|
[1] M. Abellanas, F. Hurtado, Sacrist an, C. Icking, L. Ma, R. Klein, E. Langetepe, and B. Palop, Voronoi diagram for services neighboring a high-way, Inf. Process. Lett., 86(5) (2003), pp. 283-288. [2] P. Agarwal and M. Sharir, Davenport-Schinzel Sequences and Their Geometric Applications, Cambridge University Press, 1995. [3] P. Agarwal, M. Sharir, and P. Shor, Sharp upper and lower bounds on the length of general davenport-schinzel sequences, Journal of Combinatorial Theory, Series A, 52(2) (1989), pp. 228-274. [4] O. Aichholzer, F. Aurenhammer, and B. Palop, Quickest paths, straight skeletons, and the city voronoi diagram, in Proceedings of the eighteenth annual symposium on Computational geometry, SCG ''02, New York, NY, USA, 2002, ACM, pp. 151-159. [5] G. Aloupis, J. Cardinal, S. Collette, F. Hurtado, S. Langerman, J. O''Rourke, and B. Palop, Highway hull revisited, Comput. Geom. Theory Appl., 43 (2010), pp. 115-130. [6] M. H. Alsuwaiyel and D. T. Lee, Finding an approximate minimum-link visibility path inside a simple polygon, Inf. Process. Lett., 55 (1995), pp. 75-79. [7] E. M. Arkin, J. S. B. Mitchell, and C. D. Piatko, Minimum-link watchman tours, Inf. Process. Lett., 86 (2003), pp. 203-207. [8] B. Aronov, E. Ezra, and M. Sharir, Small-size-nets for axis-parallel rectangles and boxes, in Proceedings of the Forty- rst Annual ACM Symposium on Theory of Computing, STOC ''09, New York, NY, USA, 2009, ACM, pp. 639-648. [9] D. Avis, T. Gum, and G. T. Toussaint, Visibility between two edges of a simple polygon, The Visual Computer, 2 (1986), pp. 342-357. [10] D. Avis and G. T. Toussaint, An optimal algorithm for determining the visibility of a polygon from an edge, IEEE Trans. Computers, 30 (1981), pp. 910-914. [11] S. W. Bae and K.-Y. Chwa, Shortest paths and voronoi diagrams with transportation networks under general distances, in Proceedings of the 16th International Conference on Algorithms and Computation, ISAAC''05, Berlin, Heidelberg, 2005, Springer-Verlag, pp. 1007-1018. [12] S. W. Bae, J.-H. Kim, and K.-Y. Chwa, Optimal construction of the city voronoi diagram, in Proceedings of the 17th international conference on Algorithms and Computation, ISAAC''06, Berlin, Heidelberg, 2006, Springer-Verlag, pp. 183-192. [13] M. Ben-Or, Lower bounds for algebraic computation trees, in Proceedings of STOC''83, 1983, pp. 80-86. [14] I. Bjorling-Sachs, Edge guards in rectilinear polygons, Computational Geometry, 11 (1998), pp. 111-123. [15] P. Bose and G. T. Toussaint, Geometric and computational aspects of manufacturing processes, Computers &; Graphics, 18 (1994), pp. 487-497. [16] H. Bronnimann and M. T. Goodrich, Almost optimal set covers in finite vc-dimension: (preliminary version), in Proceedings of the Tenth Annual Symposium on Computational Geometry, SCG ''94, New York, NY, USA, 1994, ACM, pp. 293-302. [17] J. Cardinal, S. Collette, F. Hurtado, S. Langerman, and B. Palop, Optimal location of transportation devices, Computational Geometry, 41 (2008), pp. 219-229. [18] S. Carlsson, H. Jonsson, and B. J. Nilsson, Finding the shortest watchman route in a simple polygon, Discrete &; Computational Geometry, 22 (1999), pp. 377-402. [19] T. M. Chan, Polynomial-time approximation schemes for packing and piercing fat objects, Journal of Algorithms, 46 (2003), pp. 178-189. [20] T. M. Chan and A.-A. Mahmood, Approximating the piercing number for unit-height rectangles., in CCCG, 2005, pp. 15-18. [21] B. Chazelle, Triangulating a simple polygon in linear time, Discrete &; Computational Geometry, 6(1) (1991), pp. 485-524. [22] B. Chazelle and L. J. Guibas, Visibility and intersection problems in plane geometry, Discrete &; Computational Geometry, 4 (1989), pp. 551-581. [23] D. Z. Chen, An optimal parallel algorithm for detecting weak visibility of a simple polygon, in Proceedings of the Eighth Annual Symposium on Computational Geometry, SCG ''92, New York, NY, USA, 1992, ACM, pp. 63-72. [24] L.-L. Chen, S.-Y. Chou, and T. C. Woo, Parting directions for mould and die design, Computer-Aided Design, 25(12) (1993), pp. 762-768. [25] W.-P. Chin and S. Ntafos, Optimum watchman routes, Information Processing Letters, 28 (1988), pp. 39-44. [26] W.