and A. Maduko, "Ontology-driven web services composition platform," Information Systems and E-Business Management 3.2, pp. 175-199, 2005.
[10] A. Antoniou and F. Van Harmelen, "Web ontology language: Owl," in Handbook on ontologies, Berlin, Springer Berlin Heidelberg, 2004, pp. 67-92.
[11] R. Socher, J. Bauer, C. D. Manning and A. Y. Ng, "Parsing With Compositional Vector Grammars," in Proceedings of ACL 2013.
[12] T. Pedersen, S. Patwardhan and J. Michelizzi, "WordNet::Similarity - Measuring the Relatedness of Concepts," in Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-04), San Jose, CA, 2004.
[13] A. Budanitsky and G. Hirst, "Semantic distance in WordNet: An experimental, application-oriented evaluation of five measures," in Workshop on WordNet and Other Lexical Resources, 2001.
[14] M. A. Finlayson, "Java Libraries for Accessing the Princeton Wordnet: Comparison and Evaluation," in Proceedings of the 7th Global Wordnet Conference, Tartu, Estonia, 2014.
[15] S.-Y. Kuo, "An Integrated Development Environment for Services Computing," 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