-P. Chin and S. Ntafos, Shortest watchman routes in simple polygons, Discrete &; Computational Geometry, 6 (1991), pp. 9-31. [27] B.-S. Dai, M.-J. Kao, and D. T. Lee, Optimal time-convex hull under the Lp metrics, in Algorithms and Data Structures, vol. 8037 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2013, pp. 268-279. [28] H. Edelsbrunner, J. O''Rourke, and E. Welzl, Stationing guards in rectilinear art galleries, Computer Vision, Graphics, and Image Processing, 27 (1984), pp. 167-176. [29] S. Eidenbenz, Inapproximability results for guarding polygons without holes, ISAAC, (1998), pp. 427-436. [30] S. Eidenbenz, Approximation algorithms for terrain guarding, Inf. Process. Lett., 82 (2002), pp. 99-105. [31] S. Eidenbenz, C. Stamm, and P. Widmayer, Inapproximability results for guarding polygons and terrains, Algorithmica, 31 (2001), pp. 79-113. [32] H. A. ElGindy and D. Avis, A linear algorithm for computing the visibility polygon from a point, J. Algorithms, 2 (1981), pp. 186-197. [33] T. Feder and D. Greene, Optimal algorithms for approximate clustering, in Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ''88, New York, NY, USA, 1988, ACM, pp. 434-444. [34] R. Fowler, M. Paterson, and S. Tanimoto, Optimal packing and covering in the plane are np-complete, Inform. Process. Lett., 12(3) (1981), pp. 133-137. [35] M. Fu, A. Nee, and J. Fuh, The application of surface visibility and moldability to parting line generation, Computer-Aided Design, 34 (2002), pp. 469-480. [36] A. Gemsa, D. T. Lee, C.-H. Liu, and D. Wagner, Higher order city voronoi diagrams, in Algorithm Theory SWAT 2012, vol. 7357 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, pp. 59-70. [37] S. K. Ghosh, Computing the visibility polygon from a convex set and related problems, J. Algorithms, 12 (1991), pp. 75-95. [38] S. K. Ghosh, Approximation algorithms for art gallery problems in polygons, Discrete Applied Mathematics, 158(6) (2010), pp. 718-722. [39] T. F. Gonzalez, Covering a Set of Points in Multidimensional Space, Information Processing Letters, 40 (1991), pp. 181-188. [40] M. T. Goodrich, S. B. Shauck, and S. Guha, Parallel methods for visibility and shortest path problems in simple polygons (preliminary version), in Proceedings of the Sixth Annual Symposium on Computational Geometry, SCG ''90, New York, NY, USA, 1990, ACM, pp. 73-82. [41] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons, Algorithmica, 2 (1987), pp. 209-233. [42] L. Guibas, J. Hershberger, and J. Snoeyink, Compact interval trees: a data structure for convex hulls, in Proceedings of SODA''90, 1990, pp. 169-178. [43] U. I. Gupta, D. T. Lee, and J. Y.-T. Leung, E cient algorithms for interval graphs and circular-arc graphs, NETWORKS, 12 (1982), pp. 459-467. [44] E. Gyri, F. Hoffmann, K. Kriegel, and T. Shermer, Generalized guarding and partitioning for rectilinear polygons, Computational Geometry, 6 (1996), pp. 21-44. [45] S. Hart and M. Sharir, Nonlinearity of davenport-schinzel sequences and of generalized path compression schemes, Combinatorica, 6(2) (1986), pp. 151-177. [46] P. J. Heffernan and J. S. B. Mitchell, An optimal algorithm for computing visibility in the plane, WADS, (1991), pp. 437-448. [47] J. Hershberger, Finding the upper envelope of n line segments in o(n log n) time, Inform. Process. Lett., 33(4) (1989), pp. 169-174. [48] D. S. Hochbaum and W. Maass, Approximation schemes for covering and packing problems in image processing and vlsi, J. ACM, 32 (1985), pp. 130-136. [49] C. M. Hoffmann, Geometric and Solid Modeling: An Introduction, Morgan Kaufmann, 1989. [50] F. Hoffmann, On the rectilinear art gallery problem, in Automata, Languages and Programming, M. Paterson, ed., vol. 443 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1990, pp. 717-728. [51] F. Hoffmann, M. Kaufmann, and K. Kriegel, The art gallery theorem for polygons with holes, FOCS, (1991), pp. 39-48. [52] K. C. Hui, Geometric aspects of the mouldability of parts, Computer-Aided Design, 29 (1997), pp. 197-208. [53] K. C. Hui and S. T. Tan, Mould design with sweep operations a heuristic search approach, Computer-Aided Design, 24 (1992), pp. 81-91. [54] F. Hurtado, B. Palop, and V. Sacrist an, Diagramas de voronoi con distancias temporales, Actas de los VIII Encuentros de Geometra Computacional, 1999, pp. 279-288. in Spanish. [55] M. J. Katz and G. S. Roisman, On guarding the vertices of rectilinear domains, Computational Geometry, 39 (2008), pp. 219-228. [56] D. O. Kazmer, Injection Mold Design Engineering, Hanser Verlag, 2007. [57] M. Korman and T. Tokuyama, Optimal insertion of a segment highway in a city metric, in Proceedings of the 14th Annual International Conference on Computing and Combinatorics, COCOON ''08, Berlin, Heidelberg, 2008, Springer-Verlag, pp. 611-620. [58] D. T. Lee, On nding the convex hull of a simple polygon, International Journal of Computer and Information Sciences, 12(2) (1983), pp. 87-98. [59] D. T. Lee, Visibility of a simple polygon, Computer Vision, Graphics, and Image Processing, 2 (1983), pp. 186-197. [60] D. T. Lee, C.-S. Liao, and W.-B. Wang, Time-based voronoi diagram, in Proc. of International Symposium on Voronoi Diagrams in Science and Engineering, 2004, pp. 229-243. [61] D. T. Lee and A. K. Lin, Computational complexity of art gallery problems, IEEE Transactions on Information Theory, 32 (1986), pp. 276-282. [62] D. T. Lee and A. K. Lin, Computing the visibility polygon from an edge, Computer Vision, Graphics, and Image Processing, 34 (1986), pp. 1-19. [63] D. McCallum and D. Avis, A linear algorithm for nding the convex hull of a simple polygon, Inform. Process. Lett., 9(5) (1979). [64] A. A. Melkman, On-line construction of the convex hull of a simple polyline, Inform. Process. Lett., 25 (1987), pp. 11-12. [65] T. S. Michael and V. Pinciu, Art gallery theorems for guarded guards, Comput. Geom., 26 (2003), pp. 247-258. [66] F. Nielsen, Fast stabbing of boxes in high dimensions, Theoretical Computer Science, 246 (2000), pp. 53-72. [67] B. Nilsson, Approximate guarding of monotone and rectilinear polygons, in Automata, Languages and Programming, L. Caires, G. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, eds., vol. 3580 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2005, pp. 1362-1373. [68] J. O''Rourke, An alternate proof of the rectilinear art gallery theorem, Journal of Geometry, 21 (1983), pp. 118-130. [69] J. O''Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987. [70] J. O''Rourke and I. Streinu, The vertex-edge visibility graph of a polygon, Computational Geometry, 10 (1998), pp. 105-120. [71] T. Ottmann, E. Soisalon-Soininen, and D. Wood, On the de nition and computation of rectilinear convex hulls, Information Sciences, 33 (1984), pp. 157-171. [72] J. Pach and G. Tardos, Tight lower bounds for the size of epsilon-nets, in Proceedings of the Twenty-seventh Annual Symposium on Computational Geometry, SoCG ''11, New York, NY, USA, 2011, ACM, pp. 458-463. [73] B. Palop, Algorithmic Problems on Proximity and Location under Metric Constraints, PhD thesis, Universitat Polit ecnica de Catalunya, 2003. [74] J.-R. Sack and S. Suri, An optimal algorithm for detecting weak visibility of a polygon, IEEE Trans. Computers, 39 (1990), pp. 1213-1219. [75] D. Schuchardt and H.-D. Hecker, Two np-hard art-gallery problems for ortho-polygons, Mathematical Logic Quarterly, 41 (1995), pp. 261-267. [76] T. C. Shermer, Recent results in art galleries, Proceedings of the IEEE, 80 (1992). [77] X. Tan, Fast computation of shortest watchman routes in simple polygons, Information Processing Letters, 77 (2001), pp. 27-33. [78] G. T. Toussaint, A linear-time algorithm for solving the strong hidden-line problem in a simple polygon, Pattern Recogn. Lett., 4 (1986), pp. 449-451. [79] G. T. Toussaint, Shortest path solves edge-to-edge visibility in a polygon, PRL, (1986), pp. 165-170. [80] J. Urrutia, Art gallery and illumination problems, Handbook of computational geometry, (2000). [81] Z. P. Yin, H. Ding, and Y. L. Xiong, Virtual prototyping of mold design: geometric mouldability analysis for near-net-shape manufactured parts by feature recognition and geometric reasoning, Computer-Aided Design, 33 (2001), pp. 137-154. [82] T.-K. Yu and D. T. Lee, Time convex hull with a highway, in Proceedings of the 4th International Symposium on Voronoi Diagrams in Science and Engineering, ISVD ''07, Washington, DC, USA, 2007, IEEE Computer Society, pp. 240-250.
|